/**************************************************************************** ** ** Copyright (C) 2020 The Qt Company Ltd. ** Copyright (C) 2016 Intel Corporation. ** Copyright (C) 2019 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com, author Giuseppe D'Angelo ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qbytearray.h" #include "qbytearraymatcher.h" #include "private/qtools_p.h" #include "qhashfunctions.h" #include "qlist.h" #include "qlocale_p.h" #include "qlocale_tools_p.h" #include "private/qnumeric_p.h" #include "private/qsimd_p.h" #include "qstringalgorithms_p.h" #include "qscopedpointer.h" #include "qbytearray_p.h" #include #include #ifndef QT_NO_COMPRESS #include #include #endif #include #include #include #include #define IS_RAW_DATA(d) ((d)->flags() & QArrayData::RawDataType) QT_BEGIN_NAMESPACE const char QByteArray::_empty = '\0'; // ASCII case system, used by QByteArray::to{Upper,Lower}() and qstr(n)icmp(): static constexpr inline uchar asciiUpper(uchar c) { return c >= 'a' && c <= 'z' ? c & ~0x20 : c; } static constexpr inline uchar asciiLower(uchar c) { return c >= 'A' && c <= 'Z' ? c | 0x20 : c; } qsizetype qFindByteArray( const char *haystack0, qsizetype haystackLen, qsizetype from, const char *needle0, qsizetype needleLen); /***************************************************************************** Safe and portable C string functions; extensions to standard string.h *****************************************************************************/ /*! \relates QByteArray Returns a duplicate string. Allocates space for a copy of \a src, copies it, and returns a pointer to the copy. If \a src is \nullptr, it immediately returns \nullptr. Ownership is passed to the caller, so the returned string must be deleted using \c delete[]. */ char *qstrdup(const char *src) { if (!src) return nullptr; char *dst = new char[strlen(src) + 1]; return qstrcpy(dst, src); } /*! \relates QByteArray Copies all the characters up to and including the '\\0' from \a src into \a dst and returns a pointer to \a dst. If \a src is \nullptr, it immediately returns \nullptr. This function assumes that \a dst is large enough to hold the contents of \a src. \note If \a dst and \a src overlap, the behavior is undefined. \sa qstrncpy() */ char *qstrcpy(char *dst, const char *src) { if (!src) return nullptr; #ifdef Q_CC_MSVC const size_t len = strlen(src); // This is actually not secure!!! It will be fixed // properly in a later release! if (len >= 0 && strcpy_s(dst, len+1, src) == 0) return dst; return nullptr; #else return strcpy(dst, src); #endif } /*! \relates QByteArray A safe \c strncpy() function. Copies at most \a len bytes from \a src (stopping at \a len or the terminating '\\0' whichever comes first) into \a dst and returns a pointer to \a dst. Guarantees that \a dst is '\\0'-terminated. If \a src or \a dst is \nullptr, returns \nullptr immediately. This function assumes that \a dst is at least \a len characters long. \note If \a dst and \a src overlap, the behavior is undefined. \sa qstrcpy() */ char *qstrncpy(char *dst, const char *src, size_t len) { if (!src || !dst) return nullptr; if (len > 0) { #ifdef Q_CC_MSVC strncpy_s(dst, len, src, len - 1); #else strncpy(dst, src, len); #endif dst[len-1] = '\0'; } return dst; } /*! \fn size_t qstrlen(const char *str) \relates QByteArray A safe \c strlen() function. Returns the number of characters that precede the terminating '\\0', or 0 if \a str is \nullptr. \sa qstrnlen() */ /*! \fn size_t qstrnlen(const char *str, size_t maxlen) \relates QByteArray \since 4.2 A safe \c strnlen() function. Returns the number of characters that precede the terminating '\\0', but at most \a maxlen. If \a str is \nullptr, returns 0. \sa qstrlen() */ /*! \relates QByteArray A safe \c strcmp() function. Compares \a str1 and \a str2. Returns a negative value if \a str1 is less than \a str2, 0 if \a str1 is equal to \a str2 or a positive value if \a str1 is greater than \a str2. If both strings are \nullptr, they are deemed equal; otherwise, if either is \nullptr, it is treated as less than the other (even if the other is an empty string). \sa qstrncmp(), qstricmp(), qstrnicmp(), {Character Case}, QByteArray::compare() */ int qstrcmp(const char *str1, const char *str2) { return (str1 && str2) ? strcmp(str1, str2) : (str1 ? 