/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Copyright (C) 2017 Intel Corporation. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qplatformdefs.h" #include "qstring.h" #include "qvector.h" #include "qlist.h" #include "qdir.h" #include "qdatetime.h" #include "qoperatingsystemversion.h" #include "qoperatingsystemversion_p.h" #if defined(Q_OS_WIN) || defined(Q_OS_CYGWIN) || defined(Q_OS_WINRT) # include "qoperatingsystemversion_win_p.h" # ifndef Q_OS_WINRT # include "private/qwinregistry_p.h" # endif #endif // Q_OS_WIN || Q_OS_CYGWIN #include #include #include #include #include #include #include #ifndef QT_NO_EXCEPTIONS # include # include #endif #include #if defined(Q_CC_MSVC) # include #endif #ifdef Q_OS_WINRT #include #endif // Q_OS_WINRT #ifdef Q_OS_WIN # include #endif #if defined(Q_OS_VXWORKS) && defined(_WRS_KERNEL) # include #endif #if defined(Q_OS_ANDROID) && !defined(Q_OS_ANDROID_EMBEDDED) #include #endif #if defined(Q_OS_SOLARIS) # include #endif #if defined(Q_OS_DARWIN) && QT_HAS_INCLUDE() # include # include #endif #ifdef Q_OS_UNIX #include #include #endif #ifdef Q_OS_BSD4 #include #endif #if defined(Q_OS_INTEGRITY) extern "C" { // Function mmap resides in libshm_client.a. To be able to link with it one needs // to define symbols 'shm_area_password' and 'shm_area_name', because the library // is meant to allow the application that links to it to use POSIX shared memory // without full system POSIX. # pragma weak shm_area_password # pragma weak shm_area_name char shm_area_password[] = "dummy"; char shm_area_name[] = "dummy"; } #endif #include "archdetect.cpp" #ifdef qFatal // the qFatal in this file are just redirections from elsewhere, so // don't capture any context again # undef qFatal #endif QT_BEGIN_NAMESPACE #if !QT_DEPRECATED_SINCE(5, 0) // Make sure they're defined to be exported Q_CORE_EXPORT void *qMemCopy(void *dest, const void *src, size_t n); Q_CORE_EXPORT void *qMemSet(void *dest, int c, size_t n); #endif // Statically check assumptions about the environment we're running // in. The idea here is to error or warn if otherwise implicit Qt // assumptions are not fulfilled on new hardware or compilers // (if this list becomes too long, consider factoring into a separate file) Q_STATIC_ASSERT_X(sizeof(int) == 4, "Qt assumes that int is 32 bits"); Q_STATIC_ASSERT_X(UCHAR_MAX == 255, "Qt assumes that char is 8 bits"); Q_STATIC_ASSERT_X(QT_POINTER_SIZE == sizeof(void *), "QT_POINTER_SIZE defined incorrectly"); Q_STATIC_ASSERT_X(sizeof(float) == 4, "Qt assumes that float is 32 bits"); // While we'd like to check for __STDC_IEC_559__, as per ISO/IEC 9899:2011 // Annex F (C11, normative for C++11), there are a few corner cases regarding // denormals where GHS compiler is relying hardware behavior that is not IEC // 559 compliant. So split the check in several subchecks. // On GHC the compiler reports std::numeric_limits::is_iec559 as false. // This is all right according to our needs. #if !defined(Q_CC_GHS) Q_STATIC_ASSERT_X(std::numeric_limits::is_iec559, "Qt assumes IEEE 754 floating point"); #endif // Technically, presence of NaN and infinities are implied from the above check, // but double checking our environment doesn't hurt... Q_STATIC_ASSERT_X(std::numeric_limits::has_infinity && std::numeric_limits::has_quiet_NaN && std::numeric_limits::has_signaling_NaN, "Qt assumes IEEE 754 floating point"); // is_iec559 checks for ISO/IEC/IEEE 60559:2011 (aka IEEE 754-2008) compliance, // but that allows for a non-binary radix. We need to recheck that. // Note how __STDC_IEC_559__ would instead check for IEC 60559:1989, aka // ANSI/IEEE 754−1985, which specifically implies binary floating point numbers. Q_STATIC_ASSERT_X(std::numeric_limits::radix == 2, "Qt assumes binary IEEE 754 floating point"); // not required by the definition of size_t, but we depend on this Q_STATIC_ASSERT_X(sizeof(size_t) == sizeof(void *), "size_t and a pointer don't have the same size"); Q_STATIC_ASSERT(sizeof(size_t) == sizeof(qsizetype)); // implied by the definition Q_STATIC_ASSERT((std::is_same::value)); /*! \class QFlag \inmodule QtCore \brief The QFlag class is a helper data type for QFlags. It is equivalent to a plain \c int, except with respect to function overloading and type conversions. You should never need to use this class in your applications. \sa QFlags */ /*! \fn QFlag::QFlag(int value) Constructs a QFlag object that stores the \a value. */ /*! \fn QFlag::QFlag(uint value) \since 5.3 Constructs a QFlag object that stores the \a value. */ /*! \fn QFlag::QFlag(short value) \since 5.3 Constructs a QFlag object that stores the \a value. */ /*! \fn QFlag::QFlag(ushort value) \since 5.3 Constructs a QFlag object that stores the \a value. */ /*! \fn QFlag::operator int() const Returns the value stored by the QFlag object. */ /*! \fn QFlag::operator uint() const \since 5.3 Returns the value stored by the QFlag object. */ /*! \class QFlags \inmodule QtCore \brief The QFlags class provides a type-safe way of storing OR-combinations of enum values. \ingroup tools The QFlags class is a template class, where Enum is an enum type. QFlags is used throughout Qt for storing combinations of enum values. The traditional C++ approach for storing OR-combinations of enum values is to use an \c int or \c uint variable. The inconvenience with this approach is that there's no type checking at all; any enum value can be OR'd with any other enum value and passed on to a function that takes an \c int or \c uint. Qt uses QFlags to provide type safety. For example, the Qt::Alignment type is simply a typedef for QFlags. QLabel::setAlignment() takes a Qt::Alignment parameter, which means that any combination of Qt::AlignmentFlag values, or \c{{ }}, is legal: \snippet code/src_corelib_global_qglobal.cpp 0 If you try to pass a value from another enum or just a plain integer other than 0, the compiler will report an error. If you need to cast integer values to flags in a untyped fashion, you can use the explicit QFlags constructor as cast operator. If you want to use QFlags for your own enum types, use the Q_DECLARE_FLAGS() and Q_DECLARE_OPERATORS_FOR_FLAGS(). Example: \snippet code/src_corelib_global_qglobal.cpp 1 You can then use the \c MyClass::Options type to store combinations of \c MyClass::Option values. \section1 Flags and the Meta-Object System The Q_DECLARE_FLAGS() macro does not expose the flags to the meta-object system, so they cannot be used by Qt Script or edited in Qt Designer. To make the flags available for these purposes, the Q_FLAG() macro must be used: \snippet code/src_corelib_global_qglobal.cpp meta-object flags \section1 Naming Convention A sensible naming convention for enum types and associated QFlags types is to give a singular name to the enum type (e.g., \c Option) and a plural name to the QFlags type (e.g., \c Options). When a singular name is desired for the QFlags type (e.g., \c Alignment), you can use \c Flag as the suffix for the enum type (e.g., \c AlignmentFlag). \sa QFlag */ /*! \typedef QFlags::Int \since 5.0 Typedef for the integer type used for storage as well as for implicit conversion. Either \c int or \c{unsigned int}, depending on whether the enum's underlying type is signed or unsigned. */ /*! \typedef QFlags::enum_type Typedef for the Enum template type. */ /*! \fn template QFlags::QFlags(const QFlags &other) Constructs a copy of \a other. */ /*! \fn template QFlags::QFlags(Enum flags) Constructs a QFlags object storing the \a flags. */ /*! \fn template QFlags::QFlags() \since 5.15 Constructs a QFlags object with no flags set. */ /*! \fn template QFlags::QFlags(Zero) \deprecated Constructs a QFlags object with no flags set. The parameter must be a literal 0 value. Deprecated, use default constructor instead. */ /*! \fn template QFlags::QFlags(QFlag flag) Constructs a QFlags object initialized with the integer \a flag. The QFlag type is a helper type. By using it here instead of \c int, we effectively ensure that arbitrary enum values cannot be cast to a QFlags, whereas untyped enum values (i.e., \c int values) can. */ /*! \fn template QFlags::QFlags(std::initializer_list flags) \since 5.4 Constructs a QFlags object initialized with all \a flags combined using the bitwise OR operator. \sa operator|=(), operator|() */ /*! \fn template QFlags &QFlags::operator=(const QFlags &other) Assigns \a other to this object and returns a reference to this object. */ /*! \fn template QFlags &QFlags::operator&=(int mask) Performs a bitwise AND operation with \a mask and stores the result in this QFlags object. Returns a reference to this object. \sa operator&(), operator|=(), operator^=() */ /*! \fn template QFlags &QFlags::operator&=(uint mask) \overload */ /*! \fn template QFlags &QFlags::operator&=(Enum mask) \overload */ /*! \fn template QFlags &QFlags::operator|=(QFlags other) Performs a bitwise OR operation with \a other and stores the result in this QFlags object. Returns a reference to this object. \sa operator|(), operator&=(), operator^=() */ /*! \fn template QFlags &QFlags::operator|=(Enum other) \overload */ /*! \fn template QFlags &QFlags::operator^=(QFlags other) Performs a bitwise XOR operation with \a other and stores the result in this QFlags object. Returns a reference to this object. \sa operator^(), operator&=(), operator|=() */ /*! \fn template QFlags &QFlags::operator^=(Enum other) \overload */ /*! \fn template QFlags::operator Int() const Returns the value stored in the QFlags object as an integer. \sa Int */ /*! \fn template QFlags QFlags::operator|(QFlags other) const Returns a QFlags object containing the result of the bitwise OR operation on this object and \a other. \sa operator|=(), operator^(), operator&(), operator~() */ /*! \fn template QFlags QFlags::operator|(Enum other) const \overload */ /*! \fn template QFlags QFlags::operator^(QFlags other) const Returns a QFlags object containing the result of the bitwise XOR operation on this object and \a other. \sa operator^=(), operator&(), operator|(), operator~() */ /*! \fn template QFlags QFlags::operator^(Enum other) const \overload */ /*! \fn template QFlags QFlags::operator&(int mask) const Returns a QFlags object containing the result of the bitwise AND operation on this object and \a mask. \sa operator&=(), operator|(), operator^(), operator~() */ /*! \fn template QFlags QFlags::operator&(uint mask) const \overload */ /*! \fn template QFlags QFlags::operator&(Enum mask) const \overload */ /*! \fn template QFlags QFlags::operator~() const Returns a QFlags object that contains the bitwise negation of this object. \sa operator&(), operator|(), operator^() */ /*! \fn template bool QFlags::operator!() const Returns \c true if no flag is set (i.e., if the value stored by the QFlags object is 0); otherwise returns \c false. */ /*! \fn template bool QFlags::testFlag(Enum flag) const \since 4.2 Returns \c true if the flag \a flag is set, otherwise \c false. */ /*! \fn template QFlags QFlags::setFlag(Enum flag, bool on) \since 5.7 Sets the flag \a flag if \a on is \c true or unsets it if \a on is \c false. Returns a reference to this object. */ /*! \macro Q_DISABLE_COPY(Class) \relates QObject Disables the use of copy constructors and assignment operators for the given \a Class. Instances of subclasses of QObject should not be thought of as values that can be copied or assigned, but as unique identities. This means that when you create your own subclass of QObject (director or indirect), you should \e not give it a copy constructor or an assignment operator. However, it may not enough to simply omit them from your class, because, if you mistakenly write some code that requires a copy constructor or an assignment operator (it's easy to do), your compiler will thoughtfully create it for you. You must do more. The curious user will have seen that the Qt classes derived from QObject typically include this macro in a private section: \snippet code/src_corelib_global_qglobal.cpp 43 It declares a copy constructor and an assignment operator in the private section, so that if you use them by mistake, the compiler will report an error. \snippet code/src_corelib_global_qglobal.cpp 44 But even this might not catch absolutely every case. You might be tempted to do something like this: \snippet code/src_corelib_global_qglobal.cpp 45 First of all, don't do that. Most compilers will generate code that uses the copy constructor, so the privacy violation error will be reported, but your C++ compiler is not required to generate code for this statement in a specific way. It could generate code using \e{neither} the copy constructor \e{nor} the assignment operator we made private. In that case, no error would be reported, but your application would probably crash when you called a member function of \c{w}. \sa Q_DISABLE_COPY_MOVE, Q_DISABLE_MOVE */ /*! \macro Q_DISABLE_MOVE(Class) \relates QObject Disables the use of move constructors and move assignment operators for the given \a Class. \sa Q_DISABLE_COPY, Q_DISABLE_COPY_MOVE \since 5.13 */ /*! \macro Q_DISABLE_COPY_MOVE(Class) \relates QObject A convenience macro that disables the use of copy constructors, assignment operators, move constructors and move assignment operators for the given \a Class, combining Q_DISABLE_COPY and Q_DISABLE_MOVE. \sa Q_DISABLE_COPY, Q_DISABLE_MOVE \since 5.13 */ /*! \macro Q_DECLARE_FLAGS(Flags, Enum) \relates QFlags The Q_DECLARE_FLAGS() macro expands to \snippet code/src_corelib_global_qglobal.cpp 2 \a Enum is the name of an existing enum type, whereas \a Flags is the name of the QFlags<\e{Enum}> typedef. See the QFlags documentation for details. \sa Q_DECLARE_OPERATORS_FOR_FLAGS() */ /*! \macro Q_DECLARE_OPERATORS_FOR_FLAGS(Flags) \relates QFlags The Q_DECLARE_OPERATORS_FOR_FLAGS() macro declares global \c operator|() functions for \a Flags, which is of type QFlags. See the QFlags documentation for details. \sa Q_DECLARE_FLAGS() */ /*! \headerfile \title Global Qt Declarations \ingroup funclists \brief The header file includes the fundamental global declarations. It is included by most other Qt header files. The global declarations include \l{types}, \l{functions} and \l{macros}. The type definitions are partly convenience definitions for basic types (some of which guarantee certain bit-sizes on all platforms supported by Qt), partly types related to Qt message handling. The functions are related to generating messages, Qt version handling and comparing and adjusting object values. And finally, some of the declared macros enable programmers to add compiler or platform specific code to their applications, while others are convenience macros for larger operations. \section1 Types The header file declares several type definitions that guarantee a specified bit-size on all platforms supported by Qt for various basic types, for example \l qint8 which is a signed char guaranteed to be 8-bit on all platforms supported by Qt. The header file also declares the \l qlonglong type definition for \c {long long int } (\c __int64 on Windows). Several convenience type definitions are declared: \l qreal for \c double or \c float, \l uchar for \c unsigned char, \l uint for \c unsigned int, \l ulong for \c unsigned long and \l ushort for \c unsigned short. Finally, the QtMsgType definition identifies the various messages that can be generated and sent to a Qt message handler; QtMessageHandler is a type definition for a pointer to a function with the signature \c {void myMessageHandler(QtMsgType, const QMessageLogContext &, const char *)}. QMessageLogContext class contains the line, file, and function the message was logged at. This information is created by the QMessageLogger class. \section1 Functions The header file contains several functions comparing and adjusting an object's value. These functions take a template type as argument: You can retrieve the absolute value of an object using the qAbs() function, and you can bound a given object's value by given minimum and maximum values using the qBound() function. You can retrieve the minimum and maximum of two given objects using qMin() and qMax() respectively. All these functions return a corresponding