/**************************************************************************** ** ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/ ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qplatformdefs.h" #include "qstring.h" #include "qvector.h" #include "qlist.h" #include "qthreadstorage.h" #include "qdir.h" #include "qdatetime.h" #ifndef QT_NO_QOBJECT #include #endif #include #include #include #include #ifndef QT_NO_EXCEPTIONS # include # include #endif #if !defined(Q_OS_WINCE) # include # if defined(Q_CC_MSVC) # include # endif #endif #if defined(Q_OS_VXWORKS) # include #endif #if defined(Q_OS_MAC) && !defined(Q_OS_IOS) #include #endif QT_BEGIN_NAMESPACE #if !QT_DEPRECATED_SINCE(5, 0) // Make sure they're defined to be exported Q_CORE_EXPORT void *qMemCopy(void *dest, const void *src, size_t n); Q_CORE_EXPORT void *qMemSet(void *dest, int c, size_t n); #endif /*! \class QFlag \brief The QFlag class is a helper data type for QFlags. It is equivalent to a plain \c int, except with respect to function overloading and type conversions. You should never need to use this class in your applications. \sa QFlags */ /*! \fn QFlag::QFlag(int value) Constructs a QFlag object that stores the given \a value. */ /*! \fn QFlag::operator int() const Returns the value stored by the QFlag object. */ /*! \class QFlags \brief The QFlags class provides a type-safe way of storing OR-combinations of enum values. \ingroup tools The QFlags class is a template class, where Enum is an enum type. QFlags is used throughout Qt for storing combinations of enum values. The traditional C++ approach for storing OR-combinations of enum values is to use an \c int or \c uint variable. The inconvenience with this approach is that there's no type checking at all; any enum value can be OR'd with any other enum value and passed on to a function that takes an \c int or \c uint. Qt uses QFlags to provide type safety. For example, the Qt::Alignment type is simply a typedef for QFlags. QLabel::setAlignment() takes a Qt::Alignment parameter, which means that any combination of Qt::AlignmentFlag values,or 0, is legal: \snippet code/src_corelib_global_qglobal.cpp 0 If you try to pass a value from another enum or just a plain integer other than 0, the compiler will report an error. If you need to cast integer values to flags in a untyped fashion, you can use the explicit QFlags constructor as cast operator. If you want to use QFlags for your own enum types, use the Q_DECLARE_FLAGS() and Q_DECLARE_OPERATORS_FOR_FLAGS(). Example: \snippet code/src_corelib_global_qglobal.cpp 1 You can then use the \c MyClass::Options type to store combinations of \c MyClass::Option values. \section1 Flags and the Meta-Object System The Q_DECLARE_FLAGS() macro does not expose the flags to the meta-object system, so they cannot be used by Qt Script or edited in Qt Designer. To make the flags available for these purposes, the Q_FLAGS() macro must be used: \snippet code/src_corelib_global_qglobal.cpp meta-object flags \section1 Naming Convention A sensible naming convention for enum types and associated QFlags types is to give a singular name to the enum type (e.g., \c Option) and a plural name to the QFlags type (e.g., \c Options). When a singular name is desired for the QFlags type (e.g., \c Alignment), you can use \c Flag as the suffix for the enum type (e.g., \c AlignmentFlag). \sa QFlag */ /*! \typedef QFlags::enum_type Typedef for the Enum template type. */ /*! \fn QFlags::QFlags(const QFlags &other) Constructs a copy of \a other. */ /*! \fn QFlags::QFlags(Enum flag) Constructs a QFlags object storing the given \a flag. */ /*! \fn QFlags::QFlags(Zero zero) Constructs a QFlags object with no flags set. \a zero must be a literal 0 value. */ /*! \fn QFlags::QFlags(QFlag value) Constructs a QFlags object initialized with the given integer \a value. The QFlag type is a helper type. By using it here instead of \c int, we effectively ensure that arbitrary enum values cannot be cast to a QFlags, whereas untyped enum values (i.e., \c int values) can. */ /*! \fn QFlags &QFlags::operator=(const QFlags &other) Assigns \a other to this object and returns a reference to this object. */ /*! \fn QFlags &QFlags::operator&=(int mask) Performs a bitwise AND operation with \a mask and stores the result in this QFlags object. Returns a reference to this object. \sa operator&(), operator|=(), operator^=() */ /*! \fn QFlags &QFlags::operator&=(uint mask) \overload */ /*! \fn QFlags &QFlags::operator|=(QFlags other) Performs a bitwise OR operation with \a other and stores the result in this QFlags object. Returns a reference to this object. \sa operator|(), operator&=(), operator^=() */ /*! \fn QFlags &QFlags::operator|=(Enum other) \overload */ /*! \fn QFlags &QFlags::operator^=(QFlags other) Performs a bitwise XOR operation with \a other and stores the result in this QFlags object. Returns a reference to this object. \sa operator^(), operator&=(), operator|=() */ /*! \fn QFlags &QFlags::operator^=(Enum other) \overload */ /*! \fn QFlags::operator int() const Returns the value stored in the QFlags object as an integer. */ /*! \fn QFlags QFlags::operator|(QFlags other) const Returns a QFlags object containing the result of the bitwise OR operation on this object and \a other. \sa operator|=(), operator^(), operator&(), operator~() */ /*! \fn QFlags QFlags::operator|(Enum other) const \overload */ /*! \fn QFlags QFlags::operator^(QFlags other) const Returns a QFlags object containing the result of the bitwise XOR operation on this object and \a other. \sa operator^=(), operator&(), operator|(), operator~() */ /*! \fn QFlags QFlags::operator^(Enum other) const \overload */ /*! \fn QFlags QFlags::operator&(int mask) const Returns a QFlags object containing the result of the bitwise AND operation on this object and \a mask. \sa operator&=(), operator|(), operator^(), operator~() */ /*! \fn QFlags QFlags::operator&(uint mask) const \overload */ /*! \fn QFlags QFlags::operator&(Enum mask) const \overload */ /*! \fn QFlags QFlags::operator~() const Returns a QFlags object that contains the bitwise negation of this object. \sa operator&(), operator|(), operator^() */ /*! \fn bool QFlags::operator!() const Returns true if no flag is set (i.e., if the value stored by the QFlags object is 0); otherwise returns false. */ /*! \fn bool QFlags::testFlag(Enum flag) const \since 4.2 Returns true if the \a flag is set, otherwise false. */ /*! \macro Q_DISABLE_COPY(Class) \relates QObject Disables the use of copy constructors and assignment operators for the given \a Class. Instances of subclasses of QObject should not be thought of as values that can be copied or assigned, but as unique identities. This means that when you create your own subclass of QObject (director or indirect), you should \e not give it a copy constructor or an assignment operator. However, it may not enough to simply omit them from your class, because, if you mistakenly write some code that requires a copy constructor or an assignment operator (it's easy to do), your compiler will thoughtfully create it for you. You must do more. The curious user will have seen that the Qt classes derived from QObject typically include this macro in a private section: \snippet code/src_corelib_global_qglobal.cpp 43 It declares a copy constructor and an assignment operator in the private section, so that if you use them by mistake, the compiler will report an error. \snippet code/src_corelib_global_qglobal.cpp 44 But even this might not catch absolutely every case. You might be tempted to do something like this: \snippet code/src_corelib_global_qglobal.cpp 45 First of all, don't do that. Most compilers will generate code that uses the copy constructor, so the privacy violation error will be reported, but your C++ compiler is not required to generate code for this statement in a specific way. It could generate code using \e{neither} the copy constructor \e{nor} the assignment operator we made private. In that case, no error would be reported, but your application would probably crash when you called a member function of \c{w}. */ /*! \macro Q_DECLARE_FLAGS(Flags, Enum) \relates QFlags The Q_DECLARE_FLAGS() macro expands to \snippet code/src_corelib_global_qglobal.cpp 2 \a Enum is the name of an existing enum type, whereas \a Flags is the name of the QFlags<\e{Enum}> typedef. See the QFlags documentation for details. \sa Q_DECLARE_OPERATORS_FOR_FLAGS() */ /*! \macro Q_DECLARE_OPERATORS_FOR_FLAGS(Flags) \relates QFlags The Q_DECLARE_OPERATORS_FOR_FLAGS() macro declares global \c operator|() functions for \a Flags, which is of type QFlags. See the QFlags documentation for details. \sa Q_DECLARE_FLAGS() */ /*! \headerfile \title Global Qt Declarations \ingroup funclists \brief The header file includes the fundamental global declarations. It is included by most other Qt header files. The global declarations include \l{types}, \l{functions} and \l{macros}. The type definitions are partly convenience definitions for basic types (some of which guarantee certain bit-sizes on all platforms supported by Qt), partly types