/**************************************************************************** ** ** Copyright (C) 2020 Intel Corporation. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qcborvalue.h" #include "qcborvalue_p.h" #include "qdatastream.h" #include "qcborarray.h" #include "qcbormap.h" #if QT_CONFIG(cborstreamreader) #include "qcborstreamreader.h" #endif #if QT_CONFIG(cborstreamwriter) #include "qcborstreamwriter.h" #endif #include #include #include #include #include #include QT_BEGIN_NAMESPACE /*! \class QCborValue \inmodule QtCore \ingroup cbor \reentrant \since 5.12 \brief The QCborValue class encapsulates a value in CBOR. This class can be used to hold one of the many types available in CBOR. CBOR is the Concise Binary Object Representation, a very compact form of binary data encoding that is a superset of JSON. It was created by the IETF Constrained RESTful Environments (CoRE) WG, which has used it in many new RFCs. It is meant to be used alongside the \l{https://tools.ietf.org/html/rfc7252}{CoAP protocol}. CBOR has three groups of built-in types: \list \li Basic types: integers, floating point (double), boolean, null, etc. \li String-like types: strings and byte arrays \li Containers: arrays and maps \endlist Additionally, CBOR supports a form of type extensibility by associating a "tag" to one of the above types to convey more information. For example, a UUID is represented by a tag and a byte array containing the 16 bytes of the UUID content. QCborValue supports creating and decoding several of those extended types directly with Qt classes (like QUuid). For the complete list, see \l QCborValue::Type. The type of a QCborValue can be queried using type() or one of the "isXxxx" functions. \section1 Extended types and tagged values A tagged value is a normal QCborValue that is paired with a number that is its tag. See \l QCborKnownTags for more information on what tags are in the API as well as the full, official list. Such combinations form extended types. QCborValue has support for certain extended types in the API, like URL (with \l QUrl) and UUID (with \l QUuid). Other extended types not supported in the API are represented by a QCborValue of \l {Type}{Tag} type. The tag can later be retrieved by tag() and the tagged value using taggedValue(). In order to support future compatibility, QCborValues containing extended Qt types compare equal to the tag type of the same contents. In other words, the following expression is true: \snippet code/src_corelib_serialization_qcborvalue.cpp 0 \section1 Undefined and null values QCborValue can contain a value of "null", which is not of any specific type. It resembles the C++ \c {std::nullptr_t} type, whose only possible value is \nullptr. QCborValue has a constructor taking such a type and creates a null QCborValue. Null values are used to indicate that an optional value is not present. In that aspect, it is similar to the C++ Standard Library type \c {std::optional} when that is disengaged. Unlike the C++ type, CBOR nulls are simply of type "Null" and it is not possible to determine what concrete type it is replacing. QCborValue can also be of the undefined type, which represents a value of "undefined". In fact, that is what the QCborValue default constructor creates. Undefined values are different from null values. While nulls are used to indicate an optional value that is not provided, Undefined is usually used to indicate that an expected value could not be provided, usually due to an error or a precondition that could not be satisfied. Such values are completely valid and may appear in CBOR streams, unlike JSON content and QJsonValue's undefined bit. But like QJsonValue's Undefined, it is returned by a CBOR container's value() or read-only operator[] for invalid look-ups (index out of range for QCborArray, or key not found for QCborMap). It is not possible to tell such a case apart from the value of Undefined, so if that is required, check the QCborArray size and use the QCborMap iterator API. \section1 Simple types CBOR supports additional simple types that, like Null and Undefined, carry no other value. They are called interchangeably "Simple Types" and "Simple Values". CBOR encodes booleans as two distinct types (one for \c true and one for \c false), but QCborValue has a convenience API for them. There are currently no other defined CBOR simple types. QCborValue supports them simply by their number with API like isSimpleType() and toSimpleType(), available for compatibility with future specifications before the Qt API can be updated. Their use before such a specification is discouraged, as other CBOR implementations may not support them fully. \section1 CBOR support QCborValue supports all CBOR features required to create canonical and strict streams. It implements almost all of the features specified in \l {https://tools.ietf.org/html/rfc7049}{RFC 7049}. The following table lists the CBOR features that QCborValue supports. \table \header \li Feature \li Support \row \li Unsigned numbers \li Yes (\l qint64 range) \row \li Negative numbers \li Yes (\l qint64 range) \row \li Byte strings \li Yes \row \li Text strings \li Yes \row \li Chunked strings \li See below \row \li Tags \li Yes (arbitrary) \row \li Booleans \li Yes \row \li Null \li Yes \row \li Undefined \li Yes \row \li Arbitrary simple values \li Yes \row \li Half-precision float (16-bit) \li Yes \row \li Single-precision float (32-bit) \li Yes \row \li Double-precision float (64-bit) \li Yes \row \li Infinities and NaN floating point \li Yes \row \li Determinate-length arrays and maps \li Yes \row \li Indeterminate-length arrays and maps \li Yes \row \li Map key types other than strings and integers \li Yes (arbitrary) \endtable Integers in QCborValue are limited to the range of the \l qint64 type. That is, from -9,223,372,036,854,775,808 (-2\sup{63}) to 9,223,372,036,854,775,807 (2\sup{63} - 1). CBOR itself can represent integer values outside of this range, which QCborValue does not support. When decoding a stream using fromCbor() containing one of those values, QCborValue will convert automatically to \l {Type}{Double}, but that may lose up to 11 bits of precision. fromCbor() is able to decode chunked strings, but will always merge the chunks together into a single QCborValue. For that reason, it always writes non-chunked strings when using toCbor() (which is required by the Canonical format anyway). QCborValue will always convert half- and single-precision floating point values in the CBOR stream to double-precision. The toCbor() function can take a parameter indicating to recreate them. \section1 QCborValueRef QCborValueRef is a helper class for QCborArray and QCborMap. It is the type you get when using one of the mutating APIs in those classes. Unlike QCborValue, new values can be assigned to that class. When that is done, the array or map it refers to will be modified with the new value. In all other aspects, its API is identical to QCborValue. \sa QCborArray, QCborMap, QCborStreamReader, QCborStreamWriter QJsonValue, QJsonDocument */ /*! \class QCborParserError \inmodule QtCore \ingroup cbor \reentrant \since 5.12 \brief The QCborParserError is used by QCborValue to report a parsing error. This class is used by \l {QCborValue::fromCbor(const QByteArray &ba, QCborParserError *error)} to report a parser error and the byte offset where the error was detected. \sa QCborValue, QCborError */ /*! \variable QCborParserError::offset This field contains the offset from the beginning of the data where the error was detected. The offset should point to the beginning of the item that contained the error, even if the error itself was elsewhere (for example, for UTF-8 decoding issues). \sa QCborValue::fromCbor() */ /*! \variable QCborParserError::error This field contains the error code that indicates what decoding problem was found. \sa QCborValue::fromCbor() */ /*! \fn QString QCborParserError::errorString() const Returns a string representation of the error code. This string is not translated. \sa QCborError::toString(), QCborValue::fromCbor() */ /*! \enum QCborValue::EncodingOption This enum is used in the options argument to toCbor(), modifying the behavior of the encoder. \omitvalue SortKeysInMaps \value NoTransformation (Default) Performs no transformations. \value UseFloat Tells the encoder to use IEEE 754 single-precision floating point (that is, \c float) whenever possible. \value UseFloat16 Tells the encoder to use IEEE 754 half-precision floating point (that is, \c qfloat16), whenever possible. Implies \c UseFloat. \value UseIntegers Tells the encoder to use integers whenever a value of type \l {Type}{Double} contains an integer. The use of \c UseFloat16 is required to encode the stream in Canonical Format, but is not otherwise necessary. \sa toCbor() */ /*! \enum QCborValue::DiagnosticNotationOption This enum is used in the option argument to toDiagnosticNotation(), to modify the output format. \value Compact Does not use any line-breaks, producing a compact representation. \value LineWrapped Uses line-breaks, one QCborValue per line. \value ExtendedFormat Uses some different options to represent values, not found in RFC 7049. Those options are subject to change. Currently, \c ExtendedFormat will change how byte arrays are represented. Without it, they are always hex-encoded and without spaces. With it, QCborValue::toCbor() will either use hex with spaces, base64 or base64url encoding, depending on the context. \sa toDiagnosticNotation() */ /*! \enum QCborValue::Type This enum represents the QCborValue type. It is returned by the type() function. The CBOR built-in types are: \value Integer \c qint64: An integer value \value ByteArray \l QByteArray: a byte array ("byte string") \value String \l QString: a Unicode string ("text string") \value Array \l QCborArray: an array of QCborValues \value Map \l QCborMap: an associative container of QCborValues \value SimpleType \l QCborSimpleType: one of several simple types/values \value False \c bool: the simple type for value \c false \value True \c bool: the simple type for value \c true \value Null \c std::nullptr_t: the simple type for the null value \value Undefined (no type) the simple type for the undefined value \value Double \c double: a double-precision floating point \value Invalid Not a valid value, this usually indicates a CBOR decoding error Additionally, QCborValue can represent extended types: \value Tag An unknown or unrecognized extended type, represented by its tag (a \l QCborTag) and the tagged value (a QCborValue) \value DateTime \l QDateTime: a date and time stamp \value Url \l QUrl: a URL or URI \value RegularExpression \l QRegularExpression: the pattern of a regular expression \value Uuid \l QUuid: a UUID \sa type() */ /*! \fn QCborValue::QCborValue() Creates a QCborValue of the \l {Type}{Undefined} type. CBOR undefined values are used to indicate missing information, usually as a result of a previous operation that did not complete as expected. They are also used by the QCborArray and QCborMap API to indicate the searched item was not found. Undefined values are represented by the \l {QCborSimpleType}{Undefined simple type}. Because