template type; the template types can be replaced by any other type. Example: \snippet code/src_corelib_global_qglobal.cpp 3 also contains functions that generate messages from the given string argument: qDebug(), qInfo(), qWarning(), qCritical(), and qFatal(). These functions call the message handler with the given message. Example: \snippet code/src_corelib_global_qglobal.cpp 4 The remaining functions are qRound() and qRound64(), which both accept a \c double or \c float value as their argument returning the value rounded up to the nearest integer and 64-bit integer respectively, the qInstallMessageHandler() function which installs the given QtMessageHandler, and the qVersion() function which returns the version number of Qt at run-time as a string. \section1 Macros The header file provides a range of macros (Q_CC_*) that are defined if the application is compiled using the specified platforms. For example, the Q_CC_SUN macro is defined if the application is compiled using Forte Developer, or Sun Studio C++. The header file also declares a range of macros (Q_OS_*) that are defined for the specified platforms. For example, Q_OS_UNIX which is defined for the Unix-based systems. The purpose of these macros is to enable programmers to add compiler or platform specific code to their application. The remaining macros are convenience macros for larger operations: The QT_TR_NOOP(), QT_TRANSLATE_NOOP(), and QT_TRANSLATE_NOOP3() macros provide the possibility of marking strings for delayed translation. QT_TR_N_NOOP(), QT_TRANSLATE_N_NOOP(), and QT_TRANSLATE_N_NOOP3() are numerator dependent variants of these. The Q_ASSERT() and Q_ASSERT_X() enables warning messages of various level of refinement. The Q_FOREACH() and foreach() macros implement Qt's foreach loop. The Q_INT64_C() and Q_UINT64_C() macros wrap signed and unsigned 64-bit integer literals in a platform-independent way. The Q_CHECK_PTR() macro prints a warning containing the source code's file name and line number, saying that the program ran out of memory, if the pointer is 0. The qPrintable() and qUtf8Printable() macros represent an easy way of printing text. The QT_POINTER_SIZE macro expands to the size of a pointer in bytes. The macros QT_VERSION and QT_VERSION_STR expand to a numeric value or a string, respectively, that specifies the version of Qt that the application is compiled against. \sa , QSysInfo */ /*! \typedef qreal \relates Typedef for \c double unless Qt is configured with the \c{-qreal float} option. */ /*! \typedef uchar \relates Convenience typedef for \c{unsigned char}. */ /*! \typedef ushort \relates Convenience typedef for \c{unsigned short}. */ /*! \typedef uint \relates Convenience typedef for \c{unsigned int}. */ /*! \typedef ulong \relates Convenience typedef for \c{unsigned long}. */ /*! \typedef qint8 \relates Typedef for \c{signed char}. This type is guaranteed to be 8-bit on all platforms supported by Qt. */ /*! \typedef quint8 \relates Typedef for \c{unsigned char}. This type is guaranteed to be 8-bit on all platforms supported by Qt. */ /*! \typedef qint16 \relates Typedef for \c{signed short}. This type is guaranteed to be 16-bit on all platforms supported by Qt. */ /*! \typedef quint16 \relates Typedef for \c{unsigned short}. This type is guaranteed to be 16-bit on all platforms supported by Qt. */ /*! \typedef qint32 \relates Typedef for \c{signed int}. This type is guaranteed to be 32-bit on all platforms supported by Qt. */ /*! \typedef quint32 \relates Typedef for \c{unsigned int}. This type is guaranteed to be 32-bit on all platforms supported by Qt. */ /*! \typedef qint64 \relates Typedef for \c{long long int} (\c __int64 on Windows). This type is guaranteed to be 64-bit on all platforms supported by Qt. Literals of this type can be created using the Q_INT64_C() macro: \snippet code/src_corelib_global_qglobal.cpp 5 \sa Q_INT64_C(), quint64, qlonglong */ /*! \typedef quint64 \relates Typedef for \c{unsigned long long int} (\c{unsigned __int64} on Windows). This type is guaranteed to be 64-bit on all platforms supported by Qt. Literals of this type can be created using the Q_UINT64_C() macro: \snippet code/src_corelib_global_qglobal.cpp 6 \sa Q_UINT64_C(), qint64, qulonglong */ /*! \typedef qintptr \relates Integral type for representing pointers in a signed integer (useful for hashing, etc.). Typedef for either qint32 or qint64. This type is guaranteed to be the same size as a pointer on all platforms supported by Qt. On a system with 32-bit pointers, qintptr is a typedef for qint32; on a system with 64-bit pointers, qintptr is a typedef for qint64. Note that qintptr is signed. Use quintptr for unsigned values. \sa qptrdiff, qint32, qint64 */ /*! \typedef quintptr \relates Integral type for representing pointers in an unsigned integer (useful for hashing, etc.). Typedef for either quint32 or quint64. This type is guaranteed to be the same size as a pointer on all platforms supported by Qt. On a system with 32-bit pointers, quintptr is a typedef for quint32; on a system with 64-bit pointers, quintptr is a typedef for quint64. Note that quintptr is unsigned. Use qptrdiff for signed values. \sa qptrdiff, quint32, quint64 */ /*! \typedef qptrdiff \relates Integral type for representing pointer differences. Typedef for either qint32 or qint64. This type is guaranteed to be the same size as a pointer on all platforms supported by Qt. On a system with 32-bit pointers, quintptr is a typedef for quint32; on a system with 64-bit pointers, quintptr is a typedef for quint64. Note that qptrdiff is signed. Use quintptr for unsigned values. \sa quintptr, qint32, qint64 */ /*! \typedef qsizetype \relates \since 5.10 Integral type providing Posix' \c ssize_t for all platforms. This type is guaranteed to be the same size as a \c size_t on all platforms supported by Qt. Note that qsizetype is signed. Use \c size_t for unsigned values. \sa qptrdiff */ /*! \enum QtMsgType \relates This enum describes the messages that can be sent to a message handler (QtMessageHandler). You can use the enum to identify and associate the various message types with the appropriate actions. \value QtDebugMsg A message generated by the qDebug() function. \value QtInfoMsg A message generated by the qInfo() function. \value QtWarningMsg A message generated by the qWarning() function. \value QtCriticalMsg A message generated by the qCritical() function. \value QtFatalMsg A message generated by the qFatal() function. \value QtSystemMsg \c QtInfoMsg was added in Qt 5.5. \sa QtMessageHandler, qInstallMessageHandler() */ /*! \typedef QFunctionPointer \relates This is a typedef for \c{void (*)()}, a pointer to a function that takes no arguments and returns void. */ /*! \macro qint64 Q_INT64_C(literal) \relates Wraps the signed 64-bit integer \a literal in a platform-independent way. Example: \snippet code/src_corelib_global_qglobal.cpp 8 \sa qint64, Q_UINT64_C() */ /*! \macro quint64 Q_UINT64_C(literal) \relates Wraps the unsigned 64-bit integer \a literal in a platform-independent way. Example: \snippet code/src_corelib_global_qglobal.cpp 9 \sa quint64, Q_INT64_C() */ /*! \typedef qlonglong \relates Typedef for \c{long long int} (\c __int64 on Windows). This is the same as \l qint64. \sa qulonglong, qint64 */ /*! \typedef qulonglong \relates Typedef for \c{unsigned long long int} (\c{unsigned __int64} on Windows). This is the same as \l quint64. \sa quint64, qlonglong */ /*! \fn template T qAbs(const T &t) \relates Compares \a t to the 0 of type T and returns the absolute value. Thus if T is \e {double}, then \a t is compared to \e{(double) 0}. Example: \snippet code/src_corelib_global_qglobal.cpp 10 */ /*! \fn int qRound(double d) \relates Rounds \a d to the nearest integer. Rounds half up (e.g. 0.5 -> 1, -0.5 -> 0). Example: \snippet code/src_corelib_global_qglobal.cpp 11A */ /*! \fn int qRound(float d) \relates Rounds \a d to the nearest integer. Rounds half up (e.g. 0.5f -> 1, -0.5f -> 0). Example: \snippet code/src_corelib_global_qglobal.cpp 11B */ /*! \fn qint64 qRound64(double d) \relates Rounds \a d to the nearest 64-bit integer. Rounds half up (e.g. 0.5 -> 1, -0.5 -> 0). Example: \snippet code/src_corelib_global_qglobal.cpp 12A */ /*! \fn qint64 qRound64(float d) \relates Rounds \a d to the nearest 64-bit integer. Rounds half up (e.g. 0.5f -> 1, -0.5f -> 0). Example: \snippet code/src_corelib_global_qglobal.cpp 12B */ /*! \fn template const T &qMin(const T &a, const T &b) \relates Returns the minimum of \a a and \a b. Example: \snippet code/src_corelib_global_qglobal.cpp 13 \sa qMax(), qBound() */ /*! \fn template const T &qMax(const T &a, const T &b) \relates Returns the maximum of \a a and \a b. Example: \snippet code/src_corelib_global_qglobal.cpp 14 \sa qMin(), qBound() */ /*! \fn template const T &qBound(const T &min, const T &val, const T &max) \relates Returns \a val bounded by \a min and \a max. This is equivalent to qMax(\a min, qMin(\a val, \a max)). Example: \snippet code/src_corelib_global_qglobal.cpp 15 \sa qMin(), qMax() */ /*! \fn template auto qOverload(T functionPointer) \relates \since 5.7 Returns a pointer to an overloaded function. The template parameter is the list of the argument types of the function. \a functionPointer is the pointer to the (member) function: \snippet code/src_corelib_global_qglobal.cpp 52 If a member function is also const-overloaded \l qConstOverload and \l qNonConstOverload need to be used. qOverload() requires C++14 enabled. In C++11-only code, the helper classes QOverload, QConstOverload, and QNonConstOverload can be used directly: \snippet code/src_corelib_global_qglobal.cpp 53 \note Qt detects the necessary C++14 compiler support by way of the feature test recommendations from \l{https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations} {C++ Committee's Standing Document 6}. \sa qConstOverload(), qNonConstOverload(), {Differences between String-Based and Functor-Based Connections} */ /*! \fn template auto qConstOverload(T memberFunctionPointer) \relates \since 5.7 Returns the \a memberFunctionPointer pointer to a constant member function: \snippet code/src_corelib_global_qglobal.cpp 54 \sa qOverload, qNonConstOverload, {Differences between String-Based and Functor-Based Connections} */ /*! \fn template auto qNonConstOverload(T memberFunctionPointer) \relates \since 5.7 Returns the \a memberFunctionPointer pointer to a non-constant member function: \snippet code/src_corelib_global_qglobal.cpp 54 \sa qOverload, qNonConstOverload, {Differences between String-Based and Functor-Based Connections} */ /*! \macro QT_VERSION_CHECK \relates Turns the major, minor and patch numbers of a version into an integer, 0xMMNNPP (MM = major, NN = minor, PP = patch). This can be compared with another similarly processed version id. Example: \snippet code/src_corelib_global_qglobal.cpp qt-version-check \sa QT_VERSION */ /*! \macro QT_VERSION \relates This macro expands a numeric value of the form 0xMMNNPP (MM = major, NN = minor, PP = patch) that specifies Qt's version number. For example, if you compile your application against Qt 4.1.2, the QT_VERSION macro will expand to 0x040102. You can use QT_VERSION to use the latest Qt features where available. Example: \snippet code/src_corelib_global_qglobal.cpp 16 \sa QT_VERSION_STR, qVersion() */ /*! \macro QT_VERSION_STR \relates This macro expands to a string that specifies Qt's version number (for example, "4.1.2"). This is the version against which the application is compiled. \sa qVersion(), QT_VERSION */ /*! \relates Returns the version number of Qt at run-time as a string (for example, "4.1.2"). This may be a different version than the version the application was compiled against. \sa QT_VERSION_STR, QLibraryInfo::version() */ const char *qVersion() noexcept { return QT_VERSION_STR; } bool qSharedBuild() noexcept { #ifdef QT_SHARED return true; #else return false; #endif } /***************************************************************************** System detection routines *****************************************************************************/ /*! \class QSysInfo \inmodule QtCore \brief The QSysInfo class provides information about the system. \list \li \l WordSize specifies the size of a pointer for the platform on which the application is compiled. \li \l ByteOrder specifies whether the platform is big-endian or little-endian. \endlist Some constants are defined only on certain platforms. You can use the preprocessor symbols Q_OS_WIN and Q_OS_MACOS to test that the application is compiled under Windows or \macos. \sa QLibraryInfo */ /*! \enum QSysInfo::Sizes This enum provides platform-specific information about the sizes of data structures used by the underlying architecture. \value WordSize The size in bits of a pointer for the platform on which the application is compiled (32 or 64). */ #if QT_DEPRECATED_SINCE(5, 9) /*! \deprecated \variable QSysInfo::WindowsVersion \brief the version of the Windows operating system on which the application is run. Use QOperatingSystemVersion::current() instead. */ /*! \deprecated \fn QSysInfo::WindowsVersion QSysInfo::windowsVersion() \since 4.4 Use QOperatingSystemVersion::current() instead. Returns the version of the Windows operating system on which the application is run, or WV_None if the operating system is not Windows. */ /*! \deprecated \variable QSysInfo::MacintoshVersion \brief the version of the Macintosh operating system on which the application is run. Use QOperatingSystemVersion::current() instead. */ /*! \deprecated \fn QSysInfo::MacVersion QSysInfo::macVersion() Use QOperatingSystemVersion::current() instead. Returns the version of Darwin (\macos or iOS) on which the application is run, or MV_None if the operating system is not a version of Darwin. */ #endif /*! \enum QSysInfo::Endian \value BigEndian Big-endian byte order (also called Network byte order) \value LittleEndian Little-endian byte order \value ByteOrder Equals BigEndian or LittleEndian, depending on the platform's byte order. */ #if QT_DEPRECATED_SINCE(5, 9) /*! \deprecated \enum QSysInfo::WinVersion Use the versions defined in QOperatingSystemVersion instead. This enum provides symbolic names for the various versions of the Windows operating system. On Windows, the QSysInfo::WindowsVersion variable gives the version of the system on which the application is run. MS-DOS-based versions: \value WV_32s Windows 3.1 with Win 32s \value WV_95 Windows 95 \value WV_98 Windows 98 \value WV_Me Windows Me NT-based versions (note that each operating system version is only represented once rather than each Windows edition): \value WV_NT Windows NT (operating system version 4.0) \value WV_2000 Windows 2000 (operating system version 5.0) \value WV_XP Windows XP (operating system version 5.1) \value WV_2003 Windows Server 2003, Windows Server 2003 R2, Windows Home Server, Windows XP Professional x64 Edition (operating system version 5.2) \value WV_VISTA Windows Vista, Windows Server 2008 (operating system version 6.0) \value WV_WINDOWS7 Windows 7, Windows Server 2008 R2 (operating system version 6.1) \value WV_WINDOWS8 Windows 8 (operating system version 6.2) \value WV_WINDOWS8_1 Windows 8.1 (operating system version 6.3), introduced in Qt 5.2 \value WV_WINDOWS10 Windows 10 (operating system version 10.0), introduced in Qt 5.5 Alternatively, you may use the following macros which correspond directly to the Windows operating system version number: \value WV_4_0 Operating system version 4.0, corresponds to Windows NT \value WV_5_0 Operating system version 5.0, corresponds to Windows 2000 \value WV_5_1 Operating system version 5.1, corresponds to Windows XP \value WV_5_2 Operating system version 5.2, corresponds to Windows Server 2003, Windows Server 2003 R2, Windows Home Server, and Windows XP Professional x64 Edition \value WV_6_0 Operating system version 6.0, corresponds to Windows Vista and Windows Server 2008 \value WV_6_1 Operating system version 6.1, corresponds to Windows 7 and Windows Server 2008 R2 \value WV_6_2 Operating system version 6.2, corresponds to Windows 8 \value WV_6_3 Operating system version 6.3, corresponds