related to Qt message handling. The functions are related to generating messages, Qt version handling and comparing and adjusting object values. And finally, some of the declared macros enable programmers to add compiler or platform specific code to their applications, while others are convenience macros for larger operations. \section1 Types The header file declares several type definitions that guarantee a specified bit-size on all platforms supported by Qt for various basic types, for example \l qint8 which is a signed char guaranteed to be 8-bit on all platforms supported by Qt. The header file also declares the \l qlonglong type definition for \c {long long int } (\c __int64 on Windows). Several convenience type definitions are declared: \l qreal for \c double, \l uchar for \c unsigned char, \l uint for \c unsigned int, \l ulong for \c unsigned long and \l ushort for \c unsigned short. Finally, the QtMsgType definition identifies the various messages that can be generated and sent to a Qt message handler; QtMessageHandler is a type definition for a pointer to a function with the signature \c {void myMessageHandler(QtMsgType, const QMessageLogContext &, const char *)}. QMessageLogContext class contains the line, file, and function the message was logged at. This information is created by the QMessageLogger class. \section1 Functions The header file contains several functions comparing and adjusting an object's value. These functions take a template type as argument: You can retrieve the absolute value of an object using the qAbs() function, and you can bound a given object's value by given minimum and maximum values using the qBound() function. You can retrieve the minimum and maximum of two given objects using qMin() and qMax() respectively. All these functions return a corresponding template type; the template types can be replaced by any other type. Example: \snippet code/src_corelib_global_qglobal.cpp 3 also contains functions that generate messages from the given string argument: qCritical(), qDebug(), qFatal() and qWarning(). These functions call the message handler with the given message. Example: \snippet code/src_corelib_global_qglobal.cpp 4 The remaining functions are qRound() and qRound64(), which both accept a \l qreal value as their argument returning the value rounded up to the nearest integer and 64-bit integer respectively, the qInstallMessageHandler() function which installs the given QtMessageHandler, and the qVersion() function which returns the version number of Qt at run-time as a string. \section1 Macros The header file provides a range of macros (Q_CC_*) that are defined if the application is compiled using the specified platforms. For example, the Q_CC_SUN macro is defined if the application is compiled using Forte Developer, or Sun Studio C++. The header file also declares a range of macros (Q_OS_*) that are defined for the specified platforms. For example, Q_OS_X11 which is defined for the X Window System. The purpose of these macros is to enable programmers to add compiler or platform specific code to their application. The remaining macros are convenience macros for larger operations: The QT_TRANSLATE_NOOP() and QT_TR_NOOP() macros provide the possibility of marking text for dynamic translation, i.e. translation without changing the stored source text. The Q_ASSERT() and Q_ASSERT_X() enables warning messages of various level of refinement. The Q_FOREACH() and foreach() macros implement Qt's foreach loop. The Q_INT64_C() and Q_UINT64_C() macros wrap signed and unsigned 64-bit integer literals in a platform-independent way. The Q_CHECK_PTR() macro prints a warning containing the source code's file name and line number, saying that the program ran out of memory, if the pointer is 0. The qPrintable() macro represent an easy way of printing text. Finally, the QT_POINTER_SIZE macro expands to the size of a pointer in bytes, and the QT_VERSION and QT_VERSION_STR macros expand to a numeric value or a string, respectively, specifying Qt's version number, i.e the version the application is compiled against. \sa , QSysInfo */ /*! \typedef qreal \relates Typedef for \c double on all platforms except for those using CPUs with ARM architectures. On ARM-based platforms, \c qreal is a typedef for \c float for performance reasons. */ /*! \typedef uchar \relates Convenience typedef for \c{unsigned char}. */ /*! \typedef ushort \relates Convenience typedef for \c{unsigned short}. */ /*! \typedef uint \relates Convenience typedef for \c{unsigned int}. */ /*! \typedef ulong \relates Convenience typedef for \c{unsigned long}. */ /*! \typedef qint8 \relates Typedef for \c{signed char}. This type is guaranteed to be 8-bit on all platforms supported by Qt. */ /*! \typedef quint8 \relates Typedef for \c{unsigned char}. This type is guaranteed to be 8-bit on all platforms supported by Qt. */ /*! \typedef qint16 \relates Typedef for \c{signed short}. This type is guaranteed to be 16-bit on all platforms supported by Qt. */ /*! \typedef quint16 \relates Typedef for \c{unsigned short}. This type is guaranteed to be 16-bit on all platforms supported by Qt. */ /*! \typedef qint32 \relates Typedef for \c{signed int}. This type is guaranteed to be 32-bit on all platforms supported by Qt. */ /*! \typedef quint32 \relates Typedef for \c{unsigned int}. This type is guaranteed to be 32-bit on all platforms supported by Qt. */ /*! \typedef qint64 \relates Typedef for \c{long long int} (\c __int64 on Windows). This type is guaranteed to be 64-bit on all platforms supported by Qt. Literals of this type can be created using the Q_INT64_C() macro: \snippet code/src_corelib_global_qglobal.cpp 5 \sa Q_INT64_C(), quint64, qlonglong */ /*! \typedef quint64 \relates Typedef for \c{unsigned long long int} (\c{unsigned __int64} on Windows). This type is guaranteed to be 64-bit on all platforms supported by Qt. Literals of this type can be created using the Q_UINT64_C() macro: \snippet code/src_corelib_global_qglobal.cpp 6 \sa Q_UINT64_C(), qint64, qulonglong */ /*! \typedef quintptr \relates Integral type for representing a pointers (useful for hashing, etc.). Typedef for either quint32 or quint64. This type is guaranteed to be the same size as a pointer on all platforms supported by Qt. On a system with 32-bit pointers, quintptr is a typedef for quint32; on a system with 64-bit pointers, quintptr is a typedef for quint64. Note that quintptr is unsigned. Use qptrdiff for signed values. \sa qptrdiff, quint32, quint64 */ /*! \typedef qptrdiff \relates Integral type for representing pointer differences. Typedef for either qint32 or qint64. This type is guaranteed to be the same size as a pointer on all platforms supported by Qt. On a system with 32-bit pointers, quintptr is a typedef for quint32; on a system with 64-bit pointers, quintptr is a typedef for quint64. Note that qptrdiff is signed. Use quintptr for unsigned values. \sa quintptr, qint32, qint64 */ /*! \enum QtMsgType \relates This enum describes the messages that can be sent to a message handler (QtMsgHandler). You can use the enum to identify and associate the various message types with the appropriate actions. \value QtDebugMsg A message generated by the qDebug() function. \value QtWarningMsg A message generated by the qWarning() function. \value QtCriticalMsg A message generated by the qCritical() function. \value QtFatalMsg A message generated by the qFatal() function. \value QtSystemMsg \sa QtMessageHandler, qInstallMessageHandler() */ /*! \typedef QFunctionPointer \relates This is a typedef for \c{void (*)()}, a pointer to a function that takes no arguments and returns void. */ /*! \macro qint64 Q_INT64_C(literal) \relates Wraps the signed 64-bit integer \a literal in a platform-independent way. Example: \snippet code/src_corelib_global_qglobal.cpp 8 \sa qint64, Q_UINT64_C() */ /*! \macro quint64 Q_UINT64_C(literal) \relates Wraps the unsigned 64-bit integer \a literal in a platform-independent way. Example: \snippet code/src_corelib_global_qglobal.cpp 9 \sa quint64, Q_INT64_C() */ /*! \typedef qlonglong \relates Typedef for \c{long long int} (\c __int64 on Windows). This is the same as \l qint64. \sa qulonglong, qint64 */ /*! \typedef qulonglong \relates Typedef for \c{unsigned long long int} (\c{unsigned __int64} on Windows). This is the same as \l quint64. \sa quint64, qlonglong */ /*! \fn const T &qAbs(const T &value) \relates Compares \a value to the 0 of type T and returns the absolute value. Thus if T is \e {double}, then \a value is compared to \e{(double) 0}. Example: \snippet code/src_corelib_global_qglobal.cpp 10 */ /*! \fn int qRound(qreal value) \relates Rounds \a value to the nearest integer. Example: \snippet code/src_corelib_global_qglobal.cpp 11 */ /*! \fn qint64 qRound64(qreal value) \relates Rounds \a value to the nearest 64-bit integer. Example: \snippet code/src_corelib_global_qglobal.cpp 12 */ /*! \fn const T &qMin(const T &value1, const T &value2) \relates Returns the minimum of \a value1 and \a value2. Example: \snippet code/src_corelib_global_qglobal.cpp 13 \sa qMax(), qBound() */ /*! \fn