of that, QCborValues with undefined values will also return true for isSimpleType() and \c{isSimpleType(QCborSimpleType::Undefined)}. Undefined values are different from null values. QCborValue objects with undefined values are also different from invalid QCborValue objects. The API will not create invalid QCborValues, but they may exist as a result of a parsing error. \sa isUndefined(), isNull(), isSimpleType() */ /*! \fn QCborValue::QCborValue(Type t_) Creates a QCborValue of type \a t_. The value associated with such a type (if any) will be default constructed. \sa type() */ /*! \fn QCborValue::QCborValue(std::nullptr_t) Creates a QCborValue of the \l {Type}{Null} type. CBOR null values are used to indicate optional values that were not provided. They are distinct from undefined values, in that null values are usually not the result of an earlier error or problem. \sa isNull(), isUndefined(), isSimpleType() */ /*! \fn QCborValue::QCborValue(bool b) Creates a QCborValue with boolean value \a b. The value can later be retrieved using toBool(). Internally, CBOR booleans are represented by a pair of types, one for true and one for false. For that reason, boolean QCborValues will return true for isSimpleType() and one of \c{isSimpleType(QCborSimpleType::False)} or \c{isSimpleType(QCborSimpleType::True)}. \sa toBool(), isBool(), isTrue(), isFalse(), isSimpleType() */ /*! \fn QCborValue::QCborValue(qint64 i) Creates a QCborValue with integer value \a i. The value can later be retrieved using toInteger(). CBOR integer values are distinct from floating point values. Therefore, QCborValue objects with integers will compare differently to QCborValue objects containing floating-point, even if the values contained in the objects are equivalent. \sa toInteger(), isInteger(), isDouble() */ /*! \fn QCborValue::QCborValue(double d) Creates a QCborValue with floating point value \a d. The value can later be retrieved using toDouble(). CBOR floating point values are distinct from integer values. Therefore, QCborValue objects with integers will compare differently to QCborValue objects containing floating-point, even if the values contained in the objects are equivalent. \sa toDouble(), isDouble(), isInteger() */ /*! \fn QCborValue::QCborValue(QCborSimpleType st) Creates a QCborValue of simple type \a st. The type can later later be retrieved using toSimpleType() as well as isSimpleType(st). CBOR simple types are types that do not have any associated value, like C++'s \c{std::nullptr_t} type, whose only possible value is \nullptr. If \a st is \c{QCborSimpleType::Null}, the resulting QCborValue will be of the \l{Type}{Null} type and similarly for \c{QCborSimpleType::Undefined}. If \a st is \c{QCborSimpleType::False} or \c{QCborSimpleType::True}, the created QCborValue will be a boolean containing a value of false or true, respectively. This function can be used with simple types not defined in the API. For example, to create a QCborValue with simple type 12, one could write: \snippet code/src_corelib_serialization_qcborvalue.cpp 1 Simple types should not be used until a specification for them has been published, since other implementations may not support them properly. Simple type values 24 to 31 are reserved and must not be used. isSimpleType(), isNull(), isUndefined(), isTrue(), isFalse() */ /*! \fn QCborValue::QCborValue(QCborKnownTags tag, const QCborValue &taggedValue) \overload Creates a QCborValue for the extended type represented by the tag value \a tag, tagging value \a taggedValue. The tag can later be retrieved using tag() and the tagged value using taggedValue(). \sa isTag(), tag(), taggedValue(), QCborKnownTags */ /*! \fn QCborValue::~QCborValue() Disposes of the current QCborValue object and frees any associated resources. */ /*! \fn QCborValue::QCborValue(QCborValue &&other) \overload Moves the contents of the \a other QCborValue object into this one and frees the resources of this one. */ /*! \fn QCborValue &&QCborValue::operator=(QCborValue &&other) \overload Moves the contents of the \a other QCborValue object into this one and frees the resources of this one. Returns a reference to this object. */ /*! \fn void QCborValue::swap(QCborValue &other) Swaps the contents of this QCborValue object and \a other. */ /*! \fn QCborValue::Type QCborValue::type() const Returns the type of this QCborValue. The type can also later be retrieved by one of the "isXxx" functions. \sa isInteger(), isByteArray(), isString(), isArray(), isMap(), isTag(), isFalse(), isTrue(), isBool(), isNull(), isUndefined, isDouble(), isDateTime(), isUrl(), isRegularExpression(), isUuid() */ /*! \fn bool QCborValue::isInteger() const Returns true if this QCborValue is of the integer type. The integer value can be retrieved using toInteger(). \sa type(), toInteger() */ /*! \fn bool QCborValue::isByteArray() const Returns true if this QCborValue is of the byte array type. The byte array value can be retrieved using toByteArray(). \sa type(), toByteArray() */ /*! \fn bool QCborValue::isString() const Returns true if this QCborValue is of the string type. The string value can be retrieved using toString(). \sa type(), toString() */ /*! \fn bool QCborValue::isArray() const Returns true if this QCborValue is of the array type. The array value can be retrieved using toArray(). \sa type(), toArray() */ /*! \fn bool QCborValue::isMap() const Returns true if this QCborValue is of the map type. The map value can be retrieved using toMap(). \sa type(), toMap() */ /*! \fn bool QCborValue::isTag() const Returns true if this QCborValue is of the tag type. The tag value can be retrieved using tag() and the tagged value using taggedValue(). This function also returns true for extended types that the API recognizes. For code that handles extended types directly before the Qt API is updated to support them, it is possible to recreate the tag + tagged value pair by using taggedValue(). \sa type(), tag(), taggedValue(), taggedValue() */ /*! \fn bool QCborValue::isFalse() const Returns true if this QCborValue is a boolean with false value. This function exists because, internally, CBOR booleans are stored as two separate types, one for true and one for false. \sa type(), isBool(), isTrue(), toBool() */ /*! \fn bool QCborValue::isTrue() const Returns true if this QCborValue is a boolean with true value. This function exists because, internally, CBOR booleans are stored as two separate types, one for false and one for true. \sa type(), isBool(), isFalse(), toBool() */ /*! \fn bool QCborValue::isBool() const Returns true if this QCborValue is a boolean. The value can be retrieved using toBool(). \sa type(), toBool(), isTrue(), isFalse() */ /*! \fn bool QCborValue::isUndefined() const Returns true if this QCborValue is of the undefined type. CBOR undefined values are used to indicate missing information, usually as a result of a previous operation that did not complete as expected. They are also used by the QCborArray and QCborMap API to indicate the searched item was not found. Undefined values are distinct from null values. QCborValue objects with undefined values are also different from invalid QCborValue objects. The API will not create invalid QCborValues, but they may exist as a result of a parsing error. \sa type(), isNull(), isInvalid() */ /*! \fn bool QCborValue::isNull() const Returns true if this QCborValue is of the null type. CBOR null values are used to indicate optional values that were not provided. They are distinct from undefined values, in that null values are usually not the result of an earlier error or problem. Null values are distinct from undefined values and from invalid QCborValue objects. The API will not create invalid QCborValues, but they may exist as a result of a parsing error. \sa type(), isUndefined(), isInvalid() */ /*! \fn bool QCborValue::isDouble() const Returns true if this QCborValue is of the floating-point type. The value can be retrieved using toDouble(). \sa type(), toDouble() */ /*! \fn bool QCborValue::isDateTime() const Returns true if this QCborValue is of the date/time type. The value can be retrieved using toDateTime(). Date/times are extended types that use the tag \l{QCborKnownTags}{DateTime}. Additionally, when decoding from a CBOR stream, QCborValue will interpret tags of value \l{QCborKnownTags}{UnixTime_t} and convert them to the equivalent date/time. \sa type(), toDateTime() */ /*! \fn bool QCborValue::isUrl() const Returns true if this QCborValue is of the URL type. The URL value can be retrieved using toUrl(). \sa type(), toUrl() */ /*! \fn bool QCborValue::isRegularExpression() const Returns true if this QCborValue contains a regular expression's pattern. The pattern can be retrieved using toRegularExpression(). \sa type(), toRegularExpression() */ /*! \fn bool QCborValue::isUuid() const Returns true if this QCborValue contains a UUID. The value can be retrieved using toUuid(). \sa type(), toUuid() */ /*! \fn bool QCborValue::isInvalid() const Returns true if this QCborValue is not of any valid type. Invalid QCborValues are distinct from those with undefined values and they usually represent a decoding error. \sa isUndefined(), isNull() */ /*! \fn bool QCborValue::isContainer() const This convenience function returns true if the QCborValue is either an array or a map. \sa isArray(), isMap() */ /*! \fn bool QCborValue::isSimpleType() const Returns true if this QCborValue is of one of the CBOR simple types. The type itself can later be retrieved using type(), even for types that don't have an enumeration in the API. They can also be checked with the \l{isSimpleType(QCborSimpleType)} overload. \sa QCborSimpleType, isSimpleType(QCborSimpleType), toSimpleType() */ /*! \fn bool QCborValue::isSimpleType(QCborSimpleType st) const \overload Returns true if this QCborValue is of a simple type and toSimpleType() would return \a st, false otherwise. This function can be used to check for any CBOR simple type, even those for which there is no enumeration in the API. For example, for the simple type of value 12, you could write: \snippet code/src_corelib_serialization_qcborvalue.cpp 2 \sa QCborValue::QCborValue(QCborSimpleType), isSimpleType(), isFalse(), isTrue(), isNull, isUndefined(), toSimpleType() */ /*! \fn QCborSimpleType QCborValue::toSimpleType(QCborSimpleType defaultValue) const Returns the simple type this QCborValue is of, if it is a simple type. If it is not a simple type, it returns \a defaultValue. The following types are simple types and this function will return the listed values: \table \row \li QCborValue::False \li QCborSimpleType::False \row \li QCborValue::True \li QCborSimpleType::True \row \li QCborValue::Null \li QCborSimpleType::Null \row \li QCborValue::Undefined \li QCborSimpleType::Undefined \endtable \sa type(), isSimpleType(), isBool(), isTrue(), isFalse(), isTrue(), isNull(), isUndefined() */ /*! \fn qint64 QCborValue::toInteger(qint64 defaultValue) const Returns the integer value stored in this QCborValue, if it is of the integer type. If it is of the Double type, this function returns the floating point value converted to integer. In any other case, it returns \a defaultValue. \sa