to Windows 8.1, introduced in Qt 5.2 \value WV_10_0 Operating system version 10.0, corresponds to Windows 10, introduced in Qt 5.5 The following masks can be used for testing whether a Windows version is MS-DOS-based or NT-based: \value WV_DOS_based MS-DOS-based version of Windows \value WV_NT_based NT-based version of Windows \value WV_None Operating system other than Windows. \omitvalue WV_CE \omitvalue WV_CENET \omitvalue WV_CE_5 \omitvalue WV_CE_6 \omitvalue WV_CE_based \sa MacVersion */ /*! \deprecated \enum QSysInfo::MacVersion Use the versions defined in QOperatingSystemVersion instead. This enum provides symbolic names for the various versions of the Darwin operating system, covering both \macos and iOS. The QSysInfo::MacintoshVersion variable gives the version of the system on which the application is run. \value MV_9 \macos 9 \value MV_10_0 \macos 10.0 \value MV_10_1 \macos 10.1 \value MV_10_2 \macos 10.2 \value MV_10_3 \macos 10.3 \value MV_10_4 \macos 10.4 \value MV_10_5 \macos 10.5 \value MV_10_6 \macos 10.6 \value MV_10_7 \macos 10.7 \value MV_10_8 \macos 10.8 \value MV_10_9 \macos 10.9 \value MV_10_10 \macos 10.10 \value MV_10_11 \macos 10.11 \value MV_10_12 \macos 10.12 \value MV_Unknown An unknown and currently unsupported platform \value MV_CHEETAH Apple codename for MV_10_0 \value MV_PUMA Apple codename for MV_10_1 \value MV_JAGUAR Apple codename for MV_10_2 \value MV_PANTHER Apple codename for MV_10_3 \value MV_TIGER Apple codename for MV_10_4 \value MV_LEOPARD Apple codename for MV_10_5 \value MV_SNOWLEOPARD Apple codename for MV_10_6 \value MV_LION Apple codename for MV_10_7 \value MV_MOUNTAINLION Apple codename for MV_10_8 \value MV_MAVERICKS Apple codename for MV_10_9 \value MV_YOSEMITE Apple codename for MV_10_10 \value MV_ELCAPITAN Apple codename for MV_10_11 \value MV_SIERRA Apple codename for MV_10_12 \value MV_IOS iOS (any) \value MV_IOS_4_3 iOS 4.3 \value MV_IOS_5_0 iOS 5.0 \value MV_IOS_5_1 iOS 5.1 \value MV_IOS_6_0 iOS 6.0 \value MV_IOS_6_1 iOS 6.1 \value MV_IOS_7_0 iOS 7.0 \value MV_IOS_7_1 iOS 7.1 \value MV_IOS_8_0 iOS 8.0 \value MV_IOS_8_1 iOS 8.1 \value MV_IOS_8_2 iOS 8.2 \value MV_IOS_8_3 iOS 8.3 \value MV_IOS_8_4 iOS 8.4 \value MV_IOS_9_0 iOS 9.0 \value MV_IOS_9_1 iOS 9.1 \value MV_IOS_9_2 iOS 9.2 \value MV_IOS_9_3 iOS 9.3 \value MV_IOS_10_0 iOS 10.0 \value MV_TVOS tvOS (any) \value MV_TVOS_9_0 tvOS 9.0 \value MV_TVOS_9_1 tvOS 9.1 \value MV_TVOS_9_2 tvOS 9.2 \value MV_TVOS_10_0 tvOS 10.0 \value MV_WATCHOS watchOS (any) \value MV_WATCHOS_2_0 watchOS 2.0 \value MV_WATCHOS_2_1 watchOS 2.1 \value MV_WATCHOS_2_2 watchOS 2.2 \value MV_WATCHOS_3_0 watchOS 3.0 \value MV_None Not a Darwin operating system \sa WinVersion */ #endif /*! \macro Q_OS_DARWIN \relates Defined on Darwin-based operating systems such as \macos, iOS, watchOS, and tvOS. */ /*! \macro Q_OS_MAC \relates Deprecated synonym for \c Q_OS_DARWIN. Do not use. */ /*! \macro Q_OS_OSX \relates Deprecated synonym for \c Q_OS_MACOS. Do not use. */ /*! \macro Q_OS_MACOS \relates Defined on \macos. */ /*! \macro Q_OS_IOS \relates Defined on iOS. */ /*! \macro Q_OS_WATCHOS \relates Defined on watchOS. */ /*! \macro Q_OS_TVOS \relates Defined on tvOS. */ /*! \macro Q_OS_WIN \relates Defined on all supported versions of Windows. That is, if \l Q_OS_WIN32, \l Q_OS_WIN64, or \l Q_OS_WINRT is defined. */ /*! \macro Q_OS_WINDOWS \relates This is a synonym for Q_OS_WIN. */ /*! \macro Q_OS_WIN32 \relates Defined on 32-bit and 64-bit versions of Windows. */ /*! \macro Q_OS_WIN64 \relates Defined on 64-bit versions of Windows. */ /*! \macro Q_OS_WINRT \relates Defined for Windows Runtime (Windows Store apps) on Windows 8, Windows RT, and Windows Phone 8. */ /*! \macro Q_OS_CYGWIN \relates Defined on Cygwin. */ /*! \macro Q_OS_SOLARIS \relates Defined on Sun Solaris. */ /*! \macro Q_OS_HPUX \relates Defined on HP-UX. */ /*! \macro Q_OS_LINUX \relates Defined on Linux. */ /*! \macro Q_OS_ANDROID \relates Defined on Android. */ /*! \macro Q_OS_FREEBSD \relates Defined on FreeBSD. */ /*! \macro Q_OS_NETBSD \relates Defined on NetBSD. */ /*! \macro Q_OS_OPENBSD \relates Defined on OpenBSD. */ /*! \macro Q_OS_AIX \relates Defined on AIX. */ /*! \macro Q_OS_HURD \relates Defined on GNU Hurd. */ /*! \macro Q_OS_QNX \relates Defined on QNX Neutrino. */ /*! \macro Q_OS_LYNX \relates Defined on LynxOS. */ /*! \macro Q_OS_BSD4 \relates Defined on Any BSD 4.4 system. */ /*! \macro Q_OS_UNIX \relates Defined on Any UNIX BSD/SYSV system. */ /*! \macro Q_OS_WASM \relates Defined on Web Assembly. */ /*! \macro Q_CC_SYM \relates Defined if the application is compiled using Digital Mars C/C++ (used to be Symantec C++). */ /*! \macro Q_CC_MSVC \relates Defined if the application is compiled using Microsoft Visual C/C++, Intel C++ for Windows. */ /*! \macro Q_CC_CLANG \relates Defined if the application is compiled using Clang. */ /*! \macro Q_CC_BOR \relates Defined if the application is compiled using Borland/Turbo C++. */ /*! \macro Q_CC_WAT \relates Defined if the application is compiled using Watcom C++. */ /*! \macro Q_CC_GNU \relates Defined if the application is compiled using GNU C++. */ /*! \macro Q_CC_COMEAU \relates Defined if the application is compiled using Comeau C++. */ /*! \macro Q_CC_EDG \relates Defined if the application is compiled using Edison Design Group C++. */ /*! \macro Q_CC_OC \relates Defined if the application is compiled using CenterLine C++. */ /*! \macro Q_CC_SUN \relates Defined if the application is compiled using Forte Developer, or Sun Studio C++. */ /*! \macro Q_CC_MIPS \relates Defined if the application is compiled using MIPSpro C++. */ /*! \macro Q_CC_DEC \relates Defined if the application is compiled using DEC C++. */ /*! \macro Q_CC_HPACC \relates Defined if the application is compiled using HP aC++. */ /*! \macro Q_CC_USLC \relates Defined if the application is compiled using SCO OUDK and UDK. */ /*! \macro Q_CC_CDS \relates Defined if the application is compiled using Reliant C++. */ /*! \macro Q_CC_KAI \relates Defined if the application is compiled using KAI C++. */ /*! \macro Q_CC_INTEL \relates Defined if the application is compiled using Intel C++ for Linux, Intel C++ for Windows. */ /*! \macro Q_CC_HIGHC \relates Defined if the application is compiled using MetaWare High C/C++. */ /*! \macro Q_CC_PGI \relates Defined if the application is compiled using Portland Group C++. */ /*! \macro Q_CC_GHS \relates Defined if the application is compiled using Green Hills Optimizing C++ Compilers. */ /*! \macro Q_PROCESSOR_ALPHA \relates Defined if the application is compiled for Alpha processors. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_ARM \relates Defined if the application is compiled for ARM processors. Qt currently supports three optional ARM revisions: \l Q_PROCESSOR_ARM_V5, \l Q_PROCESSOR_ARM_V6, and \l Q_PROCESSOR_ARM_V7. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_ARM_V5 \relates Defined if the application is compiled for ARMv5 processors. The \l Q_PROCESSOR_ARM macro is also defined when Q_PROCESSOR_ARM_V5 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_ARM_V6 \relates Defined if the application is compiled for ARMv6 processors. The \l Q_PROCESSOR_ARM and \l Q_PROCESSOR_ARM_V5 macros are also defined when Q_PROCESSOR_ARM_V6 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_ARM_V7 \relates Defined if the application is compiled for ARMv7 processors. The \l Q_PROCESSOR_ARM, \l Q_PROCESSOR_ARM_V5, and \l Q_PROCESSOR_ARM_V6 macros are also defined when Q_PROCESSOR_ARM_V7 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_AVR32 \relates Defined if the application is compiled for AVR32 processors. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_BLACKFIN \relates Defined if the application is compiled for Blackfin processors. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_IA64 \relates Defined if the application is compiled for IA-64 processors. This includes all Itanium and Itanium 2 processors. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS \relates Defined if the application is compiled for MIPS processors. Qt currently supports seven MIPS revisions: \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, \l Q_PROCESSOR_MIPS_III, \l Q_PROCESSOR_MIPS_IV, \l Q_PROCESSOR_MIPS_V, \l Q_PROCESSOR_MIPS_32, and \l Q_PROCESSOR_MIPS_64. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_I \relates Defined if the application is compiled for MIPS-I processors. The \l Q_PROCESSOR_MIPS macro is also defined when Q_PROCESSOR_MIPS_I is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_II \relates Defined if the application is compiled for MIPS-II processors. The \l Q_PROCESSOR_MIPS and \l Q_PROCESSOR_MIPS_I macros are also defined when Q_PROCESSOR_MIPS_II is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_32 \relates Defined if the application is compiled for MIPS32 processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, and \l Q_PROCESSOR_MIPS_II macros are also defined when Q_PROCESSOR_MIPS_32 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_III \relates Defined if the application is compiled for MIPS-III processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, and \l Q_PROCESSOR_MIPS_II macros are also defined when Q_PROCESSOR_MIPS_III is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_IV \relates Defined if the application is compiled for MIPS-IV processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, and \l Q_PROCESSOR_MIPS_III macros are also defined when Q_PROCESSOR_MIPS_IV is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_V \relates Defined if the application is compiled for MIPS-V processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, \l Q_PROCESSOR_MIPS_III, and \l Q_PROCESSOR_MIPS_IV macros are also defined when Q_PROCESSOR_MIPS_V is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_MIPS_64 \relates Defined if the application is compiled for MIPS64 processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, \l Q_PROCESSOR_MIPS_III, \l Q_PROCESSOR_MIPS_IV, and \l Q_PROCESSOR_MIPS_V macros are also defined when Q_PROCESSOR_MIPS_64 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_POWER \relates Defined if the application is compiled for POWER processors. Qt currently supports two Power variants: \l Q_PROCESSOR_POWER_32 and \l Q_PROCESSOR_POWER_64. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_POWER_32 \relates Defined if the application is compiled for 32-bit Power processors. The \l Q_PROCESSOR_POWER macro is also defined when Q_PROCESSOR_POWER_32 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_POWER_64 \relates Defined if the application is compiled for 64-bit Power processors. The \l Q_PROCESSOR_POWER macro is also defined when Q_PROCESSOR_POWER_64 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_RISCV \relates \since 5.13 Defined if the application is compiled for RISC-V processors. Qt currently supports two RISC-V variants: \l Q_PROCESSOR_RISCV_32 and \l Q_PROCESSOR_RISCV_64. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_RISCV_32 \relates \since 5.13 Defined if the application is compiled for 32-bit RISC-V processors. The \l Q_PROCESSOR_RISCV macro is also defined when Q_PROCESSOR_RISCV_32 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_RISCV_64 \relates \since 5.13 Defined if the application is compiled for 64-bit RISC-V processors. The \l Q_PROCESSOR_RISCV macro is also defined when Q_PROCESSOR_RISCV_64 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_S390 \relates Defined if the application is compiled for S/390 processors. Qt supports one optional variant of S/390: Q_PROCESSOR_S390_X. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_S390_X \relates Defined if the application is compiled for S/390x processors. The \l Q_PROCESSOR_S390 macro is also defined when Q_PROCESSOR_S390_X is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_SH \relates Defined if the application is compiled for SuperH processors. Qt currently supports one SuperH revision: \l Q_PROCESSOR_SH_4A. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_SH_4A \relates Defined if the application is compiled for SuperH 4A processors. The \l Q_PROCESSOR_SH macro is also defined when Q_PROCESSOR_SH_4A is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_SPARC \relates Defined if the application is compiled for SPARC processors. Qt currently supports one optional SPARC revision: \l Q_PROCESSOR_SPARC_V9. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_SPARC_V9 \relates Defined if the application is compiled for SPARC V9 processors. The \l Q_PROCESSOR_SPARC macro is also defined when Q_PROCESSOR_SPARC_V9 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_X86 \relates Defined if the application is compiled for x86 processors. Qt currently supports two x86 variants: \l Q_PROCESSOR_X86_32 and \l Q_PROCESSOR_X86_64. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_X86_32 \relates Defined if the application is compiled for 32-bit x86 processors. This includes all i386, i486, i586, and i686 processors. The \l Q_PROCESSOR_X86 macro is also defined when Q_PROCESSOR_X86_32 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro Q_PROCESSOR_X86_64 \relates Defined if the application is compiled for 64-bit x86 processors. This includes all AMD64, Intel 64, and other x86_64/x64 processors. The \l Q_PROCESSOR_X86 macro is also defined when Q_PROCESSOR_X86_64 is defined. \sa QSysInfo::buildCpuArchitecture() */ /*! \macro QT_DISABLE_DEPRECATED_BEFORE \relates This macro can be defined in the project file to disable functions deprecated in a specified version of Qt or any earlier version. The default version number is 5.0, meaning that functions deprecated in or before Qt 5.0 will not be included. For instance, when using a future release of Qt 5, set \c{QT_DISABLE_DEPRECATED_BEFORE=0x050100} to disable functions deprecated in Qt 5.1 and earlier. In any release, set \c{QT_DISABLE_DEPRECATED_BEFORE=0x000000} to enable all functions, including the ones deprecated in Qt 5.0. \sa QT_DEPRECATED_WARNINGS */ /*! \macro QT_DEPRECATED_WARNINGS \relates Since Qt 5.13, this macro has no effect. In Qt 5.12 and before, if this macro is defined, the compiler will generate warnings if any API declared as deprecated by Qt is used. \sa QT_DISABLE_DEPRECATED_BEFORE, QT_NO_DEPRECATED_WARNINGS */ /*! \macro QT_NO_DEPRECATED_WARNINGS \relates \since 5.13 This macro can be used to suppress deprecation warnings that would otherwise be generated when using deprecated APIs. \sa QT_DISABLE_DEPRECATED_BEFORE */ #if defined(QT_BUILD_QMAKE) // needed to bootstrap qmake static const unsigned int qt_one = 1; const int QSysInfo::ByteOrder = ((*((unsigned char *) &qt_one) == 0) ? BigEndian : LittleEndian); #endif #if defined(Q_OS_MAC) QT_BEGIN_INCLUDE_NAMESPACE #include "private/qcore_mac_p.h" #include "qnamespace.h" QT_END_INCLUDE_NAMESPACE #if QT_DEPRECATED_SINCE(5, 9) QT_WARNING_PUSH QT_WARNING_DISABLE_DEPRECATED QSysInfo::MacVersion QSysInfo::macVersion() { const auto version = QOperatingSystemVersion::current(); #if defined(Q_OS_OSX) return QSysInfo::MacVersion(Q_MV_OSX(version.majorVersion(), version.minorVersion())); #elif defined(Q_OS_IOS) return QSysInfo::MacVersion(Q_MV_IOS(version.majorVersion(), version.minorVersion())); #elif defined(Q_OS_TVOS) return QSysInfo::MacVersion(Q_MV_TVOS(version.majorVersion(), version.minorVersion())); #elif defined(Q_OS_WATCHOS) return QSysInfo::MacVersion(Q_MV_WATCHOS(version.majorVersion(), version.minorVersion())); #else return QSysInfo::MV_Unknown; #endif } const QSysInfo::MacVersion QSysInfo::MacintoshVersion = QSysInfo::macVersion(); QT_WARNING_POP #endif #ifdef Q_OS_DARWIN static const char *osVer_helper(QOperatingSystemVersion version = QOperatingSystemVersion::current()) { #ifdef Q_OS_MACOS if (version.majorVersion() == 10) { switch (version.minorVersion()) { case 9: return "Mavericks"; case 10: return "Yosemite"; case 11: return "El Capitan"; case 12: return "Sierra"; case 13: return "High Sierra"; case 14: return "Mojave"; } } // unknown, future version #else Q_UNUSED(version); #endif return 0; } #endif #elif