const T &qMax(const T &value1, const T &value2) \relates Returns the maximum of \a value1 and \a value2. Example: \snippet code/src_corelib_global_qglobal.cpp 14 \sa qMin(), qBound() */ /*! \fn const T &qBound(const T &min, const T &value, const T &max) \relates Returns \a value bounded by \a min and \a max. This is equivalent to qMax(\a min, qMin(\a value, \a max)). Example: \snippet code/src_corelib_global_qglobal.cpp 15 \sa qMin(), qMax() */ /*! \macro QT_VERSION_CHECK \relates Turns the major, minor and patch numbers of a version into an integer, 0xMMNNPP (MM = major, NN = minor, PP = patch). This can be compared with another similarly processed version id. \sa QT_VERSION */ /*! \macro QT_VERSION \relates This macro expands a numeric value of the form 0xMMNNPP (MM = major, NN = minor, PP = patch) that specifies Qt's version number. For example, if you compile your application against Qt 4.1.2, the QT_VERSION macro will expand to 0x040102. You can use QT_VERSION to use the latest Qt features where available. Example: \snippet code/src_corelib_global_qglobal.cpp 16 \sa QT_VERSION_STR, qVersion() */ /*! \macro QT_VERSION_STR \relates This macro expands to a string that specifies Qt's version number (for example, "4.1.2"). This is the version against which the application is compiled. \sa qVersion(), QT_VERSION */ /*! \relates Returns the version number of Qt at run-time as a string (for example, "4.1.2"). This may be a different version than the version the application was compiled against. \sa QT_VERSION_STR */ const char *qVersion() { return QT_VERSION_STR; } bool qSharedBuild() { #ifdef QT_SHARED return true; #else return false; #endif } /***************************************************************************** System detection routines *****************************************************************************/ /*! \class QSysInfo \brief The QSysInfo class provides information about the system. \list \li \l WordSize specifies the size of a pointer for the platform on which the application is compiled. \li \l ByteOrder specifies whether the platform is big-endian or little-endian. \li \l WindowsVersion specifies the version of the Windows operating system on which the application is run (Windows only) \li \l MacintoshVersion specifies the version of the Macintosh operating system on which the application is run (Mac only). \endlist Some constants are defined only on certain platforms. You can use the preprocessor symbols Q_OS_WIN and Q_OS_MAC to test that the application is compiled under Windows or Mac. \sa QLibraryInfo */ /*! \enum QSysInfo::Sizes This enum provides platform-specific information about the sizes of data structures used by the underlying architecture. \value WordSize The size in bits of a pointer for the platform on which the application is compiled (32 or 64). */ /*! \variable QSysInfo::WindowsVersion \brief the version of the Windows operating system on which the application is run (Windows only) */ /*! \fn QSysInfo::WindowsVersion QSysInfo::windowsVersion() \since 4.4 Returns the version of the Windows operating system on which the application is run (Windows only). */ /*! \variable QSysInfo::MacintoshVersion \brief the version of the Macintosh operating system on which the application is run (Mac only). */ /*! \fn QSysInfo::MacVersion QSysInfo::macVersion() Returns the version of Mac OS X on which the application is run (Mac OS X Only). */ /*! \enum QSysInfo::Endian \value BigEndian Big-endian byte order (also called Network byte order) \value LittleEndian Little-endian byte order \value ByteOrder Equals BigEndian or LittleEndian, depending on the platform's byte order. */ /*! \enum QSysInfo::WinVersion This enum provides symbolic names for the various versions of the Windows operating system. On Windows, the QSysInfo::WindowsVersion variable gives the version of the system on which the application is run. MS-DOS-based versions: \value WV_32s Windows 3.1 with Win 32s \value WV_95 Windows 95 \value WV_98 Windows 98 \value WV_Me Windows Me NT-based versions (note that each operating system version is only represented once rather than each Windows edition): \value WV_NT Windows NT (operating system version 4.0) \value WV_2000 Windows 2000 (operating system version 5.0) \value WV_XP Windows XP (operating system version 5.1) \value WV_2003 Windows Server 2003, Windows Server 2003 R2, Windows Home Server, Windows XP Professional x64 Edition (operating system version 5.2) \value WV_VISTA Windows Vista, Windows Server 2008 (operating system version 6.0) \value WV_WINDOWS7 Windows 7, Windows Server 2008 R2 (operating system version 6.1) Alternatively, you may use the following macros which correspond directly to the Windows operating system version number: \value WV_4_0 Operating system version 4.0, corresponds to Windows NT \value WV_5_0 Operating system version 5.0, corresponds to Windows 2000 \value WV_5_1 Operating system version 5.1, corresponds to Windows XP \value WV_5_2 Operating system version 5.2, corresponds to Windows Server 2003, Windows Server 2003 R2, Windows Home Server, and Windows XP Professional x64 Edition \value WV_6_0 Operating system version 6.0, corresponds to Windows Vista and Windows Server 2008 \value WV_6_1 Operating system version 6.1, corresponds to Windows 7 and Windows Server 2008 R2 CE-based versions: \value WV_CE Windows CE \value WV_CENET Windows CE .NET \value WV_CE_5 Windows CE 5.x \value WV_CE_6 Windows CE 6.x The following masks can be used for testing whether a Windows version is MS-DOS-based, NT-based, or CE-based: \value WV_DOS_based MS-DOS-based version of Windows \value WV_NT_based NT-based version of Windows \value WV_CE_based CE-based version of Windows \sa MacVersion */ /*! \enum QSysInfo::MacVersion This enum provides symbolic names for the various versions of the Macintosh operating system. On Mac, the QSysInfo::MacintoshVersion variable gives the version of the system on which the application is run. \value MV_9 Mac OS 9 (unsupported) \value MV_10_0 Mac OS X 10.0 (unsupported) \value MV_10_1 Mac OS X 10.1 (unsupported) \value MV_10_2 Mac OS X 10.2 (unsupported) \value MV_10_3 Mac OS X 10.3 \value MV_10_4 Mac OS X 10.4 \value MV_10_5 Mac OS X 10.5 \value MV_10_6 Mac OS X 10.6 \value MV_10_7 Mac OS X 10.7 \value MV_Unknown An unknown and currently unsupported platform \value MV_CHEETAH Apple codename for MV_10_0 \value MV_PUMA Apple codename for MV_10_1 \value MV_JAGUAR Apple codename for MV_10_2 \value MV_PANTHER Apple codename for MV_10_3 \value MV_TIGER Apple codename for MV_10_4 \value MV_LEOPARD Apple codename for MV_10_5 \value MV_SNOWLEOPARD Apple codename for MV_10_6 \value MV_LION Apple codename for MV_10_7 \value MV_MOUNTAINLION Apple codename for MV_10_8 \sa WinVersion */ /*! \macro Q_OS_DARWIN \relates Defined on Darwin OS (synonym for Q_OS_MAC). */ /*! \macro Q_OS_WIN32 \relates Defined on all supported versions of Windows. */ /*! \macro Q_OS_WINCE \relates Defined on Windows CE. */ /*! \macro Q_OS_CYGWIN \relates Defined on Cygwin. */ /*! \macro Q_OS_SOLARIS \relates Defined on Sun Solaris. */ /*! \macro Q_OS_HPUX \relates Defined on HP-UX. */ /*! \macro Q_OS_ULTRIX \relates Defined on DEC Ultrix. */ /*! \macro Q_OS_LINUX \relates Defined on Linux. */ /*! \macro Q_OS_FREEBSD \relates Defined on FreeBSD. */ /*! \macro Q_OS_NETBSD \relates Defined on NetBSD. */ /*! \macro Q_OS_OPENBSD \relates Defined on OpenBSD. */ /*! \macro Q_OS_BSDI \relates Defined on BSD/OS. */ /*! \macro Q_OS_IRIX \relates Defined on SGI Irix. */ /*! \macro Q_OS_OSF \relates Defined on HP Tru64 UNIX. */ /*! \macro Q_OS_SCO \relates Defined on SCO OpenServer 5. */ /*! \macro Q_OS_UNIXWARE \relates Defined on UnixWare 7, Open UNIX 8. */ /*! \macro Q_OS_AIX \relates Defined on AIX. */ /*! \macro Q_OS_HURD \relates Defined on GNU Hurd. */ /*! \macro Q_OS_DGUX \relates Defined on DG/UX. */ /*! \macro Q_OS_RELIANT \relates Defined on Reliant UNIX. */ /*! \macro Q_OS_DYNIX \relates Defined on DYNIX/ptx. */ /*! \macro Q_OS_QNX \relates Defined on QNX Neutrino. */ /*! \macro Q_OS_LYNX \relates Defined on LynxOS. */ /*! \macro Q_OS_BSD4 \relates Defined on Any BSD 4.4 system. */ /*! \macro Q_OS_UNIX \relates Defined on Any UNIX BSD/SYSV system. */ /*! \macro Q_CC_SYM \relates Defined if the application is compiled using Digital Mars C/C++ (used to be Symantec C++). */ /*! \macro Q_CC_MSVC \relates Defined if the application is compiled using Microsoft Visual C/C++, Intel C++ for Windows. */ /*! \macro Q_CC_BOR \relates Defined if the application is compiled using Borland/Turbo C++. */ /*! \macro Q_CC_WAT \relates Defined if the application is compiled using Watcom C++. */ /*! \macro Q_CC_GNU \relates Defined if the application is compiled using GNU C++. */ /*! \macro Q_CC_COMEAU \relates Defined if the application is compiled using Comeau C++. */ /*! \macro Q_CC_EDG \relates Defined if the application is compiled using Edison Design Group C++. */ /*! \macro Q_CC_OC \relates Defined if the application is compiled using CenterLine C++. */ /*! \macro Q_CC_SUN \relates Defined if the application is compiled using Forte