/**************************************************************************** ** ** Copyright (C) 2015 The Qt Company Ltd. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef QMATH_H #define QMATH_H #if 0 #pragma qt_class(QtMath) #endif #include #include #include QT_BEGIN_NAMESPACE #define QT_SINE_TABLE_SIZE 256 extern Q_CORE_EXPORT const qreal qt_sine_table[QT_SINE_TABLE_SIZE]; inline int qCeil(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return int(ceilf(float(v))); else #endif return int(ceil(v)); } inline int qFloor(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return int(floorf(float(v))); else #endif return int(floor(v)); } inline qreal qFabs(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if(sizeof(qreal) == sizeof(float)) return fabsf(float(v)); else #endif return fabs(v); } inline qreal qSin(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return sinf(float(v)); else #endif return sin(v); } inline qreal qCos(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return cosf(float(v)); else #endif return cos(v); } inline qreal qTan(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return tanf(float(v)); else #endif return tan(v); } inline qreal qAcos(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return acosf(float(v)); else #endif return acos(v); } inline qreal qAsin(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return asinf(float(v)); else #endif return asin(v); } inline qreal qAtan(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return atanf(float(v)); else #endif return atan(v); } inline qreal qAtan2(qreal y, qreal x) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return atan2f(float(y), float(x)); else #endif return atan2(y, x); } inline qreal qSqrt(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return sqrtf(float(v)); else #endif return sqrt(v); } inline qreal qLn(qreal v) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return logf(float(v)); else #endif return log(v); } inline qreal qExp(qreal v) { // only one signature // exists, exp(double) return exp(v); } inline qreal qPow(qreal x, qreal y) { #ifdef QT_USE_MATH_H_FLOATS if (sizeof(qreal) == sizeof(float)) return powf(float(x), float(y)); else #endif return pow(x, y); } #ifndef M_E #define M_E (2.7182818284590452354) #endif #ifndef M_LOG2E #define M_LOG2E (1.4426950408889634074) #endif #ifndef M_LOG10E #define M_LOG10E (0.43429448190325182765) #endif #ifndef M_LN2 #define M_LN2 (0.69314718055994530942) #endif #ifndef M_LN10 #define M_LN10 (2.30258509299404568402) #endif #ifndef M_PI #define M_PI (3.14159265358979323846) #endif #ifndef M_PI_2 #define M_PI_2 (1.57079632679489661923) #endif #ifndef M_PI_4 #define M_PI_4 (0.78539816339744830962) #endif #ifndef M_1_PI #define M_1_PI (0.31830988618379067154) #endif #ifndef M_2_PI #define M_2_PI (0.63661977236758134308) #endif #ifndef M_2_SQRTPI #define M_2_SQRTPI (1.12837916709551257390) #endif #ifndef M_SQRT2 #define M_SQRT2 (1.41421356237309504880) #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 (0.70710678118654752440) #endif inline qreal qFastSin(qreal x) { int si = int(x * (0.5 * QT_SINE_TABLE_SIZE / M_PI)); // Would be more accurate with qRound, but slower. qreal d = x - si * (2.0 * M_PI / QT_SINE_TABLE_SIZE); int ci = si + QT_SINE_TABLE_SIZE / 4; si &= QT_SINE_TABLE_SIZE - 1; ci &= QT_SINE_TABLE_SIZE - 1; return qt_sine_table[si] + (qt_sine_table[ci] - 0.5 * qt_sine_table[si] * d) * d; } inline qreal qFastCos(qreal x) { int ci = int(x * (0.5 * QT_SINE_TABLE_SIZE / M_PI)); // Would be more accurate with qRound, but slower. qreal d = x - ci * (2.0 * M_PI / QT_SINE_TABLE_SIZE); int si = ci + QT_SINE_TABLE_SIZE / 4; si &= QT_SINE_TABLE_SIZE - 1; ci &= QT_SINE_TABLE_SIZE - 1; return qt_sine_table[si] - (qt_sine_table[ci] + 0.5 * qt_sine_table[si] * d) * d; } Q_DECL_CONSTEXPR inline float qDegreesToRadians(float degrees) { return degrees * float(M_PI/180); } Q_DECL_CONSTEXPR inline double qDegreesToRadians(double degrees) { return degrees * (M_PI / 180); } Q_DECL_CONSTEXPR inline float qRadiansToDegrees(float radians) { return radians * float(180/M_PI); } Q_DECL_CONSTEXPR inline double qRadiansToDegrees(double radians) { return radians * (180 / M_PI); } #if defined(Q_CC_GNU) // clz instructions exist in at least MIPS, ARM, PowerPC and X86, so we can assume this builtin always maps to an efficient instruction. inline quint32 qNextPowerOfTwo(quint32 v) { if (v == 0) return 1; return 2U << (31 ^ __builtin_clz(v)); } inline quint64 qNextPowerOfTwo(quint64 v) { if (v == 0) return 1; return Q_UINT64_C(2) << (63 ^ __builtin_clzll(v)); } #else inline quint32 qNextPowerOfTwo(quint32 v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; ++v; return v; } inline quint64 qNextPowerOfTwo(quint64 v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; ++v; return v; } #endif inline quint32 qNextPowerOfTwo(qint32 v) { return qNextPowerOfTwo(quint32(v)); } inline quint64 qNextPowerOfTwo(qint64 v) { return qNextPowerOfTwo(quint64(v)); } QT_END_NAMESPACE #endif // QMATH_H