defined(Q_OS_WIN) || defined(Q_OS_CYGWIN) || defined(Q_OS_WINRT) QT_BEGIN_INCLUDE_NAMESPACE #include "qt_windows.h" QT_END_INCLUDE_NAMESPACE # ifndef QT_BOOTSTRAPPED class QWindowsSockInit { public: QWindowsSockInit(); ~QWindowsSockInit(); int version; }; QWindowsSockInit::QWindowsSockInit() : version(0) { //### should we try for 2.2 on all platforms ?? WSAData wsadata; // IPv6 requires Winsock v2.0 or better. if (WSAStartup(MAKEWORD(2,0), &wsadata) != 0) { qWarning("QTcpSocketAPI: WinSock v2.0 initialization failed."); } else { version = 0x20; } } QWindowsSockInit::~QWindowsSockInit() { WSACleanup(); } Q_GLOBAL_STATIC(QWindowsSockInit, winsockInit) # endif // QT_BOOTSTRAPPED #if QT_DEPRECATED_SINCE(5, 9) QT_WARNING_PUSH QT_WARNING_DISABLE_DEPRECATED QSysInfo::WinVersion QSysInfo::windowsVersion() { const auto version = QOperatingSystemVersion::current(); if (version.majorVersion() == 6 && version.minorVersion() == 1) return QSysInfo::WV_WINDOWS7; if (version.majorVersion() == 6 && version.minorVersion() == 2) return QSysInfo::WV_WINDOWS8; if (version.majorVersion() == 6 && version.minorVersion() == 3) return QSysInfo::WV_WINDOWS8_1; if (version.majorVersion() == 10 && version.minorVersion() == 0) return QSysInfo::WV_WINDOWS10; return QSysInfo::WV_NT_based; } const QSysInfo::WinVersion QSysInfo::WindowsVersion = QSysInfo::windowsVersion(); QT_WARNING_POP #endif static QString readVersionRegistryString(const wchar_t *subKey) { #if !defined(QT_BUILD_QMAKE) && !defined(Q_OS_WINRT) return QWinRegistryKey(HKEY_LOCAL_MACHINE, LR"(SOFTWARE\Microsoft\Windows NT\CurrentVersion)") .stringValue(subKey); #else Q_UNUSED(subKey); return QString(); #endif } static inline QString windows10ReleaseId() { return readVersionRegistryString(L"ReleaseId"); } static inline QString windows7Build() { return readVersionRegistryString(L"CurrentBuild"); } static QString winSp_helper() { const auto osv = qWindowsVersionInfo(); const qint16 major = osv.wServicePackMajor; if (major) { QString sp = QStringLiteral("SP ") + QString::number(major); const qint16 minor = osv.wServicePackMinor; if (minor) sp += QLatin1Char('.') + QString::number(minor); return sp; } return QString(); } static const char *osVer_helper(QOperatingSystemVersion version = QOperatingSystemVersion::current()) { Q_UNUSED(version); const OSVERSIONINFOEX osver = qWindowsVersionInfo(); const bool workstation = osver.wProductType == VER_NT_WORKSTATION; #define Q_WINVER(major, minor) (major << 8 | minor) switch (Q_WINVER(osver.dwMajorVersion, osver.dwMinorVersion)) { case Q_WINVER(6, 1): return workstation ? "7" : "Server 2008 R2"; case Q_WINVER(6, 2): return workstation ? "8" : "Server 2012"; case Q_WINVER(6, 3): return workstation ? "8.1" : "Server 2012 R2"; case Q_WINVER(10, 0): return workstation ? "10" : "Server 2016"; } #undef Q_WINVER // unknown, future version return 0; } #endif #if defined(Q_OS_UNIX) # if (defined(Q_OS_LINUX) && !defined(Q_OS_ANDROID)) || defined(Q_OS_FREEBSD) # define USE_ETC_OS_RELEASE struct QUnixOSVersion { // from /etc/os-release older /etc/lsb-release // redhat /etc/redhat-release // debian /etc/debian_version QString productType; // $ID $DISTRIB_ID // single line file containing: // Debian QString productVersion; // $VERSION_ID $DISTRIB_RELEASE // // single line file QString prettyName; // $PRETTY_NAME $DISTRIB_DESCRIPTION }; static QString unquote(const char *begin, const char *end) { // man os-release says: // Variable assignment values must be enclosed in double // or single quotes if they include spaces, semicolons or // other special characters outside of A–Z, a–z, 0–9. Shell // special characters ("$", quotes, backslash, backtick) // must be escaped with backslashes, following shell style. // All strings should be in UTF-8 format, and non-printable // characters should not be used. It is not supported to // concatenate multiple individually quoted strings. if (*begin == '"') { Q_ASSERT(end[-1] == '"'); return QString::fromUtf8(begin + 1, end - begin - 2); } return QString::fromUtf8(begin, end - begin); } static QByteArray getEtcFileContent(const char *filename) { // we're avoiding QFile here int fd = qt_safe_open(filename, O_RDONLY); if (fd == -1) return QByteArray(); QT_STATBUF sbuf; if (QT_FSTAT(fd, &sbuf) == -1) { qt_safe_close(fd); return QByteArray(); } QByteArray buffer(sbuf.st_size, Qt::Uninitialized); buffer.resize(qt_safe_read(fd, buffer.data(), sbuf.st_size)); qt_safe_close(fd); return buffer; } static bool readEtcFile(QUnixOSVersion &v, const char *filename, const QByteArray &idKey, const QByteArray &versionKey, const QByteArray &prettyNameKey) { QByteArray buffer = getEtcFileContent(filename); if (buffer.isEmpty()) return false; const char *ptr = buffer.constData(); const char *end = buffer.constEnd(); const char *eol; QByteArray line; for ( ; ptr != end; ptr = eol + 1) { // find the end of the line after ptr eol = static_cast(memchr(ptr, '\n', end - ptr)); if (!eol) eol = end - 1; line.setRawData(ptr, eol - ptr); if (line.startsWith(idKey)) { ptr += idKey.length(); v.productType = unquote(ptr, eol); continue; } if (line.startsWith(prettyNameKey)) { ptr += prettyNameKey.length(); v.prettyName = unquote(ptr, eol); continue; } if (line.startsWith(versionKey)) { ptr += versionKey.length(); v.productVersion = unquote(ptr, eol); continue; } } return true; } static bool readOsRelease(QUnixOSVersion &v) { QByteArray id = QByteArrayLiteral("ID="); QByteArray versionId = QByteArrayLiteral("VERSION_ID="); QByteArray prettyName = QByteArrayLiteral("PRETTY_NAME="); // man os-release(5) says: // The file /etc/os-release takes precedence over /usr/lib/os-release. // Applications should check for the former, and exclusively use its data // if it exists, and only fall back to /usr/lib/os-release if it is // missing. return readEtcFile(v, "/etc/os-release", id, versionId, prettyName) || readEtcFile(v, "/usr/lib/os-release", id, versionId, prettyName); } static bool readEtcLsbRelease(QUnixOSVersion &v) { bool ok = readEtcFile(v, "/etc/lsb-release", QByteArrayLiteral("DISTRIB_ID="), QByteArrayLiteral("DISTRIB_RELEASE="), QByteArrayLiteral("DISTRIB_DESCRIPTION=")); if (ok && (v.prettyName.isEmpty() || v.prettyName == v.productType)) { // some distributions have redundant information for the pretty name, // so try /etc/-release // we're still avoiding QFile here QByteArray distrorelease = "/etc/" + v.productType.toLatin1().toLower() + "-release"; int fd = qt_safe_open(distrorelease, O_RDONLY); if (fd != -1) { QT_STATBUF sbuf; if (QT_FSTAT(fd, &sbuf) != -1 && sbuf.st_size > v.prettyName.length()) { // file apparently contains interesting information QByteArray buffer(sbuf.st_size, Qt::Uninitialized); buffer.resize(qt_safe_read(fd, buffer.data(), sbuf.st_size)); v.prettyName = QString::fromLatin1(buffer.trimmed()); } qt_safe_close(fd); } } // some distributions have a /etc/lsb-release file that does not provide the values // we are looking for, i.e. DISTRIB_ID, DISTRIB_RELEASE and DISTRIB_DESCRIPTION. // Assuming that neither DISTRIB_ID nor DISTRIB_RELEASE were found, or contained valid values, // returning false for readEtcLsbRelease will allow further /etc/-release parsing. return ok && !(v.productType.isEmpty() && v.productVersion.isEmpty()); } #if defined(Q_OS_LINUX) static QByteArray getEtcFileFirstLine(const char *fileName) { QByteArray buffer = getEtcFileContent(fileName); if (buffer.isEmpty()) return QByteArray(); const char *ptr = buffer.constData(); int eol = buffer.indexOf("\n"); return QByteArray(ptr, eol).trimmed(); } static bool readEtcRedHatRelease(QUnixOSVersion &v) { // /etc/redhat-release analysed should be a one line file // the format of its content is // i.e. "Red Hat Enterprise Linux Workstation release 6.5 (Santiago)" QByteArray line = getEtcFileFirstLine("/etc/redhat-release"); if (line.isEmpty()) return false; v.prettyName = QString::fromLatin1(line); const char keyword[] = "release "; int releaseIndex = line.indexOf(keyword); v.productType = QString::fromLatin1(line.mid(0, releaseIndex)).remove(QLatin1Char(' ')); int spaceIndex = line.indexOf(' ', releaseIndex + strlen(keyword)); v.productVersion = QString::fromLatin1(line.mid(releaseIndex + strlen(keyword), spaceIndex > -1 ? spaceIndex - releaseIndex - int(strlen(keyword)) : -1)); return true; } static bool readEtcDebianVersion(QUnixOSVersion &v) { // /etc/debian_version analysed should be a one line file // the format of its content is // i.e. "jessie/sid" QByteArray line = getEtcFileFirstLine("/etc/debian_version"); if (line.isEmpty()) return false; v.productType = QStringLiteral("Debian"); v.productVersion = QString::fromLatin1(line); return true; } #endif static bool findUnixOsVersion(QUnixOSVersion &v) { if (readOsRelease(v)) return true; if (readEtcLsbRelease(v)) return true; #if defined(Q_OS_LINUX) if (readEtcRedHatRelease(v)) return true; if (readEtcDebianVersion(v)) return true; #endif return false; } # endif // USE_ETC_OS_RELEASE #endif // Q_OS_UNIX #if defined(Q_OS_ANDROID) && !defined(Q_OS_ANDROID_EMBEDDED) static const char *osVer_helper(QOperatingSystemVersion) { /* Data: Cupcake Donut Eclair Eclair Eclair Froyo Gingerbread Gingerbread Honeycomb Honeycomb Honeycomb Ice Cream Sandwich Ice Cream Sandwich Jelly Bean Jelly Bean Jelly Bean KitKat KitKat Lollipop Lollipop Marshmallow Nougat Nougat Oreo */ static const char versions_string[] = "\0" "Cupcake\0" "Donut\0" "Eclair\0" "Froyo\0" "Gingerbread\0" "Honeycomb\0" "Ice Cream Sandwich\0" "Jelly Bean\0" "KitKat\0" "Lollipop\0" "Marshmallow\0" "Nougat\0" "Oreo\0" "\0"; static const int versions_indices[] = { 0, 0, 0, 1, 9, 15, 15, 15, 22, 28, 28, 40, 40, 40, 50, 50, 69, 69, 69, 80, 80, 87, 87, 96, 108, 108, 115, -1 }; static const int versions_count = (sizeof versions_indices) / (sizeof versions_indices[0]); // https://source.android.com/source/build-numbers.html // https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels const int sdk_int = QJNIObjectPrivate::getStaticField("android/os/Build$VERSION", "SDK_INT"); return &versions_string[versions_indices[qBound(0, sdk_int, versions_count - 1)]]; } #endif /*! \since 5.4 Returns the architecture of the CPU that Qt was compiled for, in text format. Note that this may not match the actual CPU that the application is running on if there's an emulation layer or if the CPU supports multiple architectures (like x86-64 processors supporting i386 applications). To detect that, use currentCpuArchitecture(). Values returned by this function are stable and will not change over time, so applications can rely on the returned value as an identifier, except that new CPU types may be added over time. Typical returned values are (note: list not exhaustive): \list \li "arm" \li "arm64" \li "i386" \li "ia64" \li "mips" \li "mips64" \li "power" \li "power64" \li "sparc" \li "sparcv9" \li "x86_64" \endlist \sa QSysInfo::buildAbi(), QSysInfo::currentCpuArchitecture() */ QString QSysInfo::buildCpuArchitecture() { return QStringLiteral(ARCH_PROCESSOR); } /*! \since 5.4 Returns the architecture of the CPU that the application is running on, in text format. Note that this function depends on what the OS will report and may not detect the actual CPU architecture if the OS hides that information or is unable to provide it. For example, a 32-bit OS running on a 64-bit CPU is usually unable to determine the CPU is actually capable of running 64-bit programs. Values returned by this function are mostly stable: an attempt will be made to ensure that they stay constant over time and match the values returned by QSysInfo::builldCpuArchitecture(). However, due to the nature of the operating system functions being used, there may be discrepancies. Typical returned values are (note: list not exhaustive): \list \li "arm" \li "arm64" \li "i386" \li "ia64" \li "mips" \li "mips64" \li "power" \li "power64" \li "sparc" \li "sparcv9" \li "x86_64" \endlist \sa QSysInfo::buildAbi(), QSysInfo::buildCpuArchitecture() */ QString QSysInfo::currentCpuArchitecture() { #if defined(Q_OS_WIN) // We don't need to catch all the CPU architectures in this function; // only those where the host CPU might be different than the build target // (usually, 64-bit platforms). SYSTEM_INFO info; GetNativeSystemInfo(&info); switch (info.wProcessorArchitecture) { # ifdef PROCESSOR_ARCHITECTURE_AMD64 case PROCESSOR_ARCHITECTURE_AMD64: return QStringLiteral("x86_64"); # endif # ifdef PROCESSOR_ARCHITECTURE_IA32_ON_WIN64 case PROCESSOR_ARCHITECTURE_IA32_ON_WIN64: # endif case PROCESSOR_ARCHITECTURE_IA64: return QStringLiteral("ia64"); } #elif defined(Q_OS_DARWIN) && !defined(Q_OS_MACOS) // iOS-based OSes do not return the architecture on uname(2)'s result. return buildCpuArchitecture(); #elif defined(Q_OS_UNIX) long ret = -1; struct utsname u; # if defined(Q_OS_SOLARIS) // We need a special call for Solaris because uname(2) on x86 returns "i86pc" for // both 32- and 64-bit CPUs. Reference: // http://docs.oracle.com/cd/E18752_01/html/816-5167/sysinfo-2.html#REFMAN2sysinfo-2 // http://fxr.watson.org/fxr/source/common/syscall/systeminfo.c?v=OPENSOLARIS // http://fxr.watson.org/fxr/source/common/conf/param.c?v=OPENSOLARIS;im=10#L530 if (ret == -1) ret = sysinfo(SI_ARCHITECTURE_64, u.machine, sizeof u.machine); # endif if (ret == -1) ret = uname(&u); // we could use detectUnixVersion() above, but we only need a field no other function does if (ret != -1) { // the use of QT_BUILD_INTERNAL here is simply to ensure all branches build // as we don't often build on some of the less common platforms # if defined(Q_PROCESSOR_ARM) || defined(QT_BUILD_INTERNAL) if (strcmp(u.machine, "aarch64") == 0) return QStringLiteral("arm64"); if (strncmp(u.machine, "armv", 4) == 0) return QStringLiteral("arm"); # endif # if defined(Q_PROCESSOR_POWER) || defined(QT_BUILD_INTERNAL) // harmonize "powerpc" and "ppc" to "power" if (strncmp(u.machine, "ppc", 3) == 0) return QLatin1String("power") + QLatin1String(u.machine + 3); if (strncmp(u.machine, "powerpc", 7) == 0) return QLatin1String("power") + QLatin1String(u.machine + 7); if (strcmp(u.machine, "Power Macintosh") == 0) return QLatin1String("power"); # endif # if defined(Q_PROCESSOR_SPARC) || defined(QT_BUILD_INTERNAL) // Solaris sysinfo(2) (above) uses "sparcv9", but uname -m says "sun4u"; // Linux says "sparc64" if (strcmp(u.machine, "sun4u") == 0 || strcmp(u.machine, "sparc64") == 0) return QStringLiteral("sparcv9"); if (strcmp(u.machine, "sparc32") == 0) return QStringLiteral("sparc"); # endif # if defined(Q_PROCESSOR_X86) || defined(QT_BUILD_INTERNAL) // harmonize all "i?86" to "i386" if (strlen(u.machine) == 4 && u.machine[0] == 'i' && u.machine[2] == '8' && u.machine[3] == '6') return QStringLiteral("i386"); if (strcmp(u.machine, "amd64") == 0) // Solaris return QStringLiteral("x86_64"); # endif return QString::fromLatin1(u.machine); } #endif return buildCpuArchitecture(); } /*! \since 5.4 Returns the full architecture string that Qt was compiled for. This string is useful for identifying different, incompatible builds. For example, it can be used as an identifier to request an upgrade package from a server. The values returned from this function are kept stable as follows: the mandatory components of the result will not change in future versions of Qt, but optional suffixes may be added. The returned value is composed of three or more parts, separated by dashes ("-"). They are: \table \header \li Component \li Value \row \li CPU Architecture \li The same as QSysInfo::buildCpuArchitecture(), such as "arm", "i386", "mips" or "x86_64" \row \li Endianness \li "little_endian" or "big_endian" \row \li Word size \li Whether it's a 32- or 64-bit application. Possible values are: "llp64" (Windows 64-bit), "lp64" (Unix 64-bit), "ilp32" (32-bit) \row \li (Optional) ABI \li Zero or more components identifying different ABIs possible in this architecture. Currently, Qt has optional ABI components for ARM and MIPS processors: one component is the main ABI (such as "eabi", "o32", "n32", "o64"); another is whether the calling convention is using hardware floating point registers ("hardfloat" is present). Additionally, if Qt was configured with \c{-qreal float}, the ABI option tag "qreal_float" will be present. If Qt was