Developer, or Sun Studio C++. */ /*! \macro Q_CC_MIPS \relates Defined if the application is compiled using MIPSpro C++. */ /*! \macro Q_CC_DEC \relates Defined if the application is compiled using DEC C++. */ /*! \macro Q_CC_HPACC \relates Defined if the application is compiled using HP aC++. */ /*! \macro Q_CC_USLC \relates Defined if the application is compiled using SCO OUDK and UDK. */ /*! \macro Q_CC_CDS \relates Defined if the application is compiled using Reliant C++. */ /*! \macro Q_CC_KAI \relates Defined if the application is compiled using KAI C++. */ /*! \macro Q_CC_INTEL \relates Defined if the application is compiled using Intel C++ for Linux, Intel C++ for Windows. */ /*! \macro Q_CC_HIGHC \relates Defined if the application is compiled using MetaWare High C/C++. */ /*! \macro Q_CC_PGI \relates Defined if the application is compiled using Portland Group C++. */ /*! \macro Q_CC_GHS \relates Defined if the application is compiled using Green Hills Optimizing C++ Compilers. */ /*! \macro Q_OS_MAC \relates Defined on MAC OS (synonym for Darwin). */ /*! \macro Q_PROCESSOR_ALPHA \relates Defined if the application is compiled for Alpha processors. */ /*! \macro Q_PROCESSOR_ARM \relates Defined if the application is compiled for ARM processors. Qt currently supports three optional ARM revisions: \l Q_PROCESSOR_ARM_V5, \l Q_PROCESSOR_ARM_V6, and \l Q_PROCESSOR_ARM_V7. */ /*! \macro Q_PROCESSOR_ARM_V5 \relates Defined if the application is compiled for ARMv5 processors. The \l Q_PROCESSOR_ARM macro is also defined when Q_PROCESSOR_ARM_V5 is defined. */ /*! \macro Q_PROCESSOR_ARM_V6 \relates Defined if the application is compiled for ARMv6 processors. The \l Q_PROCESSOR_ARM and \l Q_PROCESSOR_ARM_V5 macros are also defined when Q_PROCESSOR_ARM_V6 is defined. */ /*! \macro Q_PROCESSOR_ARM_V7 \relates Defined if the application is compiled for ARMv7 processors. The \l Q_PROCESSOR_ARM, \l Q_PROCESSOR_ARM_V5, and \l Q_PROCESSOR_ARM_V6 macros are also defined when Q_PROCESSOR_ARM_V7 is defined. */ /*! \macro Q_PROCESSOR_AVR32 \relates Defined if the application is compiled for AVR32 processors. */ /*! \macro Q_PROCESSOR_BLACKFIN \relates Defined if the application is compiled for Blackfin processors. */ /*! \macro Q_PROCESSOR_IA64 \relates Defined if the application is compiled for IA-64 processors. This includes all Itanium and Itanium 2 processors. */ /*! \macro Q_PROCESSOR_MIPS \relates Defined if the application is compiled for MIPS processors. Qt currently supports seven MIPS revisions: \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, \l Q_PROCESSOR_MIPS_III, \l Q_PROCESSOR_MIPS_IV, \l Q_PROCESSOR_MIPS_V, \l Q_PROCESSOR_MIPS_32, and \l Q_PROCESSOR_MIPS_64. */ /*! \macro Q_PROCESSOR_MIPS_I \relates Defined if the application is compiled for MIPS-I processors. The \l Q_PROCESSOR_MIPS macro is also defined when Q_PROCESSOR_MIPS_I is defined. */ /*! \macro Q_PROCESSOR_MIPS_II \relates Defined if the application is compiled for MIPS-II processors. The \l Q_PROCESSOR_MIPS and \l Q_PROCESSOR_MIPS_I macros are also defined when Q_PROCESSOR_MIPS_II is defined. */ /*! \macro Q_PROCESSOR_MIPS_32 \relates Defined if the application is compiled for MIPS32 processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, and \l Q_PROCESSOR_MIPS_II macros are also defined when Q_PROCESSOR_MIPS_32 is defined. */ /*! \macro Q_PROCESSOR_MIPS_III \relates Defined if the application is compiled for MIPS-III processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, and \l Q_PROCESSOR_MIPS_II macros are also defined when Q_PROCESSOR_MIPS_III is defined. */ /*! \macro Q_PROCESSOR_MIPS_IV \relates Defined if the application is compiled for MIPS-IV processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, and \l Q_PROCESSOR_MIPS_III macros are also defined when Q_PROCESSOR_MIPS_IV is defined. */ /*! \macro Q_PROCESSOR_MIPS_V \relates Defined if the application is compiled for MIPS-V processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, \l Q_PROCESSOR_MIPS_III, and \l Q_PROCESSOR_MIPS_IV macros are also defined when Q_PROCESSOR_MIPS_V is defined. */ /*! \macro Q_PROCESSOR_MIPS_64 \relates Defined if the application is compiled for MIPS64 processors. The \l Q_PROCESSOR_MIPS, \l Q_PROCESSOR_MIPS_I, \l Q_PROCESSOR_MIPS_II, \l Q_PROCESSOR_MIPS_III, \l Q_PROCESSOR_MIPS_IV, and \l Q_PROCESSOR_MIPS_V macros are also defined when Q_PROCESSOR_MIPS_64 is defined. */ /*! \macro Q_PROCESSOR_POWER \relates Defined if the application is compiled for POWER processors. Qt currently supports two Power variants: \l Q_PROCESSOR_POWER_32 and \l Q_PROCESSOR_POWER_64. */ /*! \macro Q_PROCESSOR_POWER_32 \relates Defined if the application is compiled for 32-bit Power processors. The \l Q_PROCESSOR_POWER macro is also defined when Q_PROCESSOR_POWER_32 is defined. */ /*! \macro Q_PROCESSOR_POWER_64 \relates Defined if the application is compiled for 64-bit Power processors. The \l Q_PROCESSOR_POWER macro is also defined when Q_PROCESSOR_POWER_64 is defined. */ /*! \macro Q_PROCESSOR_S390 \relates Defined if the application is compiled for S/390 processors. Qt supports one optional variant of S/390: Q_PROCESSOR_S390_X. */ /*! \macro Q_PROCESSOR_S390_X \relates Defined if the application is compiled for S/390x processors. The \l Q_PROCESSOR_S390 macro is also defined when Q_PROCESSOR_S390_X is defined. */ /*! \macro Q_PROCESSOR_SH \relates Defined if the application is compiled for SuperH processors. Qt currently supports one SuperH revision: \l Q_PROCESSOR_SH_4A. */ /*! \macro Q_PROCESSOR_SH_4A \relates Defined if the application is compiled for SuperH 4A processors. The \l Q_PROCESSOR_SH macro is also defined when Q_PROCESSOR_SH_4A is defined. */ /*! \macro Q_PROCESSOR_SPARC \relates Defined if the application is compiled for SPARC processors. Qt currently supports one optional SPARC revision: \l Q_PROCESSOR_SPARC_V9. */ /*! \macro Q_PROCESSOR_SPARC_V9 \relates Defined if the application is compiled for SPARC V9 processors. The \l Q_PROCESSOR_SPARC macro is also defined when Q_PROCESSOR_SPARC_V9 is defined. */ /*! \macro Q_PROCESSOR_X86 \relates Defined if the application is compiled for x86 processors. Qt currently supports two x86 variants: \l Q_PROCESSOR_X86_32 and \l Q_PROCESSOR_X86_64. */ /*! \macro Q_PROCESSOR_X86_32 \relates Defined if the application is compiled for 32-bit x86 processors. This includes all i386, i486, i586, and i686 processors. The \l Q_PROCESSOR_X86 macro is also defined when Q_PROCESSOR_X86_32 is defined. */ /*! \macro Q_PROCESSOR_X86_64 \relates Defined if the application is compiled for 64-bit x86 processors. This includes all AMD64, Intel 64, and other x86_64/x64 processors. The \l Q_PROCESSOR_X86 macro is also defined when Q_PROCESSOR_X86_64 is defined. */ /*! \macro QT_DISABLE_DEPRECATED_BEFORE \relates This macro can be defined in the project file to disable functions deprecated in a specified version of Qt or any earlier version. The default version number is 5.0, meaning that functions deprecated in or before Qt 5.0 will not be included. Examples: When using a future release of Qt 5, set QT_DISABLE_DEPRECATED_BEFORE=0x050100 to disable functions deprecated in Qt 5.1 and earlier. In any release, set QT_DISABLE_DEPRECATED_BEFORE=0x000000 to enable any functions, including the ones deprecated in Qt 5.0 */ #if defined(QT_BUILD_QMAKE) // needed to bootstrap qmake static const unsigned int qt_one = 1; const int QSysInfo::ByteOrder = ((*((unsigned char *) &qt_one) == 0) ? BigEndian : LittleEndian); #endif #if defined(Q_OS_MAC) && !defined(Q_OS_IOS) QT_BEGIN_INCLUDE_NAMESPACE #include "private/qcore_mac_p.h" #include "qnamespace.h" QT_END_INCLUDE_NAMESPACE Q_CORE_EXPORT OSErr qt_mac_create_fsref(const QString &file, FSRef *fsref) { return FSPathMakeRef(reinterpret_cast(file.toUtf8().constData()), fsref, 0); } Q_CORE_EXPORT void qt_mac_to_pascal_string(QString s, Str255 str, TextEncoding encoding=0, int len=-1) { Q_UNUSED(encoding); Q_UNUSED(len); CFStringGetPascalString(QCFString(s), str, 256, CFStringGetSystemEncoding()); } Q_CORE_EXPORT QString qt_mac_from_pascal_string(const Str255 pstr) { return QCFString(CFStringCreateWithPascalString(0, pstr, CFStringGetSystemEncoding())); } #endif // defined(Q_OS_MAC) && !defined(Q_OS_IOS) #if defined(Q_OS_MAC) QSysInfo::MacVersion QSysInfo::macVersion() { #ifndef Q_OS_IOS SInt32 gestalt_version; if (Gestalt(gestaltSystemVersion, &gestalt_version) == noErr) { return QSysInfo::MacVersion(((gestalt_version & 0x00F0) >> 4) + 2); } #endif return QSysInfo::MV_Unknown; } const QSysInfo::MacVersion QSysInfo::MacintoshVersion = QSysInfo::macVersion(); #elif defined(Q_OS_WIN) || defined(Q_OS_CYGWIN) || defined(Q_OS_WINCE) QT_BEGIN_INCLUDE_NAMESPACE #include "qt_windows.h" QT_END_INCLUDE_NAMESPACE QSysInfo::WinVersion QSysInfo::windowsVersion() { #ifndef VER_PLATFORM_WIN32s #define VER_PLATFORM_WIN32s 0 #endif #ifndef VER_PLATFORM_WIN32_WINDOWS #define VER_PLATFORM_WIN32_WINDOWS 1 #endif #ifndef VER_PLATFORM_WIN32_NT #define VER_PLATFORM_WIN32_NT 2 #endif #ifndef VER_PLATFORM_WIN32_CE #define VER_PLATFORM_WIN32_CE 3 #endif