isInteger(), isDouble(), toDouble() */ /*! \fn bool QCborValue::toBool(bool defaultValue) const Returns the boolean value stored in this QCborValue, if it is of a boolean type. Otherwise, it returns \a defaultValue. \sa isBool(), isTrue(), isFalse() */ /*! \fn double QCborValue::toDouble(double defaultValue) const Returns the floating point value stored in this QCborValue, if it is of the Double type. If it is of the Integer type, this function returns the integer value converted to double. In any other case, it returns \a defaultValue. \sa isDouble(), isInteger(), toInteger() */ using namespace QtCbor; static QCborValue::Type convertToExtendedType(QCborContainerPrivate *d) { qint64 tag = d->elements.at(0).value; auto &e = d->elements[1]; const ByteData *b = d->byteData(e); auto replaceByteData = [&](const char *buf, qsizetype len, Element::ValueFlags f) { d->data.clear(); d->usedData = 0; e.flags = Element::HasByteData | f; e.value = d->addByteData(buf, len); }; switch (tag) { case qint64(QCborKnownTags::DateTimeString): case qint64(QCborKnownTags::UnixTime_t): { QDateTime dt; if (tag == qint64(QCborKnownTags::DateTimeString) && b && e.type == QCborValue::String && (e.flags & Element::StringIsUtf16) == 0) { // The data is supposed to be US-ASCII. If it isn't (contains UTF-8), // QDateTime::fromString will fail anyway. dt = QDateTime::fromString(b->asLatin1(), Qt::ISODateWithMs); } else if (tag == qint64(QCborKnownTags::UnixTime_t)) { qint64 msecs; bool ok = false; if (e.type == QCborValue::Integer) { #if QT_POINTER_SIZE == 8 // we don't have a fast 64-bit mul_overflow implementation on // 32-bit architectures. ok = !mul_overflow(e.value, qint64(1000), &msecs); #else static const qint64 Limit = std::numeric_limits::max() / 1000; ok = (e.value > -Limit && e.value < Limit); if (ok) msecs = e.value * 1000; #endif } else if (e.type == QCborValue::Double) { ok = convertDoubleTo(round(e.fpvalue() * 1000), &msecs); } if (ok) dt = QDateTime::fromMSecsSinceEpoch(msecs, Qt::UTC); } if (dt.isValid()) { QByteArray text = dt.toString(Qt::ISODateWithMs).toLatin1(); if (!text.isEmpty()) { replaceByteData(text, text.size(), Element::StringIsAscii); e.type = QCborValue::String; d->elements[0].value = qint64(QCborKnownTags::DateTimeString); return QCborValue::DateTime; } } break; } #ifndef QT_BOOTSTRAPPED case qint64(QCborKnownTags::Url): if (e.type == QCborValue::String) { if (b) { // normalize to a short (decoded) form, so as to save space QUrl url(e.flags & Element::StringIsUtf16 ? b->asQStringRaw() : b->toUtf8String()); QByteArray encoded = url.toString(QUrl::DecodeReserved).toUtf8(); replaceByteData(encoded, encoded.size(), {}); } return QCborValue::Url; } break; #endif // QT_BOOTSTRAPPED #if QT_CONFIG(regularexpression) case quint64(QCborKnownTags::RegularExpression): if (e.type == QCborValue::String) { // no normalization is necessary return QCborValue::RegularExpression; } break; #endif // QT_CONFIG(regularexpression) case qint64(QCborKnownTags::Uuid): if (e.type == QCborValue::ByteArray) { // force the size to 16 char buf[sizeof(QUuid)] = {}; if (b) memcpy(buf, b->byte(), qMin(sizeof(buf), size_t(b->len))); replaceByteData(buf, sizeof(buf), {}); return QCborValue::Uuid; } break; } // no enriching happened return QCborValue::Tag; } #if QT_CONFIG(cborstreamwriter) static void writeDoubleToCbor(QCborStreamWriter &writer, double d, QCborValue::EncodingOptions opt) { if (qt_is_nan(d)) { if (opt & QCborValue::UseFloat) { #ifndef QT_BOOTSTRAPPED if ((opt & QCborValue::UseFloat16) == QCborValue::UseFloat16) return writer.append(std::numeric_limits::quiet_NaN()); #endif return writer.append(std::numeric_limits::quiet_NaN()); } return writer.append(qt_qnan()); } if (qt_is_inf(d)) { d = d > 0 ? qt_inf() : -qt_inf(); } else if (opt & QCborValue::UseIntegers) { quint64 i; if (convertDoubleTo(d, &i)) { if (d < 0) return writer.append(QCborNegativeInteger(i)); return writer.append(i); } } if (opt & QCborValue::UseFloat) { float f = float(d); if (f == d) { // no data loss, we could use float #ifndef QT_BOOTSTRAPPED if ((opt & QCborValue::UseFloat16) == QCborValue::UseFloat16) { qfloat16 f16 = f; if (f16 == f) return writer.append(f16); } #endif return writer.append(f); } } writer.append(d); } #endif // QT_CONFIG(cborstreamwriter) static inline int typeOrder(Element e1, Element e2) { auto comparable = [](Element e) { if (e.type >= 0x10000) // see QCborValue::isTag_helper() return QCborValue::Tag; return e.type; }; return comparable(e1) - comparable(e2); } QCborContainerPrivate::~QCborContainerPrivate() { // delete our elements for (Element &e : elements) { if (e.flags & Element::IsContainer) e.container->deref(); } } void QCborContainerPrivate::compact(qsizetype reserved) { if (usedData > data.size() / 2) return; // 50% savings if we recreate the byte data // ### TBD Q_UNUSED(reserved); } QCborContainerPrivate *QCborContainerPrivate::clone(QCborContainerPrivate *d, qsizetype reserved) { if (!d) { d = new QCborContainerPrivate; } else { d = new QCborContainerPrivate(*d); if (reserved >= 0) { d->elements.reserve(reserved); d->compact(reserved); } for (auto &e : qAsConst(d->elements)) { if (e.flags & Element::IsContainer) e.container->ref.ref(); } } return d; } QCborContainerPrivate *QCborContainerPrivate::detach(QCborContainerPrivate *d, qsizetype reserved) { if (!d || d->ref.loadRelaxed() != 1) return clone(d, reserved); return d; } /*! Prepare for an insertion at position \a index Detaches and ensures there are at least index entries in the array, padding with Undefined as needed. */ QCborContainerPrivate *QCborContainerPrivate::grow(QCborContainerPrivate *d, qsizetype index) { Q_ASSERT(index >= 0); d = detach(d, index + 1); Q_ASSERT(d); int j = d->elements.size(); while (j++ < index) d->append(Undefined()); return d; } // Copies or moves \a value into element at position \a e. If \a disp is // CopyContainer, then this function increases the reference count of the // container, but otherwise leaves it unmodified. If \a disp is MoveContainer, // then it transfers ownership (move semantics) and the caller must set // value.container back to nullptr. void QCborContainerPrivate::replaceAt_complex(Element &e, const QCborValue &value, ContainerDisposition disp) { if (value.n < 0) { // This QCborValue is an array, map, or tagged value (container points // to itself). // detect self-assignment if (Q_UNLIKELY(this == value.container)) { Q_ASSERT(ref.loadRelaxed() >= 2); if (disp == MoveContainer) ref.deref(); // not deref() because it can't drop to 0 QCborContainerPrivate *d = QCborContainerPrivate::clone(this); d->elements.detach(); d->ref.storeRelaxed(1); e.container = d; } else { e.container = value.container; if (disp == CopyContainer) e.container->ref.ref(); } e.type = value.type(); e.flags = Element::IsContainer; } else { // String data, copy contents e = value.container->elements.at(value.n); // Copy string data, if any if (const ByteData *b = value.container->byteData(value.n)) { if (this == value.container) e.value = addByteData(b->toByteArray(), b->len); else e.value = addByteData(b->byte(), b->len); } if (disp == MoveContainer) value.container->deref(); } } // in qstring.cpp void qt_to_latin1_unchecked(uchar *dst, const ushort *uc, qsizetype len); Q_NEVER_INLINE void QCborContainerPrivate::appendAsciiString(QStringView s) { qsizetype len = s.size(); QtCbor::Element e; e.value = addByteData(nullptr, len); e.type = QCborValue::String; e.flags = Element::HasByteData | Element::StringIsAscii; elements.append(e); char *ptr = data.data() + e.value + sizeof(ByteData); uchar *l = reinterpret_cast(ptr); const ushort *uc = (const ushort *)s.utf16(); qt_to_latin1_unchecked(l, uc, len); } QCborValue QCborContainerPrivate::extractAt_complex(Element e) { // create a new container for the returned value, containing the byte data // from this element, if it's worth it Q_ASSERT(e.flags & Element::HasByteData); auto b = byteData(e); auto container = new QCborContainerPrivate; if (b->len + qsizetype(sizeof(*b)) < data.size() / 4) { // make a shallow copy of the byte data container->appendByteData(b->byte(), b->len, e.type, e.flags); usedData -= b->len + qsizetype(sizeof(*b)); compact(elements.size()); } else { // just share with the original byte data container->data = data; container->elements.reserve(1); container->elements.append(e); } return makeValue(e.type, 0, container); } QT_WARNING_DISABLE_MSVC(4146) // unary minus operator applied to unsigned type, result still unsigned static int compareContainer(const QCborContainerPrivate *c1, const QCborContainerPrivate *c2); static int compareElementNoData(const Element &e1, const Element &e2) { Q_ASSERT(e1.type == e2.type); if (e1.type == QCborValue::Integer) { // CBOR sorting order is 0, 1, 2, ..., INT64_MAX, -1, -2, -3, ... INT64_MIN // So we transform: // 0 -> 0 // 1 -> 1 // INT64_MAX -> INT64_MAX // -1 -> INT64_MAX + 1 = INT64_MAX - (-1) // -2 -> INT64_MAX + 2 = INT64_MAX - (-2) // INT64_MIN -> UINT64_MAX = INT64_MAX - INT64_MIN // Note how the unsigned arithmethic is well defined in C++ (it's // always performed modulo 2^64). auto makeSortable = [](qint64 v) { quint64 u = quint64(v); if (v < 0) return quint64(std::numeric_limits::max()) + (-u); return u; }; quint64 u1 = makeSortable(e1.value); quint64 u2 = makeSortable(e2.value); if (u1 < u2) return -1; if (u1 > u2) return 1; } if (e1.type == QCborValue::Tag || e1.type == QCborValue::Double) { // Perform unsigned comparisons for the tag value and floating point quint64 u1 = quint64(e1.value); quint64 u2 = quint64(e2.value); if (u1 != u2) return u1 < u2 ? -1 : 1; } // Any other type is equal at this point: // - simple types carry no value // - empty strings, arrays and maps return 0; } static int compareElementRecursive(const QCborContainerPrivate *c1, const Element &e1, const QCborContainerPrivate *c2, const Element &e2) { int cmp = typeOrder(e1, e2); if (cmp != 0) return cmp; if ((e1.flags & Element::IsContainer) || (e2.flags & Element::IsContainer)) return compareContainer(e1.flags & Element::IsContainer ? e1.container : nullptr, e2.flags & Element::IsContainer ? e2.container : nullptr); // string data? const ByteData *b1 = c1 ? c1->byteData(e1) : nullptr; const ByteData *b2 = c2 ? c2->byteData(e2) : nullptr; if (b1 || b2) { auto len1 = b1 ? b1->len : 0; auto len2 = b2 ? b2->len : 0; if (e1.flags & Element::StringIsUtf16) len1 /= 2; if (e2.flags & Element::StringIsUtf16) len2 /= 2; if (len1 == 0 || len2 == 0) return len1 < len2 ? -1 : len1 == len2 ? 0 : 1; // we definitely have data from this point forward Q_ASSERT(b1); Q_ASSERT(b2); // Officially with CBOR, we sort first the string with the shortest // UTF-8 length. The length of an ASCII string is the same as its UTF-8 // and UTF-16 ones, but the UTF-8 length of a string is bigger than the // UTF-16 equivalent. Combinations are: // 1) UTF-16 and UTF-16 // 2) UTF-16 and UTF-8 <=== this is the problem case // 3) UTF-16 and US-ASCII // 4) UTF-8 and UTF-8 // 5) UTF-8 and US-ASCII // 6) US-ASCII and US-ASCII if ((e1.flags & Element::StringIsUtf16) && (e2.flags & Element::StringIsUtf16)) { // Case 1: both UTF-16, so lengths are comparable. // (we can't use memcmp in little-endian machines) if (len1 == len2) return QtPrivate::compareStrings(b1->asStringView(), b2->asStringView()); return len1 < len2 ? -1 : 1; } if (!