configured with another type as qreal, that type is present after "qreal_", with all characters other than letters and digits escaped by an underscore, followed by two hex digits. For example, \c{-qreal long double} becomes "qreal_long_20double". \endtable \sa QSysInfo::buildCpuArchitecture() */ QString QSysInfo::buildAbi() { #ifdef Q_COMPILER_UNICODE_STRINGS // ARCH_FULL is a concatenation of strings (incl. ARCH_PROCESSOR), which breaks // QStringLiteral on MSVC. Since the concatenation behavior we want is specified // the same C++11 paper as the Unicode strings, we'll use that macro and hope // that Microsoft implements the new behavior when they add support for Unicode strings. return QStringLiteral(ARCH_FULL); #else return QLatin1String(ARCH_FULL); #endif } static QString unknownText() { return QStringLiteral("unknown"); } /*! \since 5.4 Returns the type of the operating system kernel Qt was compiled for. It's also the kernel the application is running on, unless the host operating system is running a form of compatibility or virtualization layer. Values returned by this function are stable and will not change over time, so applications can rely on the returned value as an identifier, except that new OS kernel types may be added over time. On Windows, this function returns the type of Windows kernel, like "winnt". On Unix systems, it returns the same as the output of \c{uname -s} (lowercased). \note This function may return surprising values: it returns "linux" for all operating systems running Linux (including Android), "qnx" for all operating systems running QNX, "freebsd" for Debian/kFreeBSD, and "darwin" for \macos and iOS. For information on the type of product the application is running on, see productType(). \sa QFileSelector, kernelVersion(), productType(), productVersion(), prettyProductName() */ QString QSysInfo::kernelType() { #if defined(Q_OS_WIN) return QStringLiteral("winnt"); #elif defined(Q_OS_UNIX) struct utsname u; if (uname(&u) == 0) return QString::fromLatin1(u.sysname).toLower(); #endif return unknownText(); } /*! \since 5.4 Returns the release version of the operating system kernel. On Windows, it returns the version of the NT kernel. On Unix systems, including Android and \macos, it returns the same as the \c{uname -r} command would return. If the version could not be determined, this function may return an empty string. \sa kernelType(), productType(), productVersion(), prettyProductName() */ QString QSysInfo::kernelVersion() { #ifdef Q_OS_WIN const auto osver = QOperatingSystemVersion::current(); return QString::number(osver.majorVersion()) + QLatin1Char('.') + QString::number(osver.minorVersion()) + QLatin1Char('.') + QString::number(osver.microVersion()); #else struct utsname u; if (uname(&u) == 0) return QString::fromLatin1(u.release); return QString(); #endif } /*! \since 5.4 Returns the product name of the operating system this application is running in. If the application is running on some sort of emulation or virtualization layer (such as WINE on a Unix system), this function will inspect the emulation / virtualization layer. Values returned by this function are stable and will not change over time, so applications can rely on the returned value as an identifier, except that new OS types may be added over time. \b{Linux and Android note}: this function returns "android" for Linux systems running Android userspace, notably when using the Bionic library. For all other Linux systems, regardless of C library being used, it tries to determine the distribution name and returns that. If determining the distribution name failed, it returns "unknown". \b{\macos note}: this function returns "osx" for all \macos systems, regardless of Apple naming convention. The returned string will be updated for Qt 6. Note that this function erroneously returned "macos" for \macos 10.12 in Qt versions 5.6.2, 5.7.1, and 5.8.0. \b{Darwin, iOS, tvOS, and watchOS note}: this function returns "ios" for iOS systems, "tvos" for tvOS systems, "watchos" for watchOS systems, and "darwin" in case the system could not be determined. \b{FreeBSD note}: this function returns "debian" for Debian/kFreeBSD and "unknown" otherwise. \b{Windows note}: this function "winrt" for WinRT builds, and "windows" for normal desktop builds. For other Unix-type systems, this function usually returns "unknown". \sa QFileSelector, kernelType(), kernelVersion(), productVersion(), prettyProductName() */ QString QSysInfo::productType() { // similar, but not identical to QFileSelectorPrivate::platformSelectors #if defined(Q_OS_WINRT) return QStringLiteral("winrt"); #elif defined(Q_OS_WIN) return QStringLiteral("windows"); #elif defined(Q_OS_QNX) return QStringLiteral("qnx"); #elif defined(Q_OS_ANDROID) return QStringLiteral("android"); #elif defined(Q_OS_IOS) return QStringLiteral("ios"); #elif defined(Q_OS_TVOS) return QStringLiteral("tvos"); #elif defined(Q_OS_WATCHOS) return QStringLiteral("watchos"); #elif defined(Q_OS_MACOS) // ### Qt6: remove fallback # if QT_VERSION >= QT_VERSION_CHECK(6, 0, 0) return QStringLiteral("macos"); # else return QStringLiteral("osx"); # endif #elif defined(Q_OS_DARWIN) return QStringLiteral("darwin"); #elif defined(USE_ETC_OS_RELEASE) // Q_OS_UNIX QUnixOSVersion unixOsVersion; findUnixOsVersion(unixOsVersion); if (!unixOsVersion.productType.isEmpty()) return unixOsVersion.productType; #endif return unknownText(); } /*! \since 5.4 Returns the product version of the operating system in string form. If the version could not be determined, this function returns "unknown". It will return the Android, iOS, \macos, Windows full-product versions on those systems. Typical returned values are (note: list not exhaustive): \list \li "2016.09" (Amazon Linux AMI 2016.09) \li "7.1" (Android Nougat) \li "25" (Fedora 25) \li "10.1" (iOS 10.1) \li "10.12" (macOS Sierra) \li "10.0" (tvOS 10) \li "16.10" (Ubuntu 16.10) \li "3.1" (watchOS 3.1) \li "7 SP 1" (Windows 7 Service Pack 1) \li "8.1" (Windows 8.1) \li "10" (Windows 10) \li "Server 2016" (Windows Server 2016) \endlist On Linux systems, it will try to determine the distribution version and will return that. This is also done on Debian/kFreeBSD, so this function will return Debian version in that case. In all other Unix-type systems, this function always returns "unknown". \note The version string returned from this function is not guaranteed to be orderable. On Linux, the version of the distribution may jump unexpectedly, please refer to the distribution's documentation for versioning practices. \sa kernelType(), kernelVersion(), productType(), prettyProductName() */ QString QSysInfo::productVersion() { #if defined(Q_OS_ANDROID) || defined(Q_OS_DARWIN) const auto version = QOperatingSystemVersion::current(); return QString::number(version.majorVersion()) + QLatin1Char('.') + QString::number(version.minorVersion()); #elif defined(Q_OS_WIN) const char *version = osVer_helper(); if (version) { const QLatin1Char spaceChar(' '); return QString::fromLatin1(version).remove(spaceChar).toLower() + winSp_helper().remove(spaceChar).toLower(); } // fall through #elif defined(USE_ETC_OS_RELEASE) // Q_OS_UNIX QUnixOSVersion unixOsVersion; findUnixOsVersion(unixOsVersion); if (!unixOsVersion.productVersion.isEmpty()) return unixOsVersion.productVersion; #endif // fallback return unknownText(); } /*! \since 5.4 Returns a prettier form of productType() and productVersion(), containing other tokens like the operating system type, codenames and other information. The result of this function is suitable for displaying to the user, but not for long-term storage, as the string may change with updates to Qt. If productType() is "unknown", this function will instead use the kernelType() and kernelVersion() functions. \sa kernelType(), kernelVersion(), productType(), productVersion() */ QString QSysInfo::prettyProductName() { #if (defined(Q_OS_ANDROID) && !defined(Q_OS_ANDROID_EMBEDDED)) || defined(Q_OS_DARWIN) || defined(Q_OS_WIN) const auto version = QOperatingSystemVersion::current(); const int majorVersion = version.majorVersion(); const QString versionString = QString::number(majorVersion) + QLatin1Char('.') + QString::number(version.minorVersion()); QString result = version.name() + QLatin1Char(' '); const char *name = osVer_helper(version); if (!name) return result + versionString; result += QLatin1String(name); # if !defined(Q_OS_WIN) || defined(Q_OS_WINRT) return result + QLatin1String(" (") + versionString + QLatin1Char(')'); # else // (resembling winver.exe): Windows 10 "Windows 10 Version 1809" if (majorVersion >= 10) { const auto releaseId = windows10ReleaseId(); if (!releaseId.isEmpty()) result += QLatin1String(" Version ") + releaseId; return result; } // Windows 7: "Windows 7 Version 6.1 (Build 7601: Service Pack 1)" result += QLatin1String(" Version ") + versionString + QLatin1String(" ("); const auto build = windows7Build(); if (!build.isEmpty()) result += QLatin1String("Build ") + build; const auto servicePack = winSp_helper(); if (!servicePack.isEmpty()) result += QLatin1String(": ") + servicePack; return result + QLatin1Char(')'); # endif // Windows #elif defined(Q_OS_HAIKU) return QLatin1String("Haiku ") + productVersion(); #elif defined(Q_OS_UNIX) # ifdef USE_ETC_OS_RELEASE QUnixOSVersion unixOsVersion; findUnixOsVersion(unixOsVersion); if (!unixOsVersion.prettyName.isEmpty()) return unixOsVersion.prettyName; # endif struct utsname u; if (uname(&u) == 0) return QString::fromLatin1(u.sysname) + QLatin1Char(' ') + QString::fromLatin1(u.release); #endif return unknownText(); } #ifndef QT_BOOTSTRAPPED /*! \since 5.6 Returns this machine's host name, if one is configured. Note that hostnames are not guaranteed to be globally unique, especially if they were configured automatically. This function does not guarantee the returned host name is a Fully Qualified Domain Name (FQDN). For that, use QHostInfo to resolve the returned name to an FQDN. This function returns the same as QHostInfo::localHostName(). \sa QHostInfo::localDomainName, machineUniqueId() */ QString QSysInfo::machineHostName() { // the hostname can change, so we can't cache it #if defined(Q_OS_LINUX) // gethostname(3) on Linux just calls uname(2), so do it ourselves // and avoid a memcpy struct utsname u; if (uname(&u) == 0) return QString::fromLocal8Bit(u.nodename); return QString(); #else # ifdef Q_OS_WIN // Important: QtNetwork depends on machineHostName() initializing ws2_32.dll winsockInit(); # endif char hostName[512]; if (gethostname(hostName, sizeof(hostName)) == -1) return QString(); hostName[sizeof(hostName) - 1] = '\0'; return QString::fromLocal8Bit(hostName); #endif } #endif // QT_BOOTSTRAPPED enum { UuidStringLen = sizeof("00000000-0000-0000-0000-000000000000") - 1 }; /*! \since 5.11 Returns a unique ID for this machine, if one can be determined. If no unique ID could be determined, this function returns an empty byte array. Unlike machineHostName(), the value returned by this function is likely globally unique. A unique ID is useful in network operations to identify this machine for an extended period of time, when the IP address could change or if this machine could have more than one IP address. For example, the ID could be used when communicating with a server or when storing device-specific data in shared network storage. Note that on some systems, this value will persist across reboots and on some it will not. Applications should not blindly depend on this fact without verifying the OS capabilities. In particular, on Linux systems, this ID is usually permanent and it matches the D-Bus machine ID, except for nodes without their own storage (replicated nodes). \sa machineHostName(), bootUniqueId() */ QByteArray QSysInfo::machineUniqueId() { #if defined(Q_OS_DARWIN) && QT_HAS_INCLUDE() char uuid[UuidStringLen + 1]; io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching("IOPlatformExpertDevice")); QCFString stringRef = (CFStringRef)IORegistryEntryCreateCFProperty(service, CFSTR(kIOPlatformUUIDKey), kCFAllocatorDefault, 0); CFStringGetCString(stringRef, uuid, sizeof(uuid), kCFStringEncodingMacRoman); return QByteArray(uuid); #elif defined(Q_OS_BSD4) && defined(KERN_HOSTUUID) char uuid[UuidStringLen + 1]; size_t uuidlen = sizeof(uuid); int name[] = { CTL_KERN, KERN_HOSTUUID }; if (sysctl(name, sizeof name / sizeof name[0], &uuid, &uuidlen, nullptr, 0) == 0 && uuidlen == sizeof(uuid)) return QByteArray(uuid, uuidlen - 1); #elif defined(Q_OS_UNIX) // The modern name on Linux is /etc/machine-id, but that path is // unlikely to exist on non-Linux (non-systemd) systems. The old // path is more than enough. static const char fullfilename[] = "/usr/local/var/lib/dbus/machine-id"; const char *firstfilename = fullfilename + sizeof("/usr/local") - 1; int fd = qt_safe_open(firstfilename, O_RDONLY); if (fd == -1 && errno == ENOENT) fd = qt_safe_open(fullfilename, O_RDONLY); if (fd != -1) { char buffer[32]; // 128 bits, hex-encoded qint64 len = qt_safe_read(fd, buffer, sizeof(buffer)); qt_safe_close(fd); if (len != -1) return QByteArray(buffer, len); } #elif defined(Q_OS_WIN) && !defined(Q_OS_WINRT) // Let's poke at the registry // ### Qt 6: Use new helpers from qwinregistry.cpp (once bootstrap builds are obsolete) HKEY key = NULL; if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, L"SOFTWARE\\Microsoft\\Cryptography", 0, KEY_READ | KEY_WOW64_64KEY, &key) == ERROR_SUCCESS) { wchar_t buffer[UuidStringLen + 1]; DWORD size = sizeof(buffer); bool ok = (RegQueryValueEx(key, L"MachineGuid", NULL, NULL, (LPBYTE)buffer, &size) == ERROR_SUCCESS); RegCloseKey(key); if (ok) return QStringView(buffer, (size - 1) / 2).toLatin1(); } #endif return QByteArray(); } /*! \since 5.11 Returns a unique ID for this machine's boot, if one can be determined. If no unique ID could be determined, this function returns an empty byte array. This value is expected to change after every boot and can be considered globally unique. This function is currently only implemented for Linux and Apple operating systems. \sa machineUniqueId() */ QByteArray QSysInfo::bootUniqueId() { #ifdef Q_OS_LINUX // use low-level API here for simplicity int fd = qt_safe_open("/proc/sys/kernel/random/boot_id", O_RDONLY); if (fd != -1) { char uuid[UuidStringLen]; qint64 len = qt_safe_read(fd, uuid, sizeof(uuid)); qt_safe_close(fd); if (len == UuidStringLen) return QByteArray(uuid, UuidStringLen); } #elif defined(Q_OS_DARWIN) // "kern.bootsessionuuid" is only available by name char uuid[UuidStringLen + 1]; size_t uuidlen = sizeof(uuid); if (sysctlbyname("kern.bootsessionuuid", uuid, &uuidlen, nullptr, 0) == 0 && uuidlen == sizeof(uuid)) return QByteArray(uuid, uuidlen - 1); #endif return QByteArray(); }; /*! \macro void Q_ASSERT(bool test) \relates Prints a warning message containing the source code file name and line number if \a test is \c false. Q_ASSERT() is useful for testing pre- and post-conditions during development. It does nothing if \c QT_NO_DEBUG was defined during compilation. Example: \snippet code/src_corelib_global_qglobal.cpp 17 If \c b is zero, the Q_ASSERT statement will output the following message using the qFatal() function: \snippet code/src_corelib_global_qglobal.cpp 18 \sa Q_ASSERT_X(), qFatal(), {Debugging Techniques} */ /*! \macro void Q_ASSERT_X(bool test, const char *where, const char *what) \relates Prints the message \a what together with the location \a where, the source file name and line number if \a test is \c false. Q_ASSERT_X is useful for testing pre- and post-conditions during development. It does nothing if \c QT_NO_DEBUG was defined during compilation. Example: \snippet code/src_corelib_global_qglobal.cpp 19 If \c b is zero, the Q_ASSERT_X statement will output the following message using the qFatal() function: \snippet code/src_corelib_global_qglobal.cpp 20 \sa Q_ASSERT(), qFatal(), {Debugging Techniques} */ /*! \macro void Q_ASSUME(bool expr) \relates \since 5.0 Causes the compiler to assume that \a expr is \c true. This macro is useful for improving code generation, by providing the compiler with hints about conditions that it would not otherwise know about. However, there is no guarantee