1 : (str2 ? -1 : 0)); } /*! \fn int qstrncmp(const char *str1, const char *str2, size_t len); \relates QByteArray A safe \c strncmp() function. Compares at most \a len bytes of \a str1 and \a str2. Returns a negative value if \a str1 is less than \a str2, 0 if \a str1 is equal to \a str2 or a positive value if \a str1 is greater than \a str2. If both strings are \nullptr, they are deemed equal; otherwise, if either is \nullptr, it is treated as less than the other (even if the other is an empty string or \a len is 0). \sa qstrcmp(), qstricmp(), qstrnicmp(), {Character Case}, QByteArray::compare() */ /*! \relates QByteArray A safe \c stricmp() function. Compares \a str1 and \a str2, ignoring differences in the case of any ASCII characters. Returns a negative value if \a str1 is less than \a str2, 0 if \a str1 is equal to \a str2 or a positive value if \a str1 is greater than \a str2. If both strings are \nullptr, they are deemed equal; otherwise, if either is \nullptr, it is treated as less than the other (even if the other is an empty string). \sa qstrcmp(), qstrncmp(), qstrnicmp(), {Character Case}, QByteArray::compare() */ int qstricmp(const char *str1, const char *str2) { const uchar *s1 = reinterpret_cast(str1); const uchar *s2 = reinterpret_cast(str2); if (!s1) return s2 ? -1 : 0; if (!s2) return 1; enum { Incomplete = 256 }; qptrdiff offset = 0; auto innerCompare = [=, &offset](qptrdiff max, bool unlimited) { max += offset; do { uchar c = s1[offset]; if (int res = asciiLower(c) - asciiLower(s2[offset])) return res; if (!c) return 0; ++offset; } while (unlimited || offset < max); return int(Incomplete); }; #if defined(__SSE4_1__) && !(defined(__SANITIZE_ADDRESS__) || __has_feature(address_sanitizer)) enum { PageSize = 4096, PageMask = PageSize - 1 }; const __m128i zero = _mm_setzero_si128(); forever { // Calculate how many bytes we can load until we cross a page boundary // for either source. This isn't an exact calculation, just something // very quick. quintptr u1 = quintptr(s1 + offset); quintptr u2 = quintptr(s2 + offset); size_t n = PageSize - ((u1 | u2) & PageMask); qptrdiff maxoffset = offset + n; for ( ; offset + 16 <= maxoffset; offset += sizeof(__m128i)) { // load 16 bytes from either source __m128i a = _mm_loadu_si128(reinterpret_cast(s1 + offset)); __m128i b = _mm_loadu_si128(reinterpret_cast(s2 + offset)); // compare the two against each other __m128i cmp = _mm_cmpeq_epi8(a, b); // find NUL terminators too cmp = _mm_min_epu8(cmp, a); cmp = _mm_cmpeq_epi8(cmp, zero); // was there any difference or a NUL? uint mask = _mm_movemask_epi8(cmp); if (mask) { // yes, find out where uint start = qCountTrailingZeroBits(mask); uint end = sizeof(mask) * 8 - qCountLeadingZeroBits(mask); Q_ASSUME(end >= start); offset += start; n = end - start; break; } } // using SIMD could cause a page fault, so iterate byte by byte int res = innerCompare(n, false); if (res != Incomplete) return res; } #endif return innerCompare(-1, true); } /*! \relates QByteArray A safe \c strnicmp() function. Compares at most \a len bytes of \a str1 and \a str2, ignoring differences in the case of any ASCII characters. Returns a negative value if \a str1 is less than \a str2, 0 if \a str1 is equal to \a str2 or a positive value if \a str1 is greater than \a str2. If both strings are \nullptr, they are deemed equal; otherwise, if either is \nullptr, it is treated as less than the other (even if the other is an empty string or \a len is 0). \sa qstrcmp(), qstrncmp(), qstricmp(), {Character Case}, QByteArray::compare() */ int qstrnicmp(const char *str1, const char *str2, size_t len) { const uchar *s1 = reinterpret_cast(str1); const