(e1.flags & Element::StringIsUtf16) && !(e2.flags & Element::StringIsUtf16)) { // Cases 4, 5 and 6: neither is UTF-16, so lengths are comparable too // (this case includes byte arrays too) if (len1 == len2) return memcmp(b1->byte(), b2->byte(), size_t(len1)); return len1 < len2 ? -1 : 1; } if (!(e1.flags & Element::StringIsAscii) || !(e2.flags & Element::StringIsAscii)) { // Case 2: one of them is UTF-8 and the other is UTF-16, so lengths // are NOT comparable. We need to convert to UTF-16 first... auto string = [](const Element &e, const ByteData *b) { return e.flags & Element::StringIsUtf16 ? b->asQStringRaw() : b->toUtf8String(); }; QString s1 = string(e1, b1); QString s2 = string(e2, b2); if (s1.size() == s2.size()) return s1.compare(s2); return s1.size() < s2.size() ? -1 : 1; } // Case 3 (UTF-16 and US-ASCII) remains, so lengths are comparable again if (len1 != len2) return len1 < len2 ? -1 : 1; if (e1.flags & Element::StringIsUtf16) return QtPrivate::compareStrings(b1->asStringView(), b2->asLatin1()); return QtPrivate::compareStrings(b1->asLatin1(), b2->asStringView()); } return compareElementNoData(e1, e2); } static int compareContainer(const QCborContainerPrivate *c1, const QCborContainerPrivate *c2) { auto len1 = c1 ? c1->elements.size() : 0; auto len2 = c2 ? c2->elements.size() : 0; if (len1 != len2) { // sort the shorter container first return len1 < len2 ? -1 : 1; } for (qsizetype i = 0; i < len1; ++i) { const Element &e1 = c1->elements.at(i); const Element &e2 = c2->elements.at(i); int cmp = QCborContainerPrivate::compareElement_helper(c1, e1, c2, e2); if (cmp) return cmp; } return 0; } inline int QCborContainerPrivate::compareElement_helper(const QCborContainerPrivate *c1, Element e1, const QCborContainerPrivate *c2, Element e2) { return compareElementRecursive(c1, e1, c2, e2); } /*! \fn bool QCborValue::operator==(const QCborValue &other) const Compares this value and \a other, and returns true if they hold the same contents, false otherwise. If each QCborValue contains an array or map, the comparison is recursive to elements contained in them. For more information on CBOR equality in Qt, see, compare(). \sa compare(), QCborValue::operator==(), QCborMap::operator==(), operator!=(), operator<() */ /*! \fn bool QCborValue::operator!=(const QCborValue &other) const Compares this value and \a other, and returns true if contents differ, false otherwise. If each QCborValue contains an array or map, the comparison is recursive to elements contained in them. For more information on CBOR equality in Qt, see, QCborValue::compare(). \sa compare(), QCborValue::operator==(), QCborMap::operator==(), operator==(), operator<() */ /*! \fn bool QCborValue::operator<(const QCborValue &other) const Compares this value and \a other, and returns true if this value should be sorted before \a other, false otherwise. If each QCborValue contains an array or map, the comparison is recursive to elements contained in them. For more information on CBOR sorting order, see QCborValue::compare(). \sa compare(), QCborValue::operator==(), QCborMap::operator==(), operator==(), operator!=() */ /*! Compares this value and \a other, and returns an integer that indicates whether this value should be sorted prior to (if the result is negative) or after \a other (if the result is positive). If this function returns 0, the two values are equal and hold the same contents. If each QCborValue contains an array or map, the comparison is recursive to elements contained in them. \section3 Extended types QCborValue compares equal a QCborValue containing an extended type, like \l{Type}{Url} and \l{Type}{Url} and its equivalent tagged representation. So, for example, the following expression is true: \snippet code/src_corelib_serialization_qcborvalue.cpp 3 Do note that Qt types like \l QUrl and \l QDateTime will normalize and otherwise modify their arguments. The expression above is true only because the string on the right side is the normalized value that the QCborValue on the left would take. If, for example, the "https" part were uppercase in both sides, the comparison would fail. For information on normalizations performed by QCborValue, please consult the documentation of the constructor taking the Qt type in question. \section3 Sorting order Sorting order in CBOR is defined in RFC 7049 {https://tools.ietf.org/html/rfc7049#section-3.9}{section 3.9}, which discusses the sorting of keys in a map when following the Canonical encoding. According to the specification, "sorting is performed on the bytes of the representation of the key data items" and lists as consequences that: \list \li "If two keys have different lengths, the shorter one sorts earlier;" \li "If two keys have the same length, the one with the lower value in (byte-wise) lexical order sorts earlier." \endlist This results in surprising sorting of QCborValues, where the result of this function is different from that which would later be retrieved by comparing the contained elements. For example, the QCborValue containing string "zzz" sorts before the QCborValue with string "foobar", even though when comparing as \l{QString::compare()}{QStrings} or \l{QByteArray}{QByteArrays} the "zzz" sorts after "foobar" (dictionary order). The specification does not clearly indicate what sorting order should be done for values of different types (it says sorting should not pay "attention to the 3/5 bit splitting for major types"). QCborValue makes the assumption that types should be sorted too. The numeric values of the QCborValue::Type enumeration are in that order, with the exception of the extended types, which compare as their tagged equivalents. \note Sorting order is preliminary and is subject to change. Applications should not depend on the order returned by this function for the time being. \sa QCborArray::compare(), QCborMap::compare(), operator==() */ int QCborValue::compare(const QCborValue &other) const { Element e1 = QCborContainerPrivate::elementFromValue(*this); Element e2 = QCborContainerPrivate::elementFromValue(other); return compareElementRecursive(container, e1, other.container, e2); } int QCborArray::compare(const QCborArray &other) const noexcept { return compareContainer(d.data(), other.d.data()); } int QCborMap::compare(const QCborMap &other) const noexcept { return compareContainer(d.data(), other.d.data()); } #if QT_CONFIG(cborstreamwriter) static void encodeToCbor(QCborStreamWriter &writer, const QCborContainerPrivate *d, qsizetype idx, QCborValue::EncodingOptions opt) { if (idx == -QCborValue::Array || idx == -QCborValue::Map) { bool isArray = (idx == -QCborValue::Array); qsizetype len = d ? d->elements.size() : 0; if (isArray) writer.startArray(quint64(len)); else writer.startMap(quint64(len) / 2); for (idx = 0; idx < len; ++idx) encodeToCbor(writer, d, idx, opt); if (isArray) writer.endArray(); else writer.endMap(); } else if (idx < 0) { if (d->elements.size() != 2) { // invalid state! qWarning("QCborValue: invalid tag state; are you encoding something that was improperly decoded?"); return; } // write the tag and the tagged element writer.append(QCborTag(d->elements.at(0).value)); encodeToCbor(writer, d, 1, opt); } else { // just one element auto e = d->elements.at(idx); const ByteData *b = d->byteData(idx); switch (e.type) { case QCborValue::Integer: return writer.append(qint64(e.value)); case QCborValue::ByteArray: if (b) return writer.appendByteString(b->byte(), b->len); return writer.appendByteString("", 0); case QCborValue::String: if (b) { if (e.flags & Element::StringIsUtf16) return writer.append(b->asStringView()); return writer.appendTextString(b->byte(), b->len); } return writer.append(QLatin1String()); case QCborValue::Array: case QCborValue::Map: case QCborValue::Tag: // recurse return encodeToCbor(writer, e.flags & Element::IsContainer ? e.container : nullptr, -qsizetype(e.type), opt); case QCborValue::SimpleType: case QCborValue::False: case QCborValue::True: case QCborValue::Null: case QCborValue::Undefined: break; case QCborValue::Double: return writeDoubleToCbor(writer, e.fpvalue(), opt); case QCborValue::Invalid: return; case QCborValue::DateTime: case QCborValue::Url: case QCborValue::RegularExpression: case QCborValue::Uuid: // recurse as tag return encodeToCbor(writer, e.container, -QCborValue::Tag, opt); } // maybe it's a simple type int simpleType = e.type - QCborValue::SimpleType; if (unsigned(simpleType) < 0x100) return writer.append(QCborSimpleType(simpleType)); // if we got here, we've got an unknown type qWarning("QCborValue: found unknown type 0x%x", e.type); } } #endif // QT_CONFIG(cborstreamwriter) #if QT_CONFIG(cborstreamreader) static inline double integerOutOfRange(const QCborStreamReader &reader) { Q_ASSERT(reader.isInteger()); if (reader.isUnsignedInteger()) { quint64 v = reader.toUnsignedInteger(); if (qint64(v) < 0) return double(v); } else { quint64 v = quint64(reader.toNegativeInteger()); if (qint64(v - 1) < 0) return -double(v); } // result is in range return 0; } static Element decodeBasicValueFromCbor(QCborStreamReader &reader) { Element e = {}; switch (reader.type()) { case QCborStreamReader::UnsignedInteger: case QCborStreamReader::NegativeInteger: if (double d = integerOutOfRange(reader)) { e.type = QCborValue::Double; qToUnaligned(d, &e.value); } else { e.type = QCborValue::Integer; e.value = reader.toInteger(); } break; case QCborStreamReader::SimpleType: e.type = QCborValue::Type(quint8(reader.toSimpleType()) + 0x100); break; case QCborStreamReader::Float16: e.type = QCborValue::Double; qToUnaligned(double(reader.toFloat16()), &e.value); break; case QCborStreamReader::Float: e.type = QCborValue::Double; qToUnaligned(double(reader.toFloat()), &e.value); break; case QCborStreamReader::Double: e.type = QCborValue::Double; qToUnaligned(reader.toDouble(), &e.value); break; default: Q_UNREACHABLE(); } reader.next(); return e; } static inline QCborContainerPrivate *createContainerFromCbor(QCborStreamReader &reader, int remainingRecursionDepth) { if (Q_UNLIKELY(remainingRecursionDepth == 0)) { QCborContainerPrivate::setErrorInReader(reader, { QCborError::NestingTooDeep }); return nullptr; } QCborContainerPrivate *d = nullptr; int mapShift = reader.isMap() ? 