that the compiler will actually use those hints. This macro could be considered a "lighter" version of \l{Q_ASSERT()}. While Q_ASSERT will abort the program's execution if the condition is \c false, Q_ASSUME will tell the compiler not to generate code for those conditions. Therefore, it is important that the assumptions always hold, otherwise undefined behaviour may occur. If \a expr is a constantly \c false condition, Q_ASSUME will tell the compiler that the current code execution cannot be reached. That is, Q_ASSUME(false) is equivalent to Q_UNREACHABLE(). In debug builds the condition is enforced by an assert to facilitate debugging. \note Q_LIKELY() tells the compiler that the expression is likely, but not the only possibility. Q_ASSUME tells the compiler that it is the only possibility. \sa Q_ASSERT(), Q_UNREACHABLE(), Q_LIKELY() */ /*! \macro void Q_UNREACHABLE() \relates \since 5.0 Tells the compiler that the current point cannot be reached by any execution, so it may optimize any code paths leading here as dead code, as well as code continuing from here. This macro is useful to mark impossible conditions. For example, given the following enum: \snippet code/src_corelib_global_qglobal.cpp qunreachable-enum One can write a switch table like so: \snippet code/src_corelib_global_qglobal.cpp qunreachable-switch The advantage of inserting Q_UNREACHABLE() at that point is that the compiler is told not to generate code for a shape variable containing that value. If the macro is missing, the compiler will still generate the necessary comparisons for that value. If the case label were removed, some compilers could produce a warning that some enum values were not checked. By using this macro in impossible conditions, code coverage may be improved as dead code paths may be eliminated. In debug builds the condition is enforced by an assert to facilitate debugging. \sa Q_ASSERT(), Q_ASSUME(), qFatal() */ /*! \macro void Q_FALLTHROUGH() \relates \since 5.8 Can be used in switch statements at the end of case block to tell the compiler and other developers that that the lack of a break statement is intentional. This is useful since a missing break statement is often a bug, and some compilers can be configured to emit warnings when one is not found. \sa Q_UNREACHABLE() */ /*! \macro void Q_CHECK_PTR(void *pointer) \relates If \a pointer is 0, prints a message containing the source code's file name and line number, saying that the program ran out of memory and aborts program execution. It throws \c std::bad_alloc instead if exceptions are enabled. Q_CHECK_PTR does nothing if \c QT_NO_DEBUG and \c QT_NO_EXCEPTIONS were defined during compilation. Therefore you must not use Q_CHECK_PTR to check for successful memory allocations because the check will be disabled in some cases. Example: \snippet code/src_corelib_global_qglobal.cpp 21 \sa qWarning(), {Debugging Techniques} */ /*! \fn template T *q_check_ptr(T *p) \relates Uses Q_CHECK_PTR on \a p, then returns \a p. This can be used as an inline version of Q_CHECK_PTR. */ /*! \macro const char* Q_FUNC_INFO() \relates Expands to a string that describe the function the macro resides in. How this string looks more specifically is compiler dependent. With GNU GCC it is typically the function signature, while with other compilers it might be the line and column number. Q_FUNC_INFO can be conveniently used with qDebug(). For example, this function: \snippet code/src_corelib_global_qglobal.cpp 22 when instantiated with the integer type, will with the GCC compiler produce: \tt{const TInputType& myMin(const TInputType&, const TInputType&) [with TInputType = int] was called with value1: 3 value2: 4} If this macro is used outside a function, the behavior is undefined. */ /*! \internal The Q_CHECK_PTR macro calls this function if an allocation check fails. */ void qt_check_pointer(const char *n, int l) noexcept { // make separate printing calls so that the first one may flush; // the second one could want to allocate memory (fputs prints a // newline and stderr auto-flushes). fputs("Out of memory", stderr); fprintf(stderr, " in %s, line %d\n", n, l); std::terminate(); } /* \internal Allows you to throw an exception without including Called internally from Q_CHECK_PTR on certain OS combinations */ void qBadAlloc() { QT_THROW(std::bad_alloc()); } #ifndef QT_NO_EXCEPTIONS /* \internal Allows you to call std::terminate() without including . Called internally from QT_TERMINATE_ON_EXCEPTION */ Q_NORETURN void qTerminate() noexcept { std::terminate(); } #endif /* The Q_ASSERT macro calls this function when the test fails. */ void qt_assert(const char *assertion, const char *file, int line) noexcept { QMessageLogger(file, line, nullptr).fatal("ASSERT: \"%s\" in file %s, line %d", assertion, file, line); } /* The Q_ASSERT_X macro calls this function when the test fails. */ void qt_assert_x(const char *where, const char *what, const char *file, int line) noexcept { QMessageLogger(file, line, nullptr).fatal("ASSERT failure in %s: \"%s\", file %s, line %d", where, what, file, line); } /* Dijkstra's bisection algorithm to find the square root of an integer. Deliberately not exported as part of the Qt API, but used in both qsimplerichtext.cpp and qgfxraster_qws.cpp */ Q_CORE_EXPORT Q_DECL_CONST_FUNCTION unsigned int qt_int_sqrt(unsigned int n) { // n must be in the range 0...UINT_MAX/2-1 if (n >= (UINT_MAX>>2)) { unsigned int r = 2 * qt_int_sqrt(n / 4); unsigned int r2 = r + 1; return (n >= r2 * r2) ? r2 : r; } uint h, p= 0, q= 1, r= n; while (q <= n) q <<= 2; while (q != 1) { q >>= 2; h= p + q; p >>= 1; if (r >= h) { p += q; r -= h; } } return p; } void *qMemCopy(void *dest, const void *src, size_t n) { return memcpy(dest, src, n); } void *qMemSet(void *dest, int c, size_t n) { return memset(dest, c, n); } // In the C runtime on all platforms access to the environment is not thread-safe. We // add thread-safety for the Qt wrappers. static QBasicMutex environmentMutex; /* Wraps tzset(), which accesses the environment, so should only be called while we hold the lock on the environment mutex. */ void qTzSet() { const auto locker = qt_scoped_lock(environmentMutex); #if defined(Q_OS_WIN) _tzset(); #else tzset(); #endif // Q_OS_WIN } /* Wrap mktime(), which is specified to behave as if it called tzset(), hence shares its implicit environment-dependence. */ time_t qMkTime(struct tm *when) { const auto locker = qt_scoped_lock(environmentMutex); return mktime(when); } // Also specified to behave as if they call tzset(): // localtime() -- but not localtime_r(), which we use when threaded // strftime() -- not used (except in tests) /*! \relates \threadsafe Returns the value of the environment variable with name \a varName as a QByteArray. If no variable by that name is found in the environment, this function returns a default-constructed QByteArray. The Qt environment manipulation functions are thread-safe, but this requires that the C library equivalent functions like getenv and putenv are not directly called. To convert the data to a QString use QString::fromLocal8Bit(). \note on desktop Windows, qgetenv() may produce data loss if the original string contains Unicode characters not representable in the ANSI encoding. Use qEnvironmentVariable() instead. On Unix systems, this function is lossless. \sa qputenv(), qEnvironmentVariable(), qEnvironmentVariableIsSet(), qEnvironmentVariableIsEmpty() */ QByteArray qgetenv(const char *varName) { const auto locker = qt_scoped_lock(environmentMutex); #ifdef Q_CC_MSVC size_t requiredSize = 0; QByteArray buffer; getenv_s(&requiredSize, 0, 0, varName); if (requiredSize == 0) return buffer; buffer.resize(int(requiredSize)); getenv_s(&requiredSize, buffer.data(), requiredSize, varName); // requiredSize includes the terminating null, which we don't want. Q_ASSERT(buffer.endsWith('\0')); buffer.chop(1); return buffer; #else return QByteArray(::getenv(varName)); #endif } /*! \fn QString qEnvironmentVariable(const char *varName, const QString &defaultValue) \fn QString qEnvironmentVariable(const char *varName) \relates \since 5.10 These functions return the value of the environment variable, \a varName, as a QString. If no variable \a varName is found in the environment and \a defaultValue is provided, \a defaultValue is returned. Otherwise QString() is returned. The Qt environment manipulation functions are thread-safe, but this requires that the C library equivalent functions like getenv and putenv are not directly called. The following table describes how to choose between qgetenv() and qEnvironmentVariable(): \table \header \li Condition \li Recommendation \row \li Variable contains file paths or user text \li qEnvironmentVariable() \row \li Windows-specific code \li qEnvironmentVariable() \row \li Unix-specific code, destination variable is not QString and/or is used to interface with non-Qt APIs \li qgetenv() \row \li Destination variable is a QString \li qEnvironmentVariable() \row \li Destination variable is a QByteArray or std::string \li qgetenv() \endtable \note on Unix systems, this function may produce data loss if the original string contains arbitrary binary data that cannot be decoded by the locale codec. Use qgetenv() instead for that case. On Windows, this function is lossless. \note the variable name \a varName must contain only US-ASCII characters. \sa qputenv(), qgetenv(), qEnvironmentVariableIsSet(), qEnvironmentVariableIsEmpty() */ QString qEnvironmentVariable(const char *varName, const QString &defaultValue) { #if defined(Q_OS_WIN) && !defined(Q_OS_WINRT) const auto locker = qt_scoped_lock(environmentMutex); QVarLengthArray wname(int(strlen(varName)) + 1); for (int i = 0; i < wname.size(); ++i) // wname.size() is correct: will copy terminating null wname[i] = uchar(varName[i]); size_t requiredSize = 0; QString buffer; _wgetenv_s(&requiredSize, 0, 0, wname.data()); if (requiredSize == 0) return defaultValue; buffer.resize(int(requiredSize)); _wgetenv_s(&requiredSize, reinterpret_cast(buffer.data()), requiredSize, wname.data()); // requiredSize includes the terminating null, which we don't want. Q_ASSERT(buffer.endsWith(QLatin1Char('\0'))); buffer.chop(1); return buffer; #else QByteArray value = qgetenv(varName); if (value.isNull()) return defaultValue; // duplicated in qfile.h (QFile::decodeName) #if defined(Q_OS_DARWIN) return QString::fromUtf8(value).normalized(QString::NormalizationForm_C); #else // other Unix return QString::fromLocal8Bit(value); #endif #endif } QString qEnvironmentVariable(const char *varName) { return qEnvironmentVariable(varName, QString()); } /*! \relates \since 5.1 Returns whether the environment variable \a varName is empty. Equivalent to \snippet code/src_corelib_global_qglobal.cpp is-empty except that it's potentially much faster, and can't throw exceptions. \sa qgetenv(), qEnvironmentVariable(), qEnvironmentVariableIsSet() */ bool qEnvironmentVariableIsEmpty(const char *varName) noexcept { const auto locker = qt_scoped_lock(environmentMutex); #ifdef Q_CC_MSVC // we provide a buffer that can only hold the empty string, so // when the env.var isn't empty, we'll get an ERANGE error (buffer // too small): size_t dummy; char buffer = '\0'; return getenv_s(&dummy, &buffer, 1, varName) != ERANGE; #else const char * const value = ::getenv(varName); return !value || !*value; #endif } /*! \relates \since 5.5 Returns the numerical value of the environment variable \a varName. If \a ok is not null, sets \c{*ok} to \c true or \c false depending on the success of the conversion. Equivalent to \snippet code/src_corelib_global_qglobal.cpp to-int except that it's much faster, and can't throw exceptions. \note there's a limit on the length of the value, which is sufficient for all valid values of int, not counting leading zeroes or spaces. Values that are too long will either be truncated or this function will set \a ok to \c false. \sa qgetenv(), qEnvironmentVariable(), qEnvironmentVariableIsSet() */ int qEnvironmentVariableIntValue(const char *varName, bool *ok) noexcept { static const int NumBinaryDigitsPerOctalDigit = 3; static const int MaxDigitsForOctalInt = (std::numeric_limits::digits + NumBinaryDigitsPerOctalDigit - 1) / NumBinaryDigitsPerOctalDigit; const auto locker = qt_scoped_lock(environmentMutex); #ifdef Q_CC_MSVC // we provide a buffer that can hold any int value: char buffer[MaxDigitsForOctalInt + 2]; // +1 for NUL +1 for optional '-' size_t dummy; if (getenv_s(&dummy, buffer, sizeof buffer, varName) != 0) { if (ok) *ok = false; return 0; } #else const char * const buffer = ::getenv(varName); if (!buffer || strlen(buffer) > MaxDigitsForOctalInt + 2) { if (ok) *ok = false; return 0; } #endif bool ok_ = true; const char *endptr; const qlonglong value = qstrtoll(buffer, &endptr, 0, &ok_); // Keep the following checks in sync with QByteArray::toInt() if (!ok_) { if (ok) *ok = false; return 0; } if (*endptr != '\0') { while (ascii_isspace(*endptr)) ++endptr; } if (*endptr != '\0') { // we stopped at a non-digit character after converting some digits if (ok) *ok = false; return 0; } if (int(value) != value) { if (ok) *ok = false; return 0; } else if (ok) { *ok = ok_; } return int(value); } /*! \relates \since 5.1 Returns whether the environment variable \a varName is set. Equivalent to \snippet code/src_corelib_global_qglobal.cpp is-null except that it's potentially much faster, and can't throw exceptions. \sa qgetenv(), qEnvironmentVariable(), qEnvironmentVariableIsEmpty() */ bool qEnvironmentVariableIsSet(const char *varName) noexcept { const auto locker = qt_scoped_lock(environmentMutex); #ifdef Q_CC_MSVC size_t requiredSize = 0; (void)getenv_s(&requiredSize, 0, 0, varName); return requiredSize != 0; #else return ::getenv(varName) != nullptr; #endif } /*! \relates This function sets the \a value of the environment variable named \a varName. It will create the variable if it does not exist. It returns 0 if the variable could not be set. Calling qputenv with an empty value removes the environment variable on Windows, and makes it set (but empty) on Unix. Prefer using qunsetenv() for fully portable behavior. \note qputenv() was introduced because putenv() from the standard C library was deprecated in VC2005 (and later versions). qputenv() uses the replacement function in VC, and calls the standard C library's implementation on all other platforms. \sa qgetenv(), qEnvironmentVariable() */ bool qputenv(const char *varName, const QByteArray& value) { const auto locker = qt_scoped_lock(environmentMutex); #if defined(Q_CC_MSVC) return _putenv_s(varName, value.constData()) == 0; #elif (defined(_POSIX_VERSION) && (_POSIX_VERSION-0) >= 200112L) || defined(Q_OS_HAIKU) // POSIX.1-2001 has setenv return setenv(varName, value.constData(), true) == 0; #else QByteArray buffer(varName); buffer += '='; buffer += value; char* envVar = qstrdup(buffer.constData()); int result = putenv(envVar); if (result != 0) // error. we have to delete the string. delete[] envVar; return result == 0; #endif } /*! \relates This function deletes the variable \a varName from the environment. Returns \c true on success. \since 5.1 \sa qputenv(), qgetenv(), qEnvironmentVariable() */ bool qunsetenv(const char *varName) { const auto locker = qt_scoped_lock(environmentMutex); #if defined(Q_CC_MSVC) return _putenv_s(varName, "") == 0; #elif (defined(_POSIX_VERSION) && (_POSIX_VERSION-0) >= 200112L) || defined(Q_OS_BSD4) || defined(Q_OS_HAIKU) // POSIX.1-2001, BSD and Haiku have unsetenv return unsetenv(varName) == 0; #elif defined(Q_CC_MINGW) // On mingw, putenv("var=") removes "var" from the environment QByteArray buffer(varName); buffer += '='; return putenv(buffer.constData()) == 0; #else // Fallback to putenv("var=") which will insert an empty var into the // environment and leak it QByteArray buffer(varName); buffer += '='; char *envVar = qstrdup(buffer.constData()); return putenv(envVar) == 0; #endif } /*! \macro forever \relates This macro is provided for convenience for writing infinite loops. Example: \snippet code/src_corelib_global_qglobal.cpp 31 It is equivalent to \c{for (;;)}. If you're worried about namespace pollution, you can