static QSysInfo::WinVersion winver; if (winver) return winver; winver = QSysInfo::WV_NT; OSVERSIONINFO osver; osver.dwOSVersionInfoSize = sizeof(osver); GetVersionEx(&osver); #ifdef Q_OS_WINCE DWORD qt_cever = 0; qt_cever = osver.dwMajorVersion * 100; qt_cever += osver.dwMinorVersion * 10; #endif switch (osver.dwPlatformId) { case VER_PLATFORM_WIN32s: winver = QSysInfo::WV_32s; break; case VER_PLATFORM_WIN32_WINDOWS: // We treat Windows Me (minor 90) the same as Windows 98 if (osver.dwMinorVersion == 90) winver = QSysInfo::WV_Me; else if (osver.dwMinorVersion == 10) winver = QSysInfo::WV_98; else winver = QSysInfo::WV_95; break; #ifdef Q_OS_WINCE case VER_PLATFORM_WIN32_CE: if (qt_cever >= 600) winver = QSysInfo::WV_CE_6; if (qt_cever >= 500) winver = QSysInfo::WV_CE_5; else if (qt_cever >= 400) winver = QSysInfo::WV_CENET; else winver = QSysInfo::WV_CE; break; #endif default: // VER_PLATFORM_WIN32_NT if (osver.dwMajorVersion < 5) { winver = QSysInfo::WV_NT; } else if (osver.dwMajorVersion == 5 && osver.dwMinorVersion == 0) { winver = QSysInfo::WV_2000; } else if (osver.dwMajorVersion == 5 && osver.dwMinorVersion == 1) { winver = QSysInfo::WV_XP; } else if (osver.dwMajorVersion == 5 && osver.dwMinorVersion == 2) { winver = QSysInfo::WV_2003; } else if (osver.dwMajorVersion == 6 && osver.dwMinorVersion == 0) { winver = QSysInfo::WV_VISTA; } else if (osver.dwMajorVersion == 6 && osver.dwMinorVersion == 1) { winver = QSysInfo::WV_WINDOWS7; } else if (osver.dwMajorVersion == 6 && osver.dwMinorVersion == 2) { winver = QSysInfo::WV_WINDOWS8; } else { qWarning("Qt: Untested Windows version %d.%d detected!", int(osver.dwMajorVersion), int(osver.dwMinorVersion)); winver = QSysInfo::WV_NT_based; } } #ifdef QT_DEBUG { QByteArray override = qgetenv("QT_WINVER_OVERRIDE"); if (override.isEmpty()) return winver; if (override == "Me") winver = QSysInfo::WV_Me; if (override == "95") winver = QSysInfo::WV_95; else if (override == "98") winver = QSysInfo::WV_98; else if (override == "NT") winver = QSysInfo::WV_NT; else if (override == "2000") winver = QSysInfo::WV_2000; else if (override == "2003") winver = QSysInfo::WV_2003; else if (override == "XP") winver = QSysInfo::WV_XP; else if (override == "VISTA") winver = QSysInfo::WV_VISTA; else if (override == "WINDOWS7") winver = QSysInfo::WV_WINDOWS7; else if (override == "WINDOWS8") winver = QSysInfo::WV_WINDOWS8; } #endif return winver; } const QSysInfo::WinVersion QSysInfo::WindowsVersion = QSysInfo::windowsVersion(); #endif /*! \macro void Q_ASSERT(bool test) \relates Prints a warning message containing the source code file name and line number if \a test is false. Q_ASSERT() is useful for testing pre- and post-conditions during development. It does nothing if \c QT_NO_DEBUG was defined during compilation. Example: \snippet code/src_corelib_global_qglobal.cpp 17 If \c b is zero, the Q_ASSERT statement will output the following message using the qFatal() function: \snippet code/src_corelib_global_qglobal.cpp 18 \sa Q_ASSERT_X(), qFatal(), {Debugging Techniques} */ /*! \macro void Q_ASSERT_X(bool test, const char *where, const char *what) \relates Prints the message \a what together with the location \a where, the source file name and line number if \a test is false. Q_ASSERT_X is useful for testing pre- and post-conditions during development. It does nothing if \c QT_NO_DEBUG was defined during compilation. Example: \snippet code/src_corelib_global_qglobal.cpp 19 If \c b is zero, the Q_ASSERT_X statement will output the following message using the qFatal() function: \snippet code/src_corelib_global_qglobal.cpp 20 \sa Q_ASSERT(), qFatal(), {Debugging Techniques} */ /*! \macro void Q_ASSUME(bool expr) \relates \since 5.0 Causes the compiler to assume that \a expr is true. This macro is useful for improving code generation, by providing the compiler with hints about conditions that it would not otherwise know about. However, there is no guarantee that the compiler will actually use those hints. This macro could be considered a "lighter" version of \l{Q_ASSERT}. While Q_ASSERT will abort the program's execution if the condition is false, Q_ASSUME will tell the compiler not to generate code for those conditions. Therefore, it is important that the assumptions always hold, otherwise undefined behaviour may occur. If \a expr is a constantly false condition, Q_ASSUME will tell the compiler that the current code execution cannot be reached. That is, Q_ASSUME(false) is equivalent to Q_UNREACHABLE(). \note Q_LIKELY() tells the compiler that the expression is likely, but not the only possibility. Q_ASSUME tells the compiler that it is the only possibility. \sa Q_ASSERT(), Q_UNREACHABLE(), Q_LIKELY() */ /*! \macro void Q_UNREACHABLE() \relates \since 5.0 Tells the compiler that the current point cannot be reached by any execution, so it may optimize any code paths leading here as dead code, as well as code continuing from here. This macro is useful to mark impossible conditions. For example, given the following enum: \snippet code/src_corelib_global_qglobal.cpp qunreachable-enum One can write a switch table like so: \snippet code/src_corelib_global_qglobal.cpp qunreachable-switch The advantage of inserting Q_UNREACHABLE() at that point is that the compiler is told not to generate code for a shape variable containing that value. If the macro is missing, the compiler will still generate the necessary comparisons for that value. If the case label were removed, some compilers could produce a warning that some enum values were not checked. By using this macro in impossible conditions, code coverage may be improved as dead code paths may be eliminated. \sa Q_ASSERT(), Q_ASSUME(), qFatal() */ /*! \macro void Q_CHECK_PTR(void *pointer) \relates If \a pointer is 0, prints a warning message containing the source code's file name and line number, saying that the program ran out of memory. Q_CHECK_PTR does nothing if \c QT_NO_DEBUG was defined during compilation. Example: \snippet code/src_corelib_global_qglobal.cpp 21 \sa qWarning(), {Debugging Techniques} */ /*! \fn T *q_check_ptr(T *pointer) \relates Uses Q_CHECK_PTR on \a pointer, then returns \a pointer. This can be used as an inline version of Q_CHECK_PTR. */ /*! \macro const char* Q_FUNC_INFO() \relates Expands to a string that describe the function the macro resides in. How this string looks more specifically is compiler dependent. With GNU GCC it is typically the function signature, while with other compilers it might be the line and column number. Q_FUNC_INFO can be conveniently used with qDebug(). For example, this function: \snippet code/src_corelib_global_qglobal.cpp 22 when instantiated with the integer type, will with the GCC compiler produce: \tt{const TInputType& myMin(const TInputType&, const TInputType&) [with TInputType = int] was called with value1: 3 value2: 4} If this macro is used outside a function, the behavior is undefined. */ /* The Q_CHECK_PTR macro calls this function if an allocation check fails. */ void qt_check_pointer(const char *n, int l) { qFatal("In file %s, line %d: Out of memory", n, l); } /* \internal Allows you to throw an exception without including Called internally from Q_CHECK_PTR on certain OS combinations */ void qBadAlloc() { QT_THROW(std::bad_alloc()); } /* The Q_ASSERT macro calls this function when the test fails. */ void qt_assert(const char *assertion, const char *file, int line) { qFatal("ASSERT: \"%s\" in file %s, line %d", assertion, file, line); } /* The Q_ASSERT_X macro calls this function when the test fails. */ void qt_assert_x(const char *where, const char *what, const char *file, int line) { qFatal("ASSERT failure in %s: \"%s\", file %s, line %d", where, what, file, line); } /* Dijkstra's bisection algorithm to find the square root of an integer. Deliberately not exported as part of the Qt API, but used in both qsimplerichtext.cpp and qgfxraster_qws.cpp */ Q_CORE_EXPORT unsigned int qt_int_sqrt(unsigned int n) { // n must be in the range 0...UINT_MAX/2-1 if (n >= (UINT_MAX>>2)) { unsigned int r = 2 * qt_int_sqrt(n / 4); unsigned int r2 = r + 1; return (n >= r2 * r2) ? r2 : r; } uint h, p= 0, q= 1, r= n; while (q <= n) q <<= 2; while (q != 1) { q >>= 2; h= p + q; p >>= 1; if (r >= h) { p += q; r -= h; } } return p; } void *qMemCopy(void *dest, const void *src, size_t n) { return memcpy(dest, src, n); } void *qMemSet(void *dest, int c, size_t n) { return memset(dest, c, n); } #if !defined(Q_OS_WIN) && !defined(QT_NO_THREAD) && !defined(Q_OS_INTEGRITY) && !defined(Q_OS_QNX) && \ defined(_POSIX_THREAD_SAFE_FUNCTIONS) && _POSIX_VERSION >= 200112L namespace { // There are two incompatible versions of strerror_r: // a) the XSI/POSIX.1 version, which returns an int, // indicating success or not // b) the GNU version, which returns a char*, which may or may not // be the beginning of the buffer we used // The GNU libc manpage for strerror_r says you should use the the XSI // version in portable code. However, it's impossible to do that if // _GNU_SOURCE is defined so we use C++ overloading to decide what to do // depending on the return type static