1 : 0; if (reader.isLengthKnown()) { quint64 len = reader.length(); // Clamp allocation to 1M elements (avoids crashing due to corrupt // stream or loss of precision when converting from quint64 to // QVector::size_type). len = qMin(len, quint64(1024 * 1024 - 1)); if (len) { d = new QCborContainerPrivate; d->ref.storeRelaxed(1); d->elements.reserve(qsizetype(len) << mapShift); } } else { d = new QCborContainerPrivate; d->ref.storeRelaxed(1); } reader.enterContainer(); if (reader.lastError() != QCborError::NoError) return d; while (reader.hasNext() && reader.lastError() == QCborError::NoError) d->decodeValueFromCbor(reader, remainingRecursionDepth - 1); if (reader.lastError() == QCborError::NoError) reader.leaveContainer(); return d; } static QCborValue taggedValueFromCbor(QCborStreamReader &reader, int remainingRecursionDepth) { if (Q_UNLIKELY(remainingRecursionDepth == 0)) { QCborContainerPrivate::setErrorInReader(reader, { QCborError::NestingTooDeep }); return QCborValue::Invalid; } auto d = new QCborContainerPrivate; d->append(reader.toTag()); reader.next(); if (reader.lastError() == QCborError::NoError) { // decode tagged value d->decodeValueFromCbor(reader, remainingRecursionDepth - 1); } QCborValue::Type type; if (reader.lastError() == QCborError::NoError) { // post-process to create our extended types type = convertToExtendedType(d); } else { // decoding error type = QCborValue::Invalid; } // note: may return invalid state! return QCborContainerPrivate::makeValue(type, -1, d); } // in qcborstream.cpp extern void qt_cbor_stream_set_error(QCborStreamReaderPrivate *d, QCborError error); inline void QCborContainerPrivate::setErrorInReader(QCborStreamReader &reader, QCborError error) { qt_cbor_stream_set_error(reader.d.data(), error); } void QCborContainerPrivate::decodeStringFromCbor(QCborStreamReader &reader) { auto addByteData_local = [this](QByteArray::size_type len) -> qint64 { // this duplicates a lot of addByteData, but with overflow checking QByteArray::size_type newSize; QByteArray::size_type increment = sizeof(QtCbor::ByteData); QByteArray::size_type alignment = alignof(QtCbor::ByteData); QByteArray::size_type offset = data.size(); // calculate the increment we want if (add_overflow(increment, len, &increment)) return -1; // align offset if (add_overflow(offset, alignment - 1, &offset)) return -1; offset &= ~(alignment - 1); // and calculate the final size if (add_overflow(offset, increment, &newSize)) return -1; if (newSize > MaxByteArraySize) return -1; data.resize(newSize); return offset; }; auto dataPtr = [this]() { // Null happens when we're reading zero bytes. Q_ASSERT(data.isNull() || data.isDetached()); return const_cast(data.constData()); }; Element e = {}; e.type = (reader.isByteArray() ? QCborValue::ByteArray : QCborValue::String); if (reader.lastError() != QCborError::NoError) return; qsizetype rawlen = reader.currentStringChunkSize(); QByteArray::size_type len = rawlen; if (rawlen < 0) return; // error if (len != rawlen) { // truncation setErrorInReader(reader, { QCborError::DataTooLarge }); return; } // allocate space, but only if there will be data if (len != 0 || !reader.isLengthKnown()) { e.flags = Element::HasByteData; e.value = addByteData_local(len); if (e.value < 0) { // overflow setErrorInReader(reader, { QCborError::DataTooLarge }); return; } } // read chunks bool isAscii = (e.type == QCborValue::String); auto r = reader.readStringChunk(dataPtr() + e.value + sizeof(ByteData), len); while (r.status == QCborStreamReader::Ok) { if (e.type == QCborValue::String && len) { // verify UTF-8 string validity auto utf8result = QUtf8::isValidUtf8(dataPtr() + data.size() - len, len); if (!utf8result.isValidUtf8) { r.status = QCborStreamReader::Error; setErrorInReader(reader, { QCborError::InvalidUtf8String }); break; } isAscii = isAscii && utf8result.isValidAscii; } // allocate space for the next chunk rawlen = reader.currentStringChunkSize(); len = rawlen; if (len == rawlen) { auto oldSize = data.size(); auto newSize = oldSize; if (!add_overflow(newSize, len, &newSize)) { if (newSize != oldSize) data.resize(newSize); // read the chunk r = reader.readStringChunk(dataPtr() + oldSize, len); continue; } } // error r.status = QCborStreamReader::Error; setErrorInReader(reader, { QCborError::DataTooLarge }); } // update size if (r.status == QCborStreamReader::EndOfString && e.flags & Element::HasByteData) { auto b = new (dataPtr() + e.value) ByteData; b->len = data.size() - e.value - int(sizeof(*b)); usedData += b->len; if (isAscii) { // set the flag if it is US-ASCII only (as it often is) Q_ASSERT(e.type == QCborValue::String); e.flags |= Element::StringIsAscii; } // check that this UTF-8 text string can be loaded onto a QString if (e.type == QCborValue::String) { if (Q_UNLIKELY(b->len > MaxStringSize)) { setErrorInReader(reader, { QCborError::DataTooLarge }); r.status = QCborStreamReader::Error; } } } if (r.status == QCborStreamReader::Error) { // There can only be errors if there was data to be read. Q_ASSERT(e.flags & Element::HasByteData); data.truncate(e.value); return; } elements.append(e); } void QCborContainerPrivate::decodeValueFromCbor(QCborStreamReader &reader, int remainingRecursionDepth) { QCborStreamReader::Type t = reader.type(); switch (t) { case QCborStreamReader::UnsignedInteger: case QCborStreamReader::NegativeInteger: case QCborStreamReader::SimpleType: case QCborStreamReader::Float16: case QCborStreamReader::Float: case QCborStreamReader::Double: elements.append(decodeBasicValueFromCbor(reader)); break; case QCborStreamReader::ByteArray: case QCborStreamReader::String: decodeStringFromCbor(reader); break; case QCborStreamReader::Array: case QCborStreamReader::Map: return append(makeValue(t == QCborStreamReader::Array ? QCborValue::Array : QCborValue::Map, -1, createContainerFromCbor(reader, remainingRecursionDepth), MoveContainer)); case QCborStreamReader::Tag: return append(taggedValueFromCbor(reader, remainingRecursionDepth)); case QCborStreamReader::Invalid: return; // probably a decode error } } #endif // QT_CONFIG(cborstreamreader) /*! Creates a QCborValue with byte array value \a ba. The value can later be retrieved using toByteArray(). \sa toByteArray(), isByteArray(), isString() */ QCborValue::QCborValue(const QByteArray &ba) : n(0), container(new QCborContainerPrivate), t(ByteArray) { container->appendByteData(ba.constData(), ba.size(), t); container->ref.storeRelaxed(1); } #if QT_STRINGVIEW_LEVEL < 2 /*! Creates a QCborValue with string value \a s. The value can later be retrieved using toString(). \sa toString(), isString(), isByteArray() */ QCborValue::QCborValue(const QString &s) : QCborValue(qToStringViewIgnoringNull(s)) {} #endif /*! Creates a QCborValue with string value \a s. The value can later be retrieved using toString(). \sa toString(), isString(), isByteArray() */ QCborValue::QCborValue(QStringView s) : n(0), container(new QCborContainerPrivate), t(String) { container->append(s); container->ref.storeRelaxed(1); } /*! \overload Creates a QCborValue with string value \a s. The value can later be retrieved using toString(). \sa toString(), isString(), isByteArray() */ QCborValue::QCborValue(QLatin1String s) : n(0), container(new QCborContainerPrivate), t(String) { container->append(s); container->ref.storeRelaxed(1); } /*! \fn QCborValue::QCborValue(const QCborArray &a) \fn QCborValue::QCborValue(QCborArray &&a) Creates a QCborValue with the array \a a. The array can later be retrieved using toArray(). \sa toArray(), isArray(), isMap() */ QCborValue::QCborValue(const QCborArray &a) : n(-1), container(a.d.data()), t(Array) { if (container) container->ref.ref(); } /*! \fn QCborValue::QCborValue(const QCborMap &m) \fn QCborValue::QCborValue(QCborMap &&m) Creates a QCborValue with the map \a m. The map can later be retrieved using toMap(). \sa toMap(), isMap(), isArray() */ QCborValue::QCborValue(const QCborMap &m) : n(-1), container(m.d.data()), t(Map) { if (container) container->ref.ref(); } /*! \fn QCborValue::QCborValue(QCborTag tag, const QCborValue &tv) \fn QCborValue::QCborValue(QCborKnownTags tag, const QCborValue &tv) Creates a QCborValue for the extended type represented by the tag value \a tag, tagging value \a tv. The tag can later be retrieved using tag() and the tagged value using taggedValue(). \sa isTag(), tag(), taggedValue(), QCborKnownTags */ QCborValue::QCborValue(QCborTag tag, const QCborValue &tv) : n(-1), container(new QCborContainerPrivate), t(Tag) { container->ref.storeRelaxed(1); container->append(tag); container->append(tv); t = convertToExtendedType(container); } /*! Copies the contents of \a other into this object. */ QCborValue::QCborValue(const QCborValue &other) : n(other.n), container(other.container), t(other.t) { if (container) container->ref.ref(); } /*! Creates a QCborValue object of the date/time extended type and containing the value represented by \a dt. The value can later be retrieved using toDateTime(). The CBOR date/time types are extension types using tags: either a string (in ISO date format) tagged as a \l{QCborKnownTags}{DateTime} or a number (of seconds since the start of 1970, UTC) tagged as a \l{QCborKnownTags}{UnixTime_t}. When parsing CBOR streams, QCborValue will convert \l{QCborKnownTags}{UnixTime_t} to the string-based type. \sa toDateTime(), isDateTime(), taggedValue() */ QCborValue::QCborValue(const QDateTime &dt) : QCborValue(QCborKnownTags::DateTimeString, dt.toString(Qt::ISODateWithMs).toLatin1()) { // change types t = DateTime; container->elements[1].type = String; } #ifndef QT_BOOTSTRAPPED /*! Creates a QCborValue object of the URL extended type and containing the value represented by \a url. The value can later be retrieved using toUrl(). The CBOR URL type is an extended type represented by a string tagged as an \l{QCborKnownTags}{Url}. \sa toUrl(), isUrl(), taggedValue() */ QCborValue::QCborValue(const QUrl &url) : QCborValue(QCborKnownTags::Url, url.toString(QUrl::DecodeReserved).toUtf8()) { // change types t = Url; container->elements[1].type = String; } #endif #if QT_CONFIG(regularexpression) /*! Creates a QCborValue object of the regular expression pattern extended type and containing the value represented by \a rx. The value can later be retrieved using toRegularExpression(). The CBOR regular expression type is an extended type represented by a string tagged as an \l{QCborKnownTags}{RegularExpression}. Note that CBOR regular expressions only store the patterns, so any flags that the QRegularExpression object may carry will be lost. \sa toRegularExpression(), isRegularExpression(), taggedValue() */ QCborValue::QCborValue(const QRegularExpression &rx) : QCborValue(QCborKnownTags::RegularExpression, rx.pattern()) { // change type t = RegularExpression; } #endif // QT_CONFIG(regularexpression) /*! Creates a QCborValue object of the UUID extended type and containing the value represented by \a uuid. The value can later be retrieved using toUuid(). The CBOR UUID type is an extended type represented by a byte array tagged as an \l{QCborKnownTags}{Uuid}. \sa toUuid(), isUuid(), taggedValue() */ QCborValue::QCborValue(const QUuid &uuid) : QCborValue(QCborKnownTags::Uuid, uuid.toRfc4122()) { // change our type t = Uuid; } // destructor void QCborValue::dispose() { container->deref(); } /*! Replaces the contents of this QCborObject with a copy of \a other. */ QCborValue &QCborValue::operator=(const QCborValue &other) { if (other.container) other.container->ref.ref(); if (container) container->deref(); n = other.n; container = other.container; t = other.t; return *this; } /*! Returns the tag of this extended QCborValue object, if it is of the tag type, \a defaultValue otherwise. CBOR represents extended types by associating a number (the tag) with a stored representation. This function returns that number. To retrieve the representation, use taggedValue(). \sa isTag(), taggedValue(), isDateTime(), isUrl(), isRegularExpression(), isUuid() */ QCborTag QCborValue::tag(QCborTag defaultValue) const { return isTag() && container && container->elements.size() == 2 ? QCborTag(container->elements.at(0).value) : defaultValue; } /*! Returns the tagged value of this extended QCborValue object, if it is of the tag type, \a defaultValue otherwise. CBOR represents extended types by associating a number (the tag) with a stored representation. This function returns that representation. To retrieve the tag, use tag(). \sa isTag(), tag(), isDateTime(), isUrl(), isRegularExpression(), isUuid() */ QCborValue QCborValue::taggedValue(const QCborValue &defaultValue) const { return isTag() && container && container->elements.size() == 2 ? container->valueAt(1) : defaultValue; } /*! Returns the byte array value stored in this QCborValue, if it is of the byte array type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QByteArray. \sa isByteArray(), isString(), toString() */ QByteArray QCborValue::toByteArray(const QByteArray &defaultValue) const { if (!container || !isByteArray()) return defaultValue; Q_ASSERT(n >= 0); return container->byteArrayAt(n); } /*! Returns the string value stored in this QCborValue, if it is of the string type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QString. \sa isString(), isByteArray(), toByteArray() */ QString QCborValue::toString(const QString &defaultValue) const { if (!container || !isString()) return defaultValue; Q_ASSERT(n >= 0); return container->stringAt(n); } /*! Returns the date/time value stored in this QCborValue, if it is of the date/time extended type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QDateTime. \sa isDateTime(), isTag(), taggedValue() */ QDateTime QCborValue::toDateTime(const QDateTime &defaultValue) const { if (!container || !isDateTime() || container->elements.size() != 2) return defaultValue; Q_ASSERT(n == -1); const ByteData *byteData = container->byteData(1); if (!byteData) return defaultValue; // date/times are never empty, so this must be invalid // Our data must be US-ASCII. Q_ASSERT((container->elements.at(1).flags & Element::StringIsUtf16) == 0); return QDateTime::fromString(byteData->asLatin1(), Qt::ISODateWithMs); } #ifndef QT_BOOTSTRAPPED /*! Returns the URL value stored in this QCborValue, if it is of the URL extended type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QUrl. \sa isUrl(), isTag(), taggedValue() */ QUrl QCborValue::toUrl(const QUrl &defaultValue) const { if (!container || !isUrl() || container->elements.size() != 2) return defaultValue; Q_ASSERT(n == -1); const ByteData *byteData = container->byteData(1); if (!byteData) return QUrl(); // valid, empty URL return QUrl::fromEncoded(byteData->asByteArrayView()); } #endif #if QT_CONFIG(regularexpression) /*! Returns the regular expression value stored in this QCborValue, if it is of the regular expression pattern extended type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QRegularExpression. \sa isRegularExpression(), isTag(), taggedValue() */ QRegularExpression QCborValue::toRegularExpression(const QRegularExpression &defaultValue) const { if (!container || !isRegularExpression() || container->elements.size() != 2) return defaultValue; Q_ASSERT(n == -1); return QRegularExpression(container->stringAt(1)); } #endif // QT_CONFIG(regularexpression) /*! Returns the UUID value stored in this QCborValue, if it is of the UUID extended type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QUuid. \sa isUuid(), isTag(), taggedValue() */ QUuid QCborValue::toUuid(const QUuid &defaultValue) const { if (!container || !isUuid() || container->elements.size() != 2) return defaultValue; Q_ASSERT(n == -1); const ByteData *byteData = container->byteData(1); if (!byteData) return defaultValue; // UUIDs must always be 16 bytes, so this must be invalid return QUuid::fromRfc4122(byteData->asByteArrayView()); } /*! \fn QCborArray QCborValue::toArray() const \fn QCborArray QCborValue::toArray(const QCborArray &defaultValue) const Returns the array value stored in this QCborValue, if it is of the array type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QCborArray. \sa isArray(), isByteArray(), isMap(), isContainer(), toMap() */ /*! \fn QCborArray QCborValueRef::toArray() const \fn QCborArray QCborValueRef::toArray(const QCborArray &defaultValue) const \internal Returns the array value stored in this QCborValue, if it is of the array type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QCborArray. \sa isArray(), isByteArray(), isMap(), isContainer(), toMap() */ QCborArray QCborValue::toArray() const { return toArray(QCborArray()); } QCborArray QCborValue::toArray(const QCborArray &defaultValue) const { if (!isArray()) return defaultValue; QCborContainerPrivate *dd = nullptr; Q_ASSERT(n == -1 || container == nullptr); if (n < 0) dd = container; return dd ? QCborArray(*dd) : defaultValue; } /*! \fn QCborMap QCborValue::toMap() const \fn QCborMap QCborValue::toMap(const QCborMap &defaultValue) const Returns the map value stored in this QCborValue, if it is of the map type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QCborMap. \sa isMap(), isArray(), isContainer(), toArray() */ /*! \fn QCborMap QCborValueRef::toMap() const \fn QCborMap QCborValueRef::toMap(const QCborMap &defaultValue) const \internal Returns the map value stored in this QCborValue, if it is of the map type. Otherwise, it returns \a defaultValue. Note that this function performs no conversion from other types to QCborMap. \sa isMap(), isArray(), isContainer(), toArray() */ QCborMap QCborValue::toMap() const { return toMap(QCborMap()); } QCborMap QCborValue::toMap(const QCborMap &defaultValue) const { if (!isMap()) return defaultValue; QCborContainerPrivate *dd = nullptr; Q_ASSERT(n == -1 || container == nullptr); if (n < 0) dd = container; return dd ? QCborMap(*dd) : defaultValue; } /*! If this QCborValue is a QCborMap, searches elements for the value whose key matches \a key. If there's no key matching \a key in the map or if this QCborValue object is not a map, returns the undefined value. This function is equivalent to: \snippet code/src_corelib_serialization_qcborvalue.cpp 4 \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ const QCborValue QCborValue::operator[](const QString &key) const { if (isMap()) return toMap().value(key); return QCborValue(); } /*! \overload If this QCborValue is a QCborMap, searches elements for the value whose key matches \a key. If there's no key matching \a key in the map or if this QCborValue object is not a map, returns the undefined value. This function is equivalent to: \snippet code/src_corelib_serialization_qcborvalue.cpp 5 \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ const QCborValue QCborValue::operator[](QLatin1String key) const { if (isMap()) return toMap().value(key); return QCborValue(); } /*! \overload If this QCborValue is a QCborMap, searches elements for the value whose key matches \a key. If this is a QCborArray, returns the element whose index is \a key. If there's no matching value in the array or map, or if this QCborValue object is not an array or map, returns the undefined value. \sa operator[], QCborMap::operator[], QCborMap::value(), QCborMap::find(), QCborArray::operator[], QCborArray::at() */ const QCborValue QCborValue::operator[](qint64 key) const { if (isMap()) return toMap().value(key); if (isArray()) return toArray().at(key); return QCborValue(); } /*! \internal */ static Q_DECL_COLD_FUNCTION QCborMap arrayAsMap(const QCborArray &array) { if (array.size()) qWarning("Using CBOR array as map forced conversion"); QCborMap map; for (qsizetype i = array.size(); i-- > 0; ) { QCborValue entry = array.at(i); // Ignore padding entries that may have been added to grow the array // when inserting past its end: if (!entry.isInvalid()) map[i] = entry; } return map; } /*! \internal */ static QCborContainerPrivate *maybeDetach(QCborContainerPrivate *container, qsizetype size) { auto replace = QCborContainerPrivate::detach(container, size); Q_ASSERT(replace); if (replace != container) { if (container) container->deref(); replace->ref.ref(); } return replace; } /*! \internal */ static QCborContainerPrivate *maybeGrow(QCborContainerPrivate *container, qsizetype index) { auto replace = QCborContainerPrivate::grow(container, index); Q_ASSERT(replace); if (replace != container) { if (container) container->deref(); replace->ref.ref(); } if (replace->elements.size() == index) replace->append(Undefined()); else Q_ASSERT(replace->elements.size() > index); return replace; } /*! Returns a QCborValueRef that can be used to read or modify the entry in this, as a map, with the given \a key. When this QCborValue is a QCborMap, this function is equivalent to the matching operator[] on that map. Before returning the reference: if this QCborValue was an array, it is first converted to a map (so that \c{map[i]} is \c{array[i]} for each index, \c i, with valid \c{array[i]}); otherwise, if it was not a map it will be over-written with an empty map. \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ QCborValueRef QCborValue::operator[](const QString &key) { if (!isMap()) *this = QCborValue(isArray() ? arrayAsMap(toArray()) : QCborMap()); const qsizetype size = container ? container->elements.size() : 0; qsizetype index = size + 1; bool found = false; if (container) { QCborMap proxy(*container); auto it = proxy.constFind(key); if (it < proxy.constEnd()) { found = true; index = it.item.i; } } container = maybeDetach(container, size + (found ? 0 : 2)); Q_ASSERT(container); if (!found) { container->append(key); container->append(QCborValue()); } Q_ASSERT(index & 1 && !(container->elements.size() & 1)); Q_ASSERT(index < container->elements.size()); return { container, index }; } /*! \overload Returns a QCborValueRef that can be used to read or modify the entry in this, as a map, with the given \a key. When this QCborValue is a QCborMap, this function is equivalent to the matching operator[] on that map. Before returning the reference: if this QCborValue was an array, it is first converted to a map (so that \c{map[i]} is \c{array[i]} for each index, \c i, with valid \c{array[i]}); otherwise, if it was not a map it will be over-written with an empty map. \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ QCborValueRef QCborValue::operator[](QLatin1String key) { if (!isMap()) *this = QCborValue(isArray() ? arrayAsMap(toArray()) : QCborMap()); const qsizetype size = container ? container->elements.size() : 0; qsizetype index = size + 1; bool found = false; if (container) { QCborMap proxy(*container); auto it = proxy.constFind(key); if (it < proxy.constEnd()) { found = true; index = it.item.i; } } container = maybeDetach(container, size + (found ? 0 : 2)); Q_ASSERT(container); if (!found) { container->append(key); container->append(QCborValue()); } Q_ASSERT(index & 1 && !