disable this macro by adding the following line to your \c .pro file: \snippet code/src_corelib_global_qglobal.cpp 32 \sa Q_FOREVER */ /*! \macro Q_FOREVER \relates Same as \l{forever}. This macro is available even when \c no_keywords is specified using the \c .pro file's \c CONFIG variable. \sa foreach() */ /*! \macro foreach(variable, container) \relates This macro is used to implement Qt's \c foreach loop. The \a variable parameter is a variable name or variable definition; the \a container parameter is a Qt container whose value type corresponds to the type of the variable. See \l{The foreach Keyword} for details. If you're worried about namespace pollution, you can disable this macro by adding the following line to your \c .pro file: \snippet code/src_corelib_global_qglobal.cpp 33 \note Since Qt 5.7, the use of this macro is discouraged. It will be removed in a future version of Qt. Please use C++11 range-for, possibly with qAsConst(), as needed. \sa qAsConst() */ /*! \macro Q_FOREACH(variable, container) \relates Same as foreach(\a variable, \a container). This macro is available even when \c no_keywords is specified using the \c .pro file's \c CONFIG variable. \note Since Qt 5.7, the use of this macro is discouraged. It will be removed in a future version of Qt. Please use C++11 range-for, possibly with qAsConst(), as needed. \sa qAsConst() */ /*! \fn template typename std::add_const::type &qAsConst(T &t) \relates \since 5.7 Returns \a t cast to \c{const T}. This function is a Qt implementation of C++17's std::as_const(), a cast function like std::move(). But while std::move() turns lvalues into rvalues, this function turns non-const lvalues into const lvalues. Like std::as_const(), it doesn't work on rvalues, because it cannot be efficiently implemented for rvalues without leaving dangling references. Its main use in Qt is to prevent implicitly-shared Qt containers from detaching: \snippet code/src_corelib_global_qglobal.cpp as-const-0 Of course, in this case, you could (and probably should) have declared \c s as \c const in the first place: \snippet code/src_corelib_global_qglobal.cpp as-const-1 but often that is not easily possible. It is important to note that qAsConst() does not copy its argument, it just performs a \c{const_cast(t)}. This is also the reason why it is designed to fail for rvalues: The returned reference would go stale too soon. So while this works (but detaches the returned object): \snippet code/src_corelib_global_qglobal.cpp as-const-2 this would not: \snippet code/src_corelib_global_qglobal.cpp as-const-3 To prevent this construct from compiling (and failing at runtime), qAsConst() has a second, deleted, overload which binds to rvalues. */ /*! \fn template void qAsConst(const T &&t) \relates \since 5.7 \overload This overload is deleted to prevent a dangling reference in code like \snippet code/src_corelib_global_qglobal.cpp as-const-4 */ /*! \fn template T qExchange(T &obj, U &&newValue) \relates \since 5.14 Replaces the value of \a obj with \a newValue and returns the old value of \a obj. This is Qt's implementation of std::exchange(). It differs from std::exchange() only in that it is \c constexpr already in C++14, and available on all supported compilers. Here is how to use qExchange() to implement move constructors: \code MyClass(MyClass &&other) : m_pointer{qExchange(other.m_pointer, nullptr)}, m_int{qExchange(other.m_int, 0)}, m_vector{std::move(other.m_vector)}, ... \endcode For members of class type, we can use std::move(), as their move-constructor will do the right thing. But for scalar types such as raw pointers or integer type, move is the same as copy, which, particularly for pointers, is not what we expect. So, we cannot use std::move() for such types, but we can use std::exchange()/qExchange() to make sure the source object's member is already reset by the time we get to the initialization of our next data member, which might come in handy if the constructor exits with an exception. Here is how to use qExchange() to write a loop that consumes the collection it iterates over: \code for (auto &e : qExchange(collection, {}) doSomethingWith(e); \endcode Which is equivalent to the following, much more verbose code: \code { auto tmp = std::move(collection); collection = {}; // or collection.clear() for (auto &e : tmp) doSomethingWith(e); } // destroys 'tmp' \endcode This is perfectly safe, as the for-loop keeps the result of qExchange() alive for as long as the loop runs, saving the declaration of a temporary variable. Be aware, though, that qExchange() returns a non-const object, so Qt containers may detach. */ /*! \macro QT_TR_NOOP(sourceText) \relates Marks the UTF-8 encoded string literal \a sourceText for delayed translation in the current context (class). The macro tells lupdate to collect the string, and expands to \a sourceText itself. Example: \snippet code/src_corelib_global_qglobal.cpp 34 The macro QT_TR_NOOP_UTF8() is identical and obsolete; this applies to all other _UTF8 macros as well. \sa QT_TRANSLATE_NOOP(), {Internationalization with Qt} */ /*! \macro QT_TRANSLATE_NOOP(context, sourceText) \relates Marks the UTF-8 encoded string literal \a sourceText for delayed translation in the given \a context. The \a context is typically a class name and also needs to be specified as a string literal. The macro tells lupdate to collect the string, and expands to \a sourceText itself. Example: \snippet code/src_corelib_global_qglobal.cpp 35 \sa QT_TR_NOOP(), QT_TRANSLATE_NOOP3(), {Internationalization with Qt} */ /*! \macro QT_TRANSLATE_NOOP3(context, sourceText, disambiguation) \relates \since 4.4 Marks the UTF-8 encoded string literal \a sourceText for delayed translation in the given \a context with the given \a disambiguation. The \a context is typically a class and also needs to be specified as a string literal. The string literal \a disambiguation should be a short semantic tag to tell apart otherwise identical strings. The macro tells lupdate to collect the string, and expands to an anonymous struct of the two string literals passed as \a sourceText and \a disambiguation. Example: \snippet code/src_corelib_global_qglobal.cpp 36 \sa QT_TR_NOOP(), QT_TRANSLATE_NOOP(), {Internationalization with Qt} */ /*! \macro QT_TR_N_NOOP(sourceText) \relates \since 5.12 Marks the UTF-8 encoded string literal \a sourceText for numerator dependent delayed translation in the current context (class). The macro tells lupdate to collect the string, and expands to \a sourceText itself. The macro expands to \a sourceText. Example: \snippet code/src_corelib_global_qglobal.cpp qttrnnoop \sa QT_TR_NOOP, {Internationalization with Qt} */ /*! \macro QT_TRANSLATE_N_NOOP(context, sourceText) \relates \since 5.12 Marks the UTF-8 encoded string literal \a sourceText for numerator dependent delayed translation in the given \a context. The \a context is typically a class name and also needs to be specified as a string literal. The macro tells lupdate to collect the string, and expands to \a sourceText itself. Example: \snippet code/src_corelib_global_qglobal.cpp qttranslatennoop \sa QT_TRANSLATE_NOOP(), QT_TRANSLATE_N_NOOP3(), {Internationalization with Qt} */ /*! \macro QT_TRANSLATE_N_NOOP3(context, sourceText, comment) \relates \since 5.12 Marks the UTF-8 encoded string literal \a sourceText for numerator dependent delayed translation in the given \a context with the given \a comment. The \a context is typically a class and also needs to be specified as a string literal. The string literal \a comment should be a short semantic tag to tell apart otherwise identical strings. The macro tells lupdate to collect the string, and expands to an anonymous struct of the two string literals passed as \a sourceText and \a comment. Example: \snippet code/src_corelib_global_qglobal.cpp qttranslatennoop3 \sa QT_TR_NOOP(), QT_TRANSLATE_NOOP(), QT_TRANSLATE_NOOP3(), {Internationalization with Qt} */ /*! \fn QString qtTrId(const char *id, int n = -1) \relates \reentrant \since 4.6 \brief The qtTrId function finds and returns a translated string. Returns a translated string identified by \a id. If no matching string is found, the id itself is returned. This should not happen under normal conditions. If \a n >= 0, all occurrences of \c %n in the resulting string are replaced with a decimal representation of \a n. In addition, depending on \a n's value, the translation text may vary. Meta data and comments can be passed as documented for QObject::tr(). In addition, it is possible to supply a source string template like that: \tt{//% } or \tt{\\begincomment% \\endcomment} Example: \snippet code/src_corelib_global_qglobal.cpp qttrid Creating QM files suitable for use with this function requires passing the \c -idbased option to the \c lrelease tool. \warning This method is reentrant only if all translators are installed \e before calling this method. Installing or removing translators while performing translations is not supported. Doing so will probably result in crashes or other undesirable behavior. \sa QObject::tr(), QCoreApplication::translate(), {Internationalization with Qt} */ /*! \macro QT_TRID_NOOP(id) \relates \since 4.6 \brief The QT_TRID_NOOP macro marks an id for dynamic translation. The only purpose of this macro is to provide an anchor for attaching meta data like to qtTrId(). The macro expands to \a id. Example: \snippet code/src_corelib_global_qglobal.cpp qttrid_noop \sa qtTrId(), {Internationalization with Qt} */ /*! \macro Q_LIKELY(expr) \relates \since 4.8 \brief Hints to the compiler that the enclosed condition, \a expr, is likely to evaluate to \c true. Use of this macro can help the compiler to optimize the code. Example: \snippet code/src_corelib_global_qglobal.cpp qlikely \sa Q_UNLIKELY() */ /*! \macro Q_UNLIKELY(expr) \relates \since 4.8 \brief Hints to the compiler that the enclosed condition, \a expr, is likely to evaluate to \c false. Use of this macro can help the compiler to optimize the code. Example: \snippet code/src_corelib_global_qglobal.cpp qunlikely \sa Q_LIKELY() */ /*! \macro QT_POINTER_SIZE \relates Expands to the size of a pointer in bytes (4 or 8). This is equivalent to \c sizeof(void *) but can be used in a preprocessor directive. */ /*! \macro QABS(n) \relates \obsolete Use qAbs(\a n) instead. \sa QMIN(), QMAX() */ /*! \macro QMIN(x, y) \relates \obsolete Use qMin(\a x, \a y) instead. \sa QMAX(), QABS() */ /*! \macro QMAX(x, y) \relates \obsolete Use qMax(\a x, \a y) instead. \sa QMIN(), QABS() */ /*! \macro const char *qPrintable(const QString &str) \relates Returns \a str as a \c{const char *}. This is equivalent to \a{str}.toLocal8Bit().constData(). The char pointer will be invalid after the statement in which qPrintable() is used. This is because the array returned by QString::toLocal8Bit() will fall out of scope. \note qDebug(), qInfo(), qWarning(), qCritical(), qFatal() expect %s arguments to be UTF-8 encoded, while qPrintable() converts to local 8-bit encoding. Therefore qUtf8Printable() should be used for logging strings instead of qPrintable(). \sa qUtf8Printable() */ /*! \macro const char *qUtf8Printable(const QString &str) \relates \since 5.4 Returns \a str as a \c{const char *}. This is equivalent to \a{str}.toUtf8().constData(). The char pointer will be invalid after the statement in which qUtf8Printable() is used. This is because the array returned by QString::toUtf8() will fall out of scope. Example: \snippet code/src_corelib_global_qglobal.cpp 37 \sa qPrintable(), qDebug(), qInfo(), qWarning(), qCritical(), qFatal() */ /*! \macro const wchar_t *qUtf16Printable(const QString &str) \relates \since 5.7 Returns \a str as a \c{const ushort *}, but cast to a \c{const wchar_t *} to avoid warnings. This is equivalent to \a{str}.utf16() plus some casting. The only useful thing you can do with the return value of this macro is to pass it to QString::asprintf() for use in a \c{%ls} conversion. In particular, the return value is \e{not} a valid \c{const wchar_t*}! In general, the pointer will be invalid after the statement in which qUtf16Printable() is used. This is because the pointer may have been obtained from a temporary expression, which will fall out of scope. Example: \snippet code/src_corelib_global_qglobal.cpp qUtf16Printable \sa qPrintable(), qDebug(), qInfo(), qWarning(), qCritical(), qFatal() */ /*! \macro Q_DECLARE_TYPEINFO(Type, Flags) \relates You can use this macro to specify information about a custom type \a Type. With accurate type information, Qt's \l{Container Classes} {generic containers} can choose appropriate storage methods and algorithms. \a Flags can be one of the following: \list \li \c Q_PRIMITIVE_TYPE specifies that \a Type is a POD (plain old data) type with no constructor or destructor, or else a type where every bit pattern is a valid object and memcpy() creates a valid independent copy of the object. \li \c Q_MOVABLE_TYPE specifies that \a Type has a constructor and/or a destructor but can be moved in memory using \c memcpy(). Note: despite the name, this has nothing to do with move constructors or C++ move semantics. \li \c Q_COMPLEX_TYPE (the default) specifies that \a Type has constructors and/or a destructor and that it may not be moved in memory. \endlist Example of a "primitive" type: \snippet code/src_corelib_global_qglobal.cpp 38 An example of a non-POD "primitive" type is QUuid: Even though QUuid has constructors (and therefore isn't POD), every bit pattern still represents a valid object, and memcpy() can be used to create a valid independent copy of a QUuid object. Example of a movable type: \snippet code/src_corelib_global_qglobal.cpp 39 Qt will try to detect the class of a type using std::is_trivial or std::is_trivially_copyable. Use this macro to tune the behavior. For instance many types would be candidates for Q_MOVABLE_TYPE despite not being trivially-copyable. For binary compatibility reasons, QList optimizations are only enabled if there is an explicit Q_DECLARE_TYPEINFO even for trivially-copyable types. */ /*! \macro Q_UNUSED(name) \relates Indicates to the compiler that the parameter with the specified \a name is not used in the body of a function. This can be used to suppress compiler warnings while allowing functions to be defined with meaningful parameter names in their signatures. */ struct QInternal_CallBackTable { QVector > callbacks; }; Q_GLOBAL_STATIC(QInternal_CallBackTable, global_callback_table) bool QInternal::registerCallback(Callback cb, qInternalCallback callback) { if (unsigned(cb) < unsigned(QInternal::LastCallback)) { QInternal_CallBackTable *cbt = global_callback_table(); cbt->callbacks.resize(cb + 1); cbt->callbacks[cb].append(callback); return true; } return false; } bool QInternal::unregisterCallback(Callback cb, qInternalCallback callback) { if (unsigned(cb) < unsigned(QInternal::LastCallback)) { if (global_callback_table.exists()) { QInternal_CallBackTable *cbt = global_callback_table(); return (bool) cbt->callbacks[cb].removeAll(callback); } } return false; } bool QInternal::activateCallbacks(Callback cb, void **parameters) { Q_ASSERT_X(cb >= 0, "QInternal::activateCallback()", "Callback id must be a valid id"); if (!global_callback_table.exists()) return false; QInternal_CallBackTable *cbt = &(*global_callback_table); if (cbt && cb < cbt->callbacks.size()) { QList callbacks = cbt->callbacks[cb]; bool ret = false; for (int i=0; i This macro can be used to determine the byte order your system uses for storing data in memory. i.e., whether your system is little-endian or big-endian. It is set by Qt to one of the macros Q_LITTLE_ENDIAN or Q_BIG_ENDIAN. You normally won't need to worry about endian-ness, but you might, for example if you need to know which byte of an integer or UTF-16 character is stored in the lowest address. Endian-ness is important in networking, where computers with different values for Q_BYTE_ORDER must pass data back and forth. Use this macro as in the following examples. \snippet code/src_corelib_global_qglobal.cpp 40 \sa Q_BIG_ENDIAN, Q_LITTLE_ENDIAN */ /*! \macro Q_LITTLE_ENDIAN \relates This macro represents a value you can compare to the macro Q_BYTE_ORDER to determine the endian-ness of your system. In a little-endian system, the least significant byte is stored at the lowest address. The other bytes follow in increasing order of significance. \snippet code/src_corelib_global_qglobal.cpp 41 \sa Q_BYTE_ORDER, Q_BIG_ENDIAN */ /*! \macro Q_BIG_ENDIAN \relates This macro represents a value you can compare to the macro Q_BYTE_ORDER to determine the endian-ness of your system. In a big-endian system, the most significant byte is stored at the lowest address. The other bytes follow in decreasing order of significance. \snippet code/src_corelib_global_qglobal.cpp 42 \sa Q_BYTE_ORDER, Q_LITTLE_ENDIAN */ /*! \macro QT_NAMESPACE \internal If this macro is defined to \c ns all Qt classes are put in a namespace called \c ns. Also, moc will output code putting metaobjects etc. into namespace \c ns. \sa QT_BEGIN_NAMESPACE, QT_END_NAMESPACE, QT_PREPEND_NAMESPACE, QT_USE_NAMESPACE, QT_BEGIN_INCLUDE_NAMESPACE, QT_END_INCLUDE_NAMESPACE, QT_BEGIN_MOC_NAMESPACE, QT_END_MOC_NAMESPACE, */ /*! \macro QT_PREPEND_NAMESPACE(identifier) \internal This macro qualifies \a identifier with the full namespace. It expands to \c{::QT_NAMESPACE::identifier} if \c QT_NAMESPACE is defined and only \a identifier otherwise. \sa QT_NAMESPACE */ /*! \macro QT_USE_NAMESPACE \internal This macro expands to using QT_NAMESPACE if QT_NAMESPACE is defined and nothing otherwise. \sa QT_NAMESPACE */ /*! \macro QT_BEGIN_NAMESPACE \internal This macro expands to \snippet code/src_corelib_global_qglobal.cpp begin namespace macro if \c QT_NAMESPACE is defined and nothing otherwise. If should always appear in the file-level scope and be followed by \c QT_END_NAMESPACE at the same logical level with respect to preprocessor conditionals in the same file. As a rule of thumb, \c QT_BEGIN_NAMESPACE should appear in all Qt header and Qt source files after the last \c{#include} line and before the first declaration. If that rule can't be followed because, e.g., \c{#include} lines and declarations are wildly mixed, place \c QT_BEGIN_NAMESPACE before the first declaration and wrap the \c{#include} lines in \c QT_BEGIN_INCLUDE_NAMESPACE and \c QT_END_INCLUDE_NAMESPACE. When using the \c QT_NAMESPACE feature in user code (e.g., when building plugins statically linked to Qt) where the user code is not intended to go into the \c QT_NAMESPACE namespace, all forward declarations of Qt classes need to be wrapped in \c QT_BEGIN_NAMESPACE and \c QT_END_NAMESPACE. After that, a \c QT_USE_NAMESPACE should follow. No further changes should be needed. \sa QT_NAMESPACE */ /*! \macro QT_END_NAMESPACE \internal This macro expands to \snippet code/src_corelib_global_qglobal.cpp end namespace macro if \c QT_NAMESPACE is defined and nothing otherwise. It is used to cancel the effect of \c QT_BEGIN_NAMESPACE. If a source file ends with a \c{#include} directive that includes a moc file, \c QT_END_NAMESPACE should be placed before that \c{#include}. \sa QT_NAMESPACE */ /*! \macro QT_BEGIN_INCLUDE_NAMESPACE \internal This macro is equivalent to \c QT_END_NAMESPACE. It only serves as syntactic sugar and is intended to be used before #include lines within a \c QT_BEGIN_NAMESPACE ... \c QT_END_NAMESPACE block. \sa QT_NAMESPACE */ /*! \macro QT_END_INCLUDE_NAMESPACE \internal This macro is equivalent to \c QT_BEGIN_NAMESPACE. It only serves as syntactic sugar and is intended to be used after #include lines within a \c QT_BEGIN_NAMESPACE ... \c QT_END_NAMESPACE block. \sa QT_NAMESPACE */ /*! \macro QT_BEGIN_MOC_NAMESPACE \internal This macro is output by moc at the beginning of moc files. It is equivalent to \c QT_USE_NAMESPACE. \sa QT_NAMESPACE */ /*! \macro QT_END_MOC_NAMESPACE \internal This macro is output by moc at the beginning of moc files. It expands to nothing. \sa QT_NAMESPACE */ /*! \fn bool qFuzzyCompare(double p1, double p2) \relates \since 4.4 \threadsafe Compares the floating point value \a p1 and \a p2 and returns \c true if they are considered equal, otherwise \c false. Note that comparing values where either \a p1 or \a p2 is 0.0 will not work, nor does comparing values where one of the values is NaN or infinity. If one of the values is always 0.0, use qFuzzyIsNull instead. If one of the values is likely to be 0.0, one solution is to add 1.0 to both values. \snippet code/src_corelib_global_qglobal.cpp 46 The two numbers are compared in a relative way, where the exactness is stronger the smaller the numbers are. */ /*! \fn bool qFuzzyCompare(float p1, float p2) \relates \since 4.4 \threadsafe Compares the floating point value \a p1 and \a p2 and returns \c true if they are considered equal, otherwise \c false. The two numbers are compared in a relative way, where the exactness is stronger the smaller the numbers are. */ /*! \fn bool qFuzzyIsNull(double d) \relates \since 4.4 \threadsafe Returns true if the absolute value of \a d is within 0.000000000001 of 0.0. */ /*! \fn bool qFuzzyIsNull(float f) \relates \since 4.4 \threadsafe Returns true if the absolute value of \a f is within 0.00001f of 0.0. */ /*! \macro QT_REQUIRE_VERSION(int argc, char **argv, const char *version) \relates This macro can be used to ensure that the application is run against a recent enough version of Qt. This is especially useful if your application depends on a specific bug fix introduced in a bug-fix release (e.g., 4.0.2). The \a argc and \a argv parameters are the \c main() function's \c argc and \c argv parameters. The \a version parameter is a string literal that specifies which version of Qt the application requires (e.g., "4.0.2"). Example: \snippet code/src_gui_dialogs_qmessagebox.cpp 4 */ /*! \macro Q_DECL_EXPORT \relates This macro marks a symbol for shared library export (see \l{sharedlibrary.html}{Creating Shared Libraries}). \sa Q_DECL_IMPORT */ /*! \macro Q_DECL_IMPORT \relates This macro declares a symbol to be an import from a shared library (see \l{sharedlibrary.html}{Creating Shared Libraries}). \sa Q_DECL_EXPORT */ /*! \macro Q_DECL_CONSTEXPR \relates This macro can be used to declare variable that should be constructed at compile-time, or an inline function that can be computed at compile-time. It expands to "constexpr" if your compiler supports that C++11 keyword, or to nothing otherwise. \sa Q_DECL_RELAXED_CONSTEXPR */ /*! \macro Q_DECL_RELAXED_CONSTEXPR \relates This macro can be used to declare an inline function that can be computed at compile-time according to the relaxed rules from C++14. It expands to "constexpr" if your compiler supports C++14 relaxed constant expressions, or to nothing otherwise. \sa Q_DECL_CONSTEXPR */ /*! \macro qDebug(const char *message, ...) \relates \threadsafe Calls the message handler with the debug message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows the message is sent to the console, if it is a console application; otherwise, it is sent to the debugger. On QNX, the message is sent to slogger2. This function does nothing if \c QT_NO_DEBUG_OUTPUT was defined during compilation. If you pass the function a format string and a list of arguments, it works in similar way to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp 24 If you include \c , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp 25 With this syntax, the function returns a QDebug object that is configured to use the QtDebugMsg message type. It automatically puts a single space between each item, and outputs a newline at the end. It supports many C++ and Qt types. To suppress the output at run-time, install your own message handler with qInstallMessageHandler(). \sa qInfo(), qWarning(), qCritical(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qInfo(const char *message, ...) \relates \threadsafe \since 5.5 Calls the message handler with the informational message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the console, if it is a console application; otherwise, it is sent to the debugger. On QNX the message is sent to slogger2. This function does nothing if \c QT_NO_INFO_OUTPUT was defined during compilation. If you pass the function a format string and a list of arguments, it works in similar way to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp qInfo_printf If you include \c , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp qInfo_stream With this syntax, the function returns a QDebug object that is configured to use the QtInfoMsg message type. It automatically puts a single space between each item, and outputs a newline at the end. It supports many C++ and Qt types. To suppress the output at run-time, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qWarning(), qCritical(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qWarning(const char *message, ...) \relates \threadsafe Calls the message handler with the warning message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. On QNX the message is sent to slogger2. This function does nothing if \c QT_NO_WARNING_OUTPUT was defined during compilation; it exits if at the nth warning corresponding to the counter in environment variable \c QT_FATAL_WARNINGS. That is, if the environment variable contains the value 1, it will exit on the 1st message; if it contains the value 10, it will exit on the 10th message. Any non-numeric value is equivalent to 1. This function takes a format string and a list of arguments, similar to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp 26 If you include , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp 27 This syntax inserts a space between each item, and appends a newline at the end. To suppress the output at runtime, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qInfo(), qCritical(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qCritical(const char *message, ...) \relates \threadsafe Calls the message handler with the critical message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. On QNX the message is sent to slogger2. It exits if the environment variable QT_FATAL_CRITICALS is not empty. This function takes a format string and a list of arguments, similar to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp 28 If you include , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp 29 A space is inserted between the items, and a newline is appended at the end. To suppress the output at runtime, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qInfo(), qWarning(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qFatal(const char *message, ...) \relates Calls the message handler with the fatal message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. On QNX the message is sent to slogger2. If you are using the \b{default message handler} this function will abort to create a core dump. On Windows, for debug builds, this function will report a _CRT_ERROR enabling you to connect a debugger to the application. This function takes a format string and a list of arguments, similar to the C printf() function. Example: \snippet code/src_corelib_global_qglobal.cpp 30 To suppress the output at runtime, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qInfo(), qWarning(), qCritical(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qMove(x) \relates It expands to "std::move" if your compiler supports that C++11 function, or to nothing otherwise. qMove takes an rvalue reference to its parameter \a x, and converts it to an xvalue. */ /*! \macro Q_DECL_NOTHROW \relates \since 5.0 This macro marks a function as never throwing, under no circumstances. If the function does nevertheless throw, the behaviour is undefined. The macro expands to either "throw()", if that has some benefit on the compiler, or to C++11 noexcept, if available, or to nothing otherwise. If you need C++11 noexcept semantics, don't use this macro, use Q_DECL_NOEXCEPT/Q_DECL_NOEXCEPT_EXPR instead. \sa Q_DECL_NOEXCEPT, Q_DECL_NOEXCEPT_EXPR() */ /*! \macro QT_TERMINATE_ON_EXCEPTION(expr) \relates \internal In general, use of the Q_DECL_NOEXCEPT macro is preferred over Q_DECL_NOTHROW, because it exhibits well-defined behavior and supports the more powerful Q_DECL_NOEXCEPT_EXPR variant. However, use of Q_DECL_NOTHROW has the advantage that Windows builds benefit on a wide range or compiler versions that do not yet support the C++11 noexcept feature. It may therefore be beneficial to use Q_DECL_NOTHROW and emulate the C++11 behavior manually with an embedded try/catch. Qt provides the QT_TERMINATE_ON_EXCEPTION(expr) macro for this purpose. It either expands to \c expr (if Qt is compiled without exception support or the compiler supports C++11 noexcept semantics) or to \snippet code/src_corelib_global_qglobal.cpp qterminate otherwise. Since this macro expands to just \c expr if the compiler supports C++11 noexcept, expecting the compiler to take over responsibility of calling std::terminate() in that case, it should not be used outside Q_DECL_NOTHROW functions. \sa Q_DECL_NOEXCEPT, Q_DECL_NOTHROW, qTerminate() */ /*! \macro Q_DECL_NOEXCEPT \relates \since 5.0 This macro marks a function as never throwing. If the function does nevertheless throw, the behaviour is defined: std::terminate() is called. The macro expands to C++11 noexcept, if available, or to nothing otherwise. If you need the operator version of C++11 noexcept, use Q_DECL_NOEXCEPT_EXPR(x). If you don't need C++11 noexcept semantics, e.g. because your function can't possibly throw, don't use this macro, use Q_DECL_NOTHROW instead. \sa Q_DECL_NOTHROW, Q_DECL_NOEXCEPT_EXPR() */ /*! \macro Q_DECL_NOEXCEPT_EXPR(x) \relates \since 5.0 This macro marks a function as non-throwing if \a x is \c true. If the function does nevertheless throw, the behaviour is defined: std::terminate() is called. The macro expands to C++11 noexcept(x), if available, or to nothing otherwise. If you need the always-true version of C++11 noexcept, use Q_DECL_NOEXCEPT. If you don't need C++11 noexcept semantics, e.g. because your function can't possibly throw, don't use this macro, use Q_DECL_NOTHROW instead. \sa Q_DECL_NOTHROW, Q_DECL_NOEXCEPT */ /*! \macro Q_DECL_OVERRIDE \since 5.0 \relates This macro can be used to declare an overriding virtual function. Use of this markup will allow the compiler to generate an error if the overriding virtual function does not in fact override anything. It expands to "override" if your compiler supports that C++11 contextual keyword, or to nothing otherwise. The macro goes at the end of the function, usually after the \c{const}, if any: \snippet code/src_corelib_global_qglobal.cpp qdecloverride \sa Q_DECL_FINAL */ /*! \macro Q_DECL_FINAL \since 5.0 \relates This macro can be used to declare an overriding virtual or a class as "final", with Java semantics. Further-derived classes can then no longer override this virtual function, or inherit from this class, respectively. It expands to "final" if your compiler supports that C++11 contextual keyword, or something non-standard if your compiler supports something close enough to the C++11 semantics, or to nothing otherwise. The macro goes at the end of the function, usually after the \c{const}, if any: \snippet code/src_corelib_global_qglobal.cpp qdeclfinal-1 For classes, it goes in front of the \c{:} in the class definition, if any: \snippet code/src_corelib_global_qglobal.cpp qdeclfinal-2 \sa Q_DECL_OVERRIDE */ /*! \macro Q_FORWARD_DECLARE_OBJC_CLASS(classname) \since 5.2 \relates Forward-declares an Objective-C \a classname in a manner such that it can be compiled as either Objective-C or C++. This is primarily intended for use in header files that may be included by both Objective-C and C++ source files. */ /*! \macro Q_FORWARD_DECLARE_CF_TYPE(type) \since 5.2 \relates Forward-declares a Core Foundation \a type. This includes the actual type and the ref type. For example, Q_FORWARD_DECLARE_CF_TYPE(CFString) declares __CFString and CFStringRef. */ /*! \macro Q_FORWARD_DECLARE_MUTABLE_CF_TYPE(type) \since 5.2 \relates Forward-declares a mutable Core Foundation \a type. This includes the actual type and the ref type. For example, Q_FORWARD_DECLARE_MUTABLE_CF_TYPE(CFMutableString) declares __CFMutableString and CFMutableStringRef. */ QT_END_NAMESPACE