inline QString fromstrerror_helper(int, const QByteArray &buf) { return QString::fromLocal8Bit(buf); } static inline QString fromstrerror_helper(const char *str, const QByteArray &) { return QString::fromLocal8Bit(str); } } #endif QString qt_error_string(int errorCode) { const char *s = 0; QString ret; if (errorCode == -1) { #if defined(Q_OS_WIN) errorCode = GetLastError(); #else errorCode = errno; #endif } switch (errorCode) { case 0: break; case EACCES: s = QT_TRANSLATE_NOOP("QIODevice", "Permission denied"); break; case EMFILE: s = QT_TRANSLATE_NOOP("QIODevice", "Too many open files"); break; case ENOENT: s = QT_TRANSLATE_NOOP("QIODevice", "No such file or directory"); break; case ENOSPC: s = QT_TRANSLATE_NOOP("QIODevice", "No space left on device"); break; default: { #ifdef Q_OS_WIN wchar_t *string = 0; FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER|FORMAT_MESSAGE_FROM_SYSTEM, NULL, errorCode, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&string, 0, NULL); ret = QString::fromWCharArray(string); LocalFree((HLOCAL)string); if (ret.isEmpty() && errorCode == ERROR_MOD_NOT_FOUND) ret = QString::fromLatin1("The specified module could not be found."); #elif !defined(QT_NO_THREAD) && defined(_POSIX_THREAD_SAFE_FUNCTIONS) && _POSIX_VERSION >= 200112L && !defined(Q_OS_INTEGRITY) && !defined(Q_OS_QNX) QByteArray buf(1024, '\0'); ret = fromstrerror_helper(strerror_r(errorCode, buf.data(), buf.size()), buf); #else ret = QString::fromLocal8Bit(strerror(errorCode)); #endif break; } } if (s) // ######## this breaks moc build currently // ret = QCoreApplication::translate("QIODevice", s); ret = QString::fromLatin1(s); return ret.trimmed(); } // getenv is declared as deprecated in VS2005. This function // makes use of the new secure getenv function. /*! \relates Returns the value of the environment variable with name \a varName. To get the variable string, use QByteArray::constData(). \note qgetenv() was introduced because getenv() from the standard C library was deprecated in VC2005 (and later versions). qgetenv() uses the new replacement function in VC, and calls the standard C library's implementation on all other platforms. \sa qputenv() */ QByteArray qgetenv(const char *varName) { #if defined(_MSC_VER) && _MSC_VER >= 1400 size_t requiredSize = 0; QByteArray buffer; getenv_s(&requiredSize, 0, 0, varName); if (requiredSize == 0) return buffer; buffer.resize(int(requiredSize)); getenv_s(&requiredSize, buffer.data(), requiredSize, varName); // requiredSize includes the terminating null, which we don't want. Q_ASSERT(buffer.endsWith('\0')); buffer.chop(1); return buffer; #else return QByteArray(::getenv(varName)); #endif } /*! \relates This function sets the \a value of the environment variable named \a varName. It will create the variable if it does not exist. It returns 0 if the variable could not be set. \note qputenv() was introduced because putenv() from the standard C library was deprecated in VC2005 (and later versions). qputenv() uses the replacement function in VC, and calls the standard C library's implementation on all other platforms. \sa qgetenv() */ bool qputenv(const char *varName, const QByteArray& value) { #if defined(_MSC_VER) && _MSC_VER >= 1400 return _putenv_s(varName, value.constData()) == 0; #else QByteArray buffer(varName); buffer += '='; buffer += value; char* envVar = qstrdup(buffer.constData()); int result = putenv(envVar); if (result != 0) // error. we have to delete the string. delete[] envVar; return result == 0; #endif } #if defined(Q_OS_UNIX) && !defined(QT_NO_THREAD) # if defined(Q_OS_INTEGRITY) && defined(__GHS_VERSION_NUMBER) && (__GHS_VERSION_NUMBER < 500) // older versions of INTEGRITY used a long instead of a uint for the seed. typedef long SeedStorageType; # else typedef uint SeedStorageType; # endif typedef QThreadStorage SeedStorage; Q_GLOBAL_STATIC(SeedStorage, randTLS) // Thread Local Storage for seed value #endif /*! \relates \since 4.2 Thread-safe version of the standard C++ \c srand() function. Sets the argument \a seed to be used to generate a new random number sequence of pseudo random integers to be returned by qrand(). The sequence of random numbers generated is deterministic per thread. For example, if two threads call qsrand(1) and subsequently calls qrand(), the threads will get the same random number sequence. \sa qrand() */ void qsrand(uint seed) { #if defined(Q_OS_UNIX) && !defined(QT_NO_THREAD) SeedStorage *seedStorage = randTLS(); if (seedStorage) { SeedStorageType *pseed = seedStorage->localData(); if (!pseed) seedStorage->setLocalData(pseed = new SeedStorageType); *pseed = seed; } else { //global static seed storage should always exist, //except after being deleted by QGlobalStaticDeleter. //But since it still can be called from destructor of another //global static object, fallback to srand(seed) srand(seed); } #else // On Windows srand() and rand() already use Thread-Local-Storage // to store the seed between calls // this is also valid for QT_NO_THREAD srand(seed); #endif } /*! \relates \since 4.2 Thread-safe version of the standard C++ \c rand() function. Returns a value between 0 and \c RAND_MAX (defined in \c and \c ), the next number in the current sequence of pseudo-random integers. Use \c qsrand() to initialize the pseudo-random number generator with a seed value. \sa qsrand() */ int qrand() { #if defined(Q_OS_UNIX) && !defined(QT_NO_THREAD) && defined(_POSIX_THREAD_SAFE_FUNCTIONS) && (_POSIX_THREAD_SAFE_FUNCTIONS - 0 > 0) SeedStorage *seedStorage = randTLS(); if (seedStorage) { SeedStorageType *pseed = seedStorage->localData(); if (!pseed) { seedStorage->setLocalData(pseed = new SeedStorageType); *pseed = 1; } return rand_r(pseed); } else { //global static seed storage should always exist, //except after being deleted by QGlobalStaticDeleter. //But since it still can be called from destructor of another //global static object, fallback to rand() return rand(); } #else // On Windows srand() and rand() already use Thread-Local-Storage // to store the seed between calls // this is also valid for QT_NO_THREAD return rand(); #endif } /*! \macro forever \relates This macro is provided for convenience for writing infinite loops. Example: \snippet code/src_corelib_global_qglobal.cpp 31 It is equivalent to \c{for (;;)}. If you're worried about namespace pollution, you can disable this macro by adding the following line to your \c .pro file: \snippet code/src_corelib_global_qglobal.cpp 32 \sa Q_FOREVER */ /*! \macro Q_FOREVER \relates Same as \l{forever}. This macro is available even when \c no_keywords is specified using the \c .pro file's \c CONFIG variable. \sa foreach() */ /*! \macro foreach(variable, container) \relates This macro is used to implement Qt's \c foreach loop. The \a variable parameter is a variable name or variable definition; the \a container parameter is a Qt container whose value type corresponds to the type of the variable. See \l{The foreach Keyword} for details. If you're worried about namespace pollution, you can disable this macro by adding the following line to your \c .pro file: \snippet code/src_corelib_global_qglobal.cpp 33 \sa Q_FOREACH() */ /*! \macro Q_FOREACH(variable, container) \relates Same as foreach(\a variable, \a container). This macro is available even when \c no_keywords is specified using the \c .pro file's \c CONFIG variable. \sa foreach() */ /*! \macro QT_TR_NOOP(sourceText) \relates Marks the string literal \a sourceText for dynamic translation in the current context (class), i.e the stored \a sourceText will not be altered. The macro expands to \a sourceText. Example: \snippet code/src_corelib_global_qglobal.cpp 34 The macro QT_TR_NOOP_UTF8() is identical except that it tells lupdate that the source string is encoded in UTF-8. Corresponding variants exist in the QT_TRANSLATE_NOOP() family of macros, too. \sa QT_TRANSLATE_NOOP(), {Internationalization with Qt} */ /*! \macro QT_TRANSLATE_NOOP(context, sourceText) \relates Marks the string literal \a sourceText for dynamic translation in the given \a context; i.e, the stored \a sourceText will not be altered. The \a context is typically a class and also needs to be specified as string literal. The macro expands to \a sourceText. Example: \snippet code/src_corelib_global_qglobal.cpp 35 \sa QT_TR_NOOP(), QT_TRANSLATE_NOOP3(), {Internationalization with Qt} */ /*! \macro QT_TRANSLATE_NOOP3(context, sourceText, comment) \relates \since 4.4 Marks the string literal \a sourceText for dynamic translation in the given \a context and with \a comment, i.e the stored \a sourceText will not be altered. The \a context is typically a class and also needs to be specified as string literal. The string literal \a comment will be available for translators using e.g. Qt Linguist. The macro expands to anonymous struct of the two string literals passed as \a sourceText and \a comment. Example: \snippet code/src_corelib_global_qglobal.cpp 36 \sa QT_TR_NOOP(), QT_TRANSLATE_NOOP(), {Internationalization with Qt} */ /*! \fn QString qtTrId(const char *id, int n = -1) \relates \reentrant \since 4.6 \brief The qtTrId function finds and returns a translated string. Returns a translated string identified by \a id. If no matching string is found, the id itself is returned. This should not happen under normal conditions. If \a n >= 0, all occurrences of \c %n in the resulting string are replaced with a decimal representation of \a n. In addition, depending on \a n's value, the translation text may vary. Meta data and comments can be passed as documented for QObject::tr(). In addition, it is possible to supply a source string template like that: \tt{//% } or \tt{\\begincomment% \\endcomment} Example: \snippet code/src_corelib_global_qglobal.cpp qttrid Creating QM files suitable for use with this function requires passing the \c -idbased option to the \c lrelease tool. \warning This method is reentrant only if all translators are installed \e before calling this method. Installing or removing translators while performing translations is not supported. Doing so will probably result in crashes or other undesirable behavior. \sa QObject::tr(), QCoreApplication::translate(), {Internationalization with Qt} */ /*! \macro QT_TRID_NOOP(id) \relates \since 4.6 \brief The QT_TRID_NOOP macro marks an id for dynamic translation. The only purpose of this macro is to provide an anchor for attaching meta data like to qtTrId(). The macro expands to \a id. Example: \snippet code/src_corelib_global_qglobal.cpp qttrid_noop \sa qtTrId(), {Internationalization with Qt} */ /*! \macro Q_LIKELY(expr) \relates \since 4.8 \brief Hints to the compiler that the enclosed condition, \a expr, is likely to evaluate to \c true. Use of this macro can help the compiler to optimize the code. Example: \snippet code/src_corelib_global_qglobal.cpp qlikely \sa Q_UNLIKELY() */ /*! \macro Q_UNLIKELY(expr) \relates \since 4.8 \brief Hints to the compiler that the enclosed condition, \a expr, is likely to evaluate to \c false. Use of this macro can help the compiler to optimize the code. Example: \snippet code/src_corelib_global_qglobal.cpp qunlikely \sa Q_LIKELY() */ /*! \macro QT_POINTER_SIZE \relates Expands to the size of a pointer in bytes (4 or 8). This is equivalent to \c sizeof(void *) but can be used in a preprocessor directive. */ /*! \macro TRUE \relates \obsolete Synonym for \c true. \sa FALSE */ /*! \macro FALSE \relates \obsolete Synonym for \c false. \sa TRUE */ /*! \macro QABS(n) \relates \obsolete Use qAbs(\a n) instead. \sa QMIN(), QMAX() */ /*! \macro QMIN(x, y) \relates \obsolete Use qMin(\a x, \a y) instead. \sa QMAX(), QABS() */ /*! \macro QMAX(x, y) \relates \obsolete Use qMax(\a x, \a y) instead. \sa QMIN(), QABS() */ /*! \macro const char *qPrintable(const QString &str) \relates Returns \a str as a \c{const char *}. This is equivalent to \a{str}.toLocal8Bit().constData(). The char pointer will be invalid after the statement in which qPrintable() is used. This is because the array returned by toLocal8Bit() will fall out of scope. Example: \snippet code/src_corelib_global_qglobal.cpp 37 \sa qDebug(), qWarning(), qCritical(), qFatal() */ /*! \macro Q_DECLARE_TYPEINFO(Type, Flags) \relates You can use this macro to specify information about a custom type \a Type. With accurate type information, Qt's \l{Container Classes} {generic containers} can choose appropriate storage methods and algorithms. \a Flags can be one of the following: \list \li \c Q_PRIMITIVE_TYPE specifies that \a Type is a POD (plain old data) type with no constructor or destructor, or else a type where every bit pattern is a valid object and memcpy() creates a valid independent copy of the object. \li \c Q_MOVABLE_TYPE specifies that \a Type has a constructor and/or a destructor but can be moved in memory using \c memcpy(). \li \c Q_COMPLEX_TYPE (the default) specifies that \a Type has constructors and/or a destructor and that it may not be moved in memory. \endlist Example of a "primitive" type: \snippet code/src_corelib_global_qglobal.cpp 38 An example of a non-POD "primitive" type is QUuid: Even though QUuid has constructors (and therefore isn't POD), every bit pattern still represents a valid object, and memcpy() can be used to create a valid independent copy of a QUuid object. Example of a movable type: \snippet code/src_corelib_global_qglobal.cpp 39 */ /*! \macro Q_UNUSED(name) \relates Indicates to the compiler that the parameter with the specified \a name is not used in the body of a function. This can be used to suppress compiler warnings while allowing functions to be defined with meaningful parameter names in their signatures. */ struct QInternal_CallBackTable { QVector > callbacks; }; Q_GLOBAL_STATIC(QInternal_CallBackTable, global_callback_table) bool QInternal::registerCallback(Callback cb, qInternalCallback callback) { if (cb >= 0 && cb < QInternal::LastCallback) { QInternal_CallBackTable *cbt = global_callback_table(); cbt->callbacks.resize(cb + 1); cbt->callbacks[cb].append(callback); return true; } return false; } bool QInternal::unregisterCallback(Callback cb, qInternalCallback callback) { if (cb >= 0 && cb < QInternal::LastCallback) { QInternal_CallBackTable *cbt = global_callback_table(); return (bool) cbt->callbacks[cb].removeAll(callback); } return false; } bool QInternal::activateCallbacks(Callback cb, void **parameters) { Q_ASSERT_X(cb >= 0, "QInternal::activateCallback()", "Callback id must be a valid id"); QInternal_CallBackTable *cbt = global_callback_table(); if (cbt && cb < cbt->callbacks.size()) { QList callbacks = cbt->callbacks[cb]; bool ret = false; for (int i=0; i This macro can be used to determine the byte order your system uses for storing data in memory. i.e., whether your system is little-endian or big-endian. It is set by Qt to one of the macros Q_LITTLE_ENDIAN or Q_BIG_ENDIAN. You normally won't need to worry about endian-ness, but you might, for example if you need to know which byte of an integer or UTF-16 character is stored in the lowest address. Endian-ness is important in networking, where computers with different values for Q_BYTE_ORDER must pass data back and forth. Use this macro as in the following examples. \snippet code/src_corelib_global_qglobal.cpp 40 \sa Q_BIG_ENDIAN, Q_LITTLE_ENDIAN */ /*! \macro Q_LITTLE_ENDIAN \relates This macro represents a value you can compare to the macro Q_BYTE_ORDER to determine the endian-ness of your system. In a little-endian system, the least significant byte is stored at the lowest address. The other bytes follow in increasing order of significance. \snippet code/src_corelib_global_qglobal.cpp 41 \sa Q_BYTE_ORDER, Q_BIG_ENDIAN */ /*! \macro Q_BIG_ENDIAN \relates This macro represents a value you can compare to the macro Q_BYTE_ORDER to determine the endian-ness of your system. In a big-endian system, the most significant byte is stored at the lowest address. The other bytes follow in decreasing order of significance. \snippet code/src_corelib_global_qglobal.cpp 42 \sa Q_BYTE_ORDER, Q_LITTLE_ENDIAN */ /*! \macro Q_GLOBAL_STATIC(type, name) \internal Declares a global static variable with the given \a type and \a name. Use this macro to instantiate an object in a thread-safe way, creating a global pointer that can be used to refer to it. \warning This macro is subject to a race condition that can cause the object to be constructed twice. However, if this occurs, the second instance will be immediately deleted. See also \l{http://www.aristeia.com/publications.html}{"C++ and the perils of Double-Checked Locking"} by Scott Meyers and Andrei Alexandrescu. */ /*! \macro Q_GLOBAL_STATIC_WITH_ARGS(type, name, arguments) \internal Declares a global static variable with the specified \a type and \a name. Use this macro to instantiate an object using the \a arguments specified in a thread-safe way, creating a global pointer that can be used to refer to it. \warning This macro is subject to a race condition that can cause the object to be constructed twice. However, if this occurs, the second instance will be immediately deleted. See also \l{http://www.aristeia.com/publications.html}{"C++ and the perils of Double-Checked Locking"} by Scott Meyers and Andrei Alexandrescu. */ /*! \macro QT_NAMESPACE \internal If this macro is defined to \c ns all Qt classes are put in a namespace called \c ns. Also, moc will output code putting metaobjects etc. into namespace \c ns. \sa QT_BEGIN_NAMESPACE, QT_END_NAMESPACE, QT_PREPEND_NAMESPACE, QT_USE_NAMESPACE, QT_BEGIN_INCLUDE_NAMESPACE, QT_END_INCLUDE_NAMESPACE, QT_BEGIN_MOC_NAMESPACE, QT_END_MOC_NAMESPACE, */ /*! \macro QT_PREPEND_NAMESPACE(identifier) \internal This macro qualifies \a identifier with the full namespace. It expands to \c{::QT_NAMESPACE::identifier} if \c QT_NAMESPACE is defined and only \a identifier otherwise. \sa QT_NAMESPACE */ /*! \macro QT_USE_NAMESPACE \internal This macro expands to using QT_NAMESPACE if QT_NAMESPACE is defined and nothing otherwise. \sa QT_NAMESPACE */ /*! \macro QT_BEGIN_NAMESPACE \internal This macro expands to \snippet code/src_corelib_global_qglobal.cpp begin namespace macro if \c QT_NAMESPACE is defined and nothing otherwise. If should always appear in the file-level scope and be followed by \c QT_END_NAMESPACE at the same logical level with respect to preprocessor conditionals in the same file. As a rule of thumb, \c QT_BEGIN_NAMESPACE should appear in all Qt header and Qt source files after the last \c{#include} line and before the first declaration. In Qt headers using \c QT_BEGIN_HEADER, \c QT_BEGIN_NAMESPACE follows \c QT_BEGIN_HEADER immediately. If that rule can't be followed because, e.g., \c{#include} lines and declarations are wildly mixed, place \c QT_BEGIN_NAMESPACE before the first declaration and wrap the \c{#include} lines in \c QT_BEGIN_INCLUDE_NAMESPACE and \c QT_END_INCLUDE_NAMESPACE. When using the \c QT_NAMESPACE feature in user code (e.g., when building plugins statically linked to Qt) where the user code is not intended to go into the \c QT_NAMESPACE namespace, all forward declarations of Qt classes need to be wrapped in \c QT_BEGIN_NAMESPACE and \c QT_END_NAMESPACE. After that, a \c QT_USE_NAMESPACE should follow. No further changes should be needed. \sa QT_NAMESPACE */ /*! \macro QT_END_NAMESPACE \internal This macro expands to \snippet code/src_corelib_global_qglobal.cpp end namespace macro if \c QT_NAMESPACE is defined and nothing otherwise. It is used to cancel the effect of \c QT_BEGIN_NAMESPACE. If a source file ends with a \c{#include} directive that includes a moc file, \c QT_END_NAMESPACE should be placed before that \c{#include}. \sa QT_NAMESPACE */ /*! \macro QT_BEGIN_INCLUDE_NAMESPACE \internal This macro is equivalent to \c QT_END_NAMESPACE. It only serves as syntactic sugar and is intended to be used before #include lines within a \c QT_BEGIN_NAMESPACE ... \c QT_END_NAMESPACE block. \sa QT_NAMESPACE */ /*! \macro QT_END_INCLUDE_NAMESPACE \internal This macro is equivalent to \c QT_BEGIN_NAMESPACE. It only serves as syntactic sugar and is intended to be used after #include lines within a \c QT_BEGIN_NAMESPACE ... \c QT_END_NAMESPACE block. \sa QT_NAMESPACE */ /*! \macro QT_BEGIN_MOC_NAMESPACE \internal This macro is output by moc at the beginning of moc files. It is equivalent to \c QT_USE_NAMESPACE. \sa QT_NAMESPACE */ /*! \macro QT_END_MOC_NAMESPACE \internal This macro is output by moc at the beginning of moc files. It expands to nothing. \sa QT_NAMESPACE */ /*! \fn bool qFuzzyCompare(double p1, double p2) \relates \since 4.4 \threadsafe Compares the floating point value \a p1 and \a p2 and returns \c true if they are considered equal, otherwise \c false. Note that comparing values where either \a p1 or \a p2 is 0.0 will not work. The solution to this is to compare against values greater than or equal to 1.0. \snippet code/src_corelib_global_qglobal.cpp 46 The two numbers are compared in a relative way, where the exactness is stronger the smaller the numbers are. */ /*! \fn bool qFuzzyCompare(float p1, float p2) \relates \since 4.4 \threadsafe Compares the floating point value \a p1 and \a p2 and returns \c true if they are considered equal, otherwise \c false. The two numbers are compared in a relative way, where the exactness is stronger the smaller the numbers are. */ /*! \macro QT_REQUIRE_VERSION(int argc, char **argv, const char *version) \relates This macro can be used to ensure that the application is run against a recent enough version of Qt. This is especially useful if your application depends on a specific bug fix introduced in a bug-fix release (e.g., 4.0.2). The \a argc and \a argv parameters are the \c main() function's \c argc and \c argv parameters. The \a version parameter is a string literal that specifies which version of Qt the application requires (e.g., "4.0.2"). Example: \snippet code/src_gui_dialogs_qmessagebox.cpp 4 */ /*! \macro Q_DECL_EXPORT \relates This macro marks a symbol for shared library export (see \l{sharedlibrary.html}{Creating Shared Libraries}). \sa Q_DECL_IMPORT */ /*! \macro Q_DECL_IMPORT \relates This macro declares a symbol to be an import from a shared library (see \l{sharedlibrary.html}{Creating Shared Libraries}). \sa Q_DECL_EXPORT */ /*! \macro Q_DECL_CONSTEXPR \relates This macro can be used to declare variable that should be constructed at compile-time, or an inline function that can be computed at compile-time. It expands to "constexpr" if your compiler supports that C++11 keyword, or to nothing otherwise. */ /*! \macro qDebug(const char *message, ...) \relates Calls the message handler with the debug message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the console, if it is a console application; otherwise, it is sent to the debugger. This function does nothing if \c QT_NO_DEBUG_OUTPUT was defined during compilation. If you pass the function a format string and a list of arguments, it works in similar way to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp 24 If you include \c , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp 25 With this syntax, the function returns a QDebug object that is configured to use the QtDebugMsg message type. It automatically puts a single space between each item, and outputs a newline at the end. It supports many C++ and Qt types. To suppress the output at run-time, install your own message handler with qInstallMessageHandler(). \sa qWarning(), qCritical(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qWarning(const char *message, ...) \relates Calls the message handler with the warning message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. This function does nothing if \c QT_NO_WARNING_OUTPUT was defined during compilation; it exits if the environment variable \c QT_FATAL_WARNINGS is defined. This function takes a format string and a list of arguments, similar to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp 26 If you include , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp 27 This syntax inserts a space between each item, and appends a newline at the end. To suppress the output at runtime, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qCritical(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qCritical(const char *message, ...) \relates Calls the message handler with the critical message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. This function takes a format string and a list of arguments, similar to the C printf() function. The format should be a Latin-1 string. Example: \snippet code/src_corelib_global_qglobal.cpp 28 If you include , a more convenient syntax is also available: \snippet code/src_corelib_global_qglobal.cpp 29 A space is inserted between the items, and a newline is appended at the end. To suppress the output at runtime, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qWarning(), qFatal(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qFatal(const char *message, ...) \relates Calls the message handler with the fatal message \a message. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. If you are using the \b{default message handler} this function will abort on Unix systems to create a core dump. On Windows, for debug builds, this function will report a _CRT_ERROR enabling you to connect a debugger to the application. This function takes a format string and a list of arguments, similar to the C printf() function. Example: \snippet code/src_corelib_global_qglobal.cpp 30 To suppress the output at runtime, install your own message handler with qInstallMessageHandler(). \sa qDebug(), qCritical(), qWarning(), qInstallMessageHandler(), {Debugging Techniques} */ /*! \macro qMove(x) \relates It expands to "std::move" if your compiler supports that C++11 function, or to nothing otherwise. */ /*! \macro Q_DECL_NOTHROW \relates \since 5.0 This macro marks a function as never throwing, under no circumstances. If the function does nevertheless throw, the behaviour is undefined. The macro expands to either "throw()", if that has some benefit on the compiler, or to C++11 noexcept, if available, or to nothing otherwise. If you need C++11 noexcept semantics, don't use this macro, use Q_DECL_NOEXCEPT/Q_DECL_NOEXCEPT_EXPR instead. \sa Q_DECL_NOEXCEPT, Q_DECL_NOEXCEPT_EXPR */ /*! \macro Q_DECL_NOEXCEPT \relates \since 5.0 This macro marks a function as never throwing. If the function does nevertheless throw, the behaviour is defined: std::terminate() is called. The macro expands to C++11 noexcept, if available, or to nothing otherwise. If you need the operator version of C++11 noexcept, use Q_DECL_NOEXCEPT_EXPR(x). If you don't need C++11 noexcept semantics, e.g. because your function can't possibly throw, don't use this macro, use Q_DECL_NOTHROW instead. \sa Q_DECL_NOTHROW, Q_DECL_NOEXCEPT_EXPR */ /*! \macro Q_DECL_NOEXCEPT_EXPR(x) \relates \since 5.0 This macro marks a function as non-throwing if \a x is true. If the function does nevertheless throw, the behaviour is defined: std::terminate() is called. The macro expands to C++11 noexcept(x), if available, or to nothing otherwise. If you need the always-true version of C++11 noexcept, use Q_DECL_NOEXCEPT. If you don't need C++11 noexcept semantics, e.g. because your function can't possibly throw, don't use this macro, use Q_DECL_NOTHROW instead. \sa Q_DECL_NOTHROW, Q_DECL_NOEXCEPT_EXPR */ QT_END_NAMESPACE