(container->elements.size() & 1)); Q_ASSERT(index < container->elements.size()); return { container, index }; } /*! \overload Returns a QCborValueRef that can be used to read or modify the entry in this, as a map or array, with the given \a key. When this QCborValue is a QCborMap or, for 0 <= key < 0x10000, a QCborArray, this function is equivalent to the matching operator[] on that map or array. Before returning the reference: if this QCborValue was an array but the key is out of range, the array is first converted to a map (so that \c{map[i]} is \c{array[i]} for each index, \c i, with valid \c{array[i]}); otherwise, if it was not a map it will be over-written with an empty map. \sa operator[], QCborMap::operator[], QCborMap::value(), QCborMap::find(), QCborArray::operator[], QCborArray::at() */ QCborValueRef QCborValue::operator[](qint64 key) { if (isArray() && key >= 0 && key < 0x10000) { container = maybeGrow(container, key); return { container, qsizetype(key) }; } if (!isMap()) *this = QCborValue(isArray() ? arrayAsMap(toArray()) : QCborMap()); const qsizetype size = container ? container->elements.size() : 0; Q_ASSERT(!(size & 1)); qsizetype index = size + 1; bool found = false; if (container) { QCborMap proxy(*container); auto it = proxy.constFind(key); if (it < proxy.constEnd()) { found = true; index = it.item.i; } } container = maybeDetach(container, size + (found ? 0 : 2)); Q_ASSERT(container); if (!found) { container->append(key); container->append(QCborValue()); } Q_ASSERT(index & 1 && !(container->elements.size() & 1)); Q_ASSERT(index < container->elements.size()); return { container, index }; } #if QT_CONFIG(cborstreamreader) enum { MaximumRecursionDepth = 1024 }; /*! Decodes one item from the CBOR stream found in \a reader and returns the equivalent representation. This function is recursive: if the item is a map or array, it will decode all items found in that map or array, until the outermost object is finished. This function need not be used on the root element of a \l QCborStreamReader. For example, the following code illustrates how to skip the CBOR signature tag from the beginning of a file: \snippet code/src_corelib_serialization_qcborvalue.cpp 6 The returned value may be partially complete and indistinguishable from a valid QCborValue even if the decoding failed. To determine if there was an error, check if \l{QCborStreamReader::lastError()}{reader.lastError()} is indicating an error condition. This function stops decoding immediately after the first error. \sa toCbor(), toDiagnosticNotation(), toVariant(), toJsonValue() */ QCborValue QCborValue::fromCbor(QCborStreamReader &reader) { QCborValue result; auto t = reader.type(); if (reader.lastError() != QCborError::NoError) t = QCborStreamReader::Invalid; switch (t) { // basic types, no container needed: case QCborStreamReader::UnsignedInteger: case QCborStreamReader::NegativeInteger: case QCborStreamReader::SimpleType: case QCborStreamReader::Float16: case QCborStreamReader::Float: case QCborStreamReader::Double: { Element e = decodeBasicValueFromCbor(reader); result.n = e.value; result.t = e.type; break; } case QCborStreamReader::Invalid: result.t = QCborValue::Invalid; break; // probably a decode error // strings case QCborStreamReader::ByteArray: case QCborStreamReader::String: result.n = 0; result.t = reader.isString() ? String : ByteArray; result.container = new QCborContainerPrivate; result.container->ref.ref(); result.container->decodeStringFromCbor(reader); break; // containers case QCborStreamReader::Array: case QCborStreamReader::Map: result.n = -1; result.t = reader.isArray() ? Array : Map; result.container = createContainerFromCbor(reader, MaximumRecursionDepth); break; // tag case QCborStreamReader::Tag: result = taggedValueFromCbor(reader, MaximumRecursionDepth); break; } return result; } /*! \overload Decodes one item from the CBOR stream found in the byte array \a ba and returns the equivalent representation. This function is recursive: if the item is a map or array, it will decode all items found in that map or array, until the outermost object is finished. This function stores the error state, if any, in the object pointed to by \a error, along with the offset of where the error occurred. If no error happened, it stores \l{QCborError}{NoError} in the error state and the number of bytes that it consumed (that is, it stores the offset for the first unused byte). Using that information makes it possible to parse further data that may exist in the same byte array. The returned value may be partially complete and indistinguishable from a valid QCborValue even if the decoding failed. To determine if there was an error, check if there was an error stored in \a error. This function stops decoding immediately after the first error. \sa toCbor(), toDiagnosticNotation(), toVariant(), toJsonValue() */ QCborValue QCborValue::fromCbor(const QByteArray &ba, QCborParserError *error) { QCborStreamReader reader(ba); QCborValue result = fromCbor(reader); if (error) { error->error = reader.lastError(); error->offset = reader.currentOffset(); } return result; } /*! \fn QCborValue QCborValue::fromCbor(const char *data, qsizetype len, QCborParserError *error) \fn QCborValue QCborValue::fromCbor(const quint8 *data, qsizetype len, QCborParserError *error) \overload Converts \a len bytes of \a data to a QByteArray and then calls the overload of this function that accepts a QByteArray, also passing \a error, if provided. */ #endif // QT_CONFIG(cborstreamreader) #if QT_CONFIG(cborstreamwriter) /*! Encodes this QCborValue object to its CBOR representation, using the options specified in \a opt, and return the byte array containing that representation. This function will not fail, except if this QCborValue or any of the contained items, if this is a map or array, are invalid. Invalid types are not produced normally by the API, but can result from decoding errors. By default, this function performs no transformation on the values in the QCborValue, writing all floating point directly as double-precision (\c double) types. If the \l{EncodingOption}{UseFloat} option is specified, it will use single precision (\c float) for any floating point value for which there's no loss of precision in using that representation. That includes infinities and NaN values. Similarly, if \l{EncodingOption}{UseFloat16} is specified, this function will try to use half-precision (\c qfloat16) floating point if the conversion to that results in no loss of precision. This is always true for infinities and NaN. If \l{EncodingOption}{UseIntegers} is specified, it will use integers for any floating point value that contains an actual integer. \sa fromCbor(), fromVariant(), fromJsonValue() */ QByteArray QCborValue::toCbor(EncodingOptions opt) { QByteArray result; QCborStreamWriter writer(&result); toCbor(writer, opt); return result; } /*! \overload Encodes this QCborValue object to its CBOR representation, using the options specified in \a opt, to the writer specified by \a writer. The same writer can be used by multiple QCborValues, for example, in order to encode different elements in a larger array. This function will not fail, except if this QCborValue or any of the contained items, if this is a map or array, are invalid. Invalid types are not produced normally by the API, but can result from decoding errors. By default, this function performs no transformation on the values in the QCborValue, writing all floating point directly as double-precision (binary64) types. If the \l{EncodingOption}{UseFloat} option is specified, it will use single precision (binary32) for any floating point value for which there's no loss of precision in using that representation. That includes infinities and NaN values. Similarly, if \l{EncodingOption}{UseFloat16} is specified, this function will try to use half-precision (binary16) floating point if the conversion to that results in no loss of precision. This is always true for infinities and NaN. If \l{EncodingOption}{UseIntegers} is specified, it will use integers for any floating point value that contains an actual integer. \sa fromCbor(), fromVariant(), fromJsonValue() */ Q_NEVER_INLINE void QCborValue::toCbor(QCborStreamWriter &writer, EncodingOptions opt) { if (isContainer() || isTag()) return encodeToCbor(writer, container, -type(), opt); if (container) return encodeToCbor(writer, container, n, opt); // very simple types if (isSimpleType()) return writer.append(toSimpleType()); switch (type()) { case Integer: return writer.append(n); case Double: return writeDoubleToCbor(writer, fp_helper(), opt); case Invalid: return; case SimpleType: case False: case True: case Null: case Undefined: // handled by "if (isSimpleType())" Q_UNREACHABLE(); break; case ByteArray: // Byte array with no container is empty return writer.appendByteString("", 0); case String: // String with no container is empty return writer.appendTextString("", 0); case Array: case Map: case Tag: // handled by "if (isContainer() || isTag())" Q_UNREACHABLE(); break; case DateTime: case Url: case RegularExpression: case Uuid: // not possible Q_UNREACHABLE(); break; } } void QCborValueRef::toCbor(QCborStreamWriter &writer, QCborValue::EncodingOptions opt) { concrete().toCbor(writer, opt); } #endif // QT_CONFIG(cborstreamwriter) void QCborValueRef::assign(QCborValueRef that, const QCborValue &other) { that.d->replaceAt(that.i, other); } void QCborValueRef::assign(QCborValueRef that, QCborValue &&other) { that.d->replaceAt(that.i, other, QCborContainerPrivate::MoveContainer); } void QCborValueRef::assign(QCborValueRef that, const QCborValueRef other) { // ### optimize? that = other.concrete(); } QCborValue QCborValueRef::concrete(QCborValueRef self) noexcept { return self.d->valueAt(self.i); } QCborValue::Type QCborValueRef::concreteType(QCborValueRef self) noexcept { return self.d->elements.at(self.i).type; } /*! If this QCborValueRef refers to a QCborMap, searches elements for the value whose key matches \a key. If there's no key matching \a key in the map or if this QCborValueRef object is not a map, returns the undefined value. This function is equivalent to: \code value.toMap().value(key); \endcode \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ const QCborValue QCborValueRef::operator[](const QString &key) const { const QCborValue item = d->valueAt(i); return item[key]; } /*! \overload If this QCborValueRef refers to a QCborMap, searches elements for the value whose key matches \a key. If there's no key matching \a key in the map or if this QCborValueRef object is not a map, returns the undefined value. This function is equivalent to: \code value.toMap().value(key); \endcode \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ const QCborValue QCborValueRef::operator[](QLatin1String key) const { const QCborValue item = d->valueAt(i); return item[key]; } /*! \overload If this QCborValueRef refers to a QCborMap, searches elements for the value whose key matches \a key. If this is a QCborArray, returns the element whose index is \a key. If there's no matching value in the array or map, or if this QCborValueRef object is not an array or map, returns the undefined value. \sa operator[], QCborMap::operator[], QCborMap::value(), QCborMap::find(), QCborArray::operator[], QCborArray::at() */ const QCborValue QCborValueRef::operator[](qint64 key) const { const QCborValue item = d->valueAt(i); return item[key]; } /*! Returns a QCborValueRef that can be used to read or modify the entry in this, as a map, with the given \a key. When this QCborValueRef refers to a QCborMap, this function is equivalent to the matching operator[] on that map. Before returning the reference: if the QCborValue referenced was an array, it is first converted to a map (so that \c{map[i]} is \c{array[i]} for each index, \c i, with valid \c{array[i]}); otherwise, if it was not a map it will be over-written with an empty map. \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ QCborValueRef QCborValueRef::operator[](const QString &key) { auto &e = d->elements[i]; qsizetype size = 0; if (e.flags & QtCbor::Element::IsContainer) { if (e.container) { if (e.type == QCborValue::Array) { QCborValue repack = QCborValue(arrayAsMap(QCborArray(*e.container))); qSwap(e.container, repack.container); } else if (e.type != QCborValue::Map) { e.container->deref(); e.container = nullptr; } } e.type = QCborValue::Map; if (e.container) size = e.container->elements.size(); } else { // Stomp any prior e.value, replace with a map (that we'll grow) e.container = nullptr; e.type = QCborValue::Map; e.flags = QtCbor::Element::IsContainer; } qsizetype index = size + 1; bool found = false; if (e.container) { QCborMap proxy(*e.container); auto it = proxy.constFind(key); if (it < proxy.constEnd()) { found = true; index = it.item.i; } } e.container = maybeDetach(e.container, size + (found ? 0 : 2)); Q_ASSERT(e.container); if (!found) { e.container->append(key); e.container->append(QCborValue()); } Q_ASSERT(index & 1 && !(e.container->elements.size() & 1)); Q_ASSERT(index < e.container->elements.size()); return { e.container, index }; } /*! \overload Returns a QCborValueRef that can be used to read or modify the entry in this, as a map, with the given \a key. When this QCborValue is a QCborMap, this function is equivalent to the matching operator[] on that map. Before returning the reference: if the QCborValue referenced was an array, it is first converted to a map (so that \c{map[i]} is \c{array[i]} for each index, \c i, with valid \c{array[i]}); otherwise, if it was not a map it will be over-written with an empty map. \sa operator[](qint64), QCborMap::operator[], QCborMap::value(), QCborMap::find() */ QCborValueRef QCborValueRef::operator[](QLatin1String key) { auto &e = d->elements[i]; qsizetype size = 0; if (e.flags & QtCbor::Element::IsContainer) { if (e.container) { if (e.type == QCborValue::Array) { QCborValue repack = QCborValue(arrayAsMap(QCborArray(*e.container))); qSwap(e.container, repack.container); } else if (e.type != QCborValue::Map) { e.container->deref(); e.container = nullptr; } } e.type = QCborValue::Map; if (e.container) size = e.container->elements.size(); } else { // Stomp any prior e.value, replace with a map (that we'll grow) e.container = nullptr; e.type = QCborValue::Map; e.flags = QtCbor::Element::IsContainer; } qsizetype index = size + 1; bool found = false; if (e.container) { QCborMap proxy(*e.container); auto it = proxy.constFind(key); if (it < proxy.constEnd()) { found = true; index = it.item.i; } } e.container = maybeDetach(e.container, size + (found ? 0 : 2)); Q_ASSERT(e.container); if (!found) { e.container->append(key); e.container->append(QCborValue()); } Q_ASSERT(index & 1 && !(e.container->elements.size() & 1)); Q_ASSERT(index < e.container->elements.size()); return { e.container, index }; } /*! \overload Returns a QCborValueRef that can be used to read or modify the entry in this, as a map or array, with the given \a key. When this QCborValue is a QCborMap or, for 0 <= key < 0x10000, a QCborArray, this function is equivalent to the matching operator[] on that map or array. Before returning the reference: if the QCborValue referenced was an array but the key is out of range, the array is first converted to a map (so that \c{map[i]} is \c{array[i]} for each index, \c i, with valid \c{array[i]}); otherwise, if it was not a map it will be over-written with an empty map. \sa operator[], QCborMap::operator[], QCborMap::value(), QCborMap::find(), QCborArray::operator[], QCborArray::at() */ QCborValueRef QCborValueRef::operator[](qint64 key) { auto &e = d->elements[i]; if (e.type == QCborValue::Array && key >= 0 && key < 0x10000) { e.container = maybeGrow(e.container, key); return { e.container, qsizetype(key) }; } qsizetype size = 0; if (e.flags & QtCbor::Element::IsContainer) { if (e.container) { if (e.type == QCborValue::Array) { QCborValue repack = QCborValue(arrayAsMap(QCborArray(*e.container))); qSwap(e.container, repack.container); } else if (e.type != QCborValue::Map) { e.container->deref(); e.container = nullptr; } } e.type = QCborValue::Map; if (e.container) size = e.container->elements.size(); } else { // Stomp any prior e.value, replace with a map (that we'll grow) e.container = nullptr; e.type = QCborValue::Map; e.flags = QtCbor::Element::IsContainer; } Q_ASSERT(!(size & 1)); qsizetype index = size + 1; bool found = false; if (e.container) { QCborMap proxy(*e.container); auto it = proxy.constFind(key); if (it < proxy.constEnd()) { found = true; index = it.item.i; } } e.container = maybeDetach(e.container, size + (found ? 0 : 2)); Q_ASSERT(e.container); if (!found) { e.container->append(key); e.container->append(QCborValue()); } Q_ASSERT(index & 1 && !(e.container->elements.size() & 1)); Q_ASSERT(index < e.container->elements.size()); return { e.container, index }; } inline QCborArray::QCborArray(QCborContainerPrivate &dd) noexcept : d(&dd) { } inline QCborMap::QCborMap(QCborContainerPrivate &dd) noexcept : d(&dd) { } uint qHash(const QCborValue &value, uint seed) { switch (value.type()) { case QCborValue::Integer: return qHash(value.toInteger(), seed); case QCborValue::ByteArray: return qHash(value.toByteArray(), seed); case QCborValue::String: return qHash(value.toString(), seed); case QCborValue::Array: return qHash(value.toArray(), seed); case QCborValue::Map: return qHash(value.toMap(), seed); case QCborValue::Tag: { QtPrivate::QHashCombine hash; seed = hash(seed, value.tag()); seed = hash(seed, value.taggedValue()); return seed; } case QCborValue::SimpleType: break; case QCborValue::False: return qHash(false, seed); case QCborValue::True: return qHash(true, seed); case QCborValue::Null: return qHash(nullptr, seed); case QCborValue::Undefined: return seed; case QCborValue::Double: return qHash(value.toDouble(), seed); case QCborValue::DateTime: return qHash(value.toDateTime(), seed); #ifndef QT_BOOTSTRAPPED case QCborValue::Url: return qHash(value.toUrl(), seed); #endif #if QT_CONFIG(regularexpression) case QCborValue::RegularExpression: return qHash(value.toRegularExpression(), seed); #endif case QCborValue::Uuid: return qHash(value.toUuid(), seed); case QCborValue::Invalid: return seed; default: break; } Q_ASSERT(value.isSimpleType()); return qHash(value.toSimpleType(), seed); } #if !defined(QT_NO_DEBUG_STREAM) static QDebug debugContents(QDebug &dbg, const QCborValue &v) { switch (v.type()) { case QCborValue::Integer: return dbg << v.toInteger(); case QCborValue::ByteArray: return dbg << "QByteArray(" << v.toByteArray() << ')'; case QCborValue::String: return dbg << v.toString(); case QCborValue::Array: return dbg << v.toArray(); case QCborValue::Map: return dbg << v.toMap(); case QCborValue::Tag: dbg << v.tag() << ", "; return debugContents(dbg, v.taggedValue()); case QCborValue::SimpleType: break; case QCborValue::True: return dbg << true; case QCborValue::False: return dbg << false; case QCborValue::Null: return dbg << "nullptr"; case QCborValue::Undefined: return dbg; case QCborValue::Double: { qint64 i = qint64(v.toDouble()); if (i == v.toDouble()) return dbg << i << ".0"; else return dbg << v.toDouble(); } case QCborValue::DateTime: return dbg << v.toDateTime(); #ifndef QT_BOOTSTRAPPED case QCborValue::Url: return dbg << v.toUrl(); #endif #if QT_CONFIG(regularexpression) case QCborValue::RegularExpression: return dbg << v.toRegularExpression(); #endif case QCborValue::Uuid: return dbg << v.toUuid(); case QCborValue::Invalid: return dbg << ""; default: break; } if (v.isSimpleType()) return dbg << v.toSimpleType(); return dbg << "'; } QDebug operator<<(QDebug dbg, const QCborValue &v) { QDebugStateSaver saver(dbg); dbg.nospace() << "QCborValue("; return debugContents(dbg, v) << ')'; } Q_CORE_EXPORT const char *qt_cbor_simpletype_id(QCborSimpleType st) { switch (st) { case QCborSimpleType::False: return "False"; case QCborSimpleType::True: return "True"; case QCborSimpleType::Null: return "Null"; case QCborSimpleType::Undefined: return "Undefined"; } return nullptr; } QDebug operator<<(QDebug dbg, QCborSimpleType st) { QDebugStateSaver saver(dbg); const char *id = qt_cbor_simpletype_id(st); if (id) return dbg.nospace() << "QCborSimpleType::" << id; return dbg.nospace() << "QCborSimpleType(" << uint(st) << ')'; } Q_CORE_EXPORT const char *qt_cbor_tag_id(QCborTag tag) { // Casting to QCborKnownTags's underlying type will make the comparison // below fail if the tag value is out of range. auto n = std::underlying_type::type(tag); if (QCborTag(n) == tag) { switch (QCborKnownTags(n)) { case QCborKnownTags::DateTimeString: return "DateTimeString"; case QCborKnownTags::UnixTime_t: return "UnixTime_t"; case QCborKnownTags::PositiveBignum: return "PositiveBignum"; case QCborKnownTags::NegativeBignum: return "NegativeBignum"; case QCborKnownTags::Decimal: return "Decimal"; case QCborKnownTags::Bigfloat: return "Bigfloat"; case QCborKnownTags::COSE_Encrypt0: return "COSE_Encrypt0"; case QCborKnownTags::COSE_Mac0: return "COSE_Mac0"; case QCborKnownTags::COSE_Sign1: return "COSE_Sign1"; case QCborKnownTags::ExpectedBase64url: return "ExpectedBase64url"; case QCborKnownTags::ExpectedBase64: return "ExpectedBase64"; case QCborKnownTags::ExpectedBase16: return "ExpectedBase16"; case QCborKnownTags::EncodedCbor: return "EncodedCbor"; case QCborKnownTags::Url: return "Url"; case QCborKnownTags::Base64url: return "Base64url"; case QCborKnownTags::Base64: return "Base64"; case QCborKnownTags::RegularExpression: return "RegularExpression"; case QCborKnownTags::MimeMessage: return "MimeMessage"; case QCborKnownTags::Uuid: return "Uuid"; case QCborKnownTags::COSE_Encrypt: return "COSE_Encrypt"; case QCborKnownTags::COSE_Mac: return "COSE_Mac"; case QCborKnownTags::COSE_Sign: return "COSE_Sign"; case QCborKnownTags::Signature: return "Signature"; } } return nullptr; } QDebug operator<<(QDebug dbg, QCborTag tag) { QDebugStateSaver saver(dbg); const char *id = qt_cbor_tag_id(tag); dbg.nospace() << "QCborTag("; if (id) dbg.nospace() << "QCborKnownTags::" << id; else dbg.nospace() << quint64(tag); return dbg << ')'; } QDebug operator<<(QDebug dbg, QCborKnownTags tag) { QDebugStateSaver saver(dbg); const char *id = qt_cbor_tag_id(QCborTag(int(tag))); if (id) return dbg.nospace() << "QCborKnownTags::" << id; return dbg.nospace() << "QCborKnownTags(" << int(tag) << ')'; } #endif #ifndef QT_NO_DATASTREAM QDataStream &operator<<(QDataStream &stream, const QCborValue &value) { stream << QCborValue(value).toCbor(); return stream; } QDataStream &operator>>(QDataStream &stream, QCborValue &value) { QByteArray buffer; stream >> buffer; QCborParserError parseError{}; value = QCborValue::fromCbor(buffer, &parseError); if (parseError.error) stream.setStatus(QDataStream::ReadCorruptData); return stream; } #endif QT_END_NAMESPACE #include "qcborarray.cpp" #include "qcbormap.cpp" #ifndef QT_NO_QOBJECT #include "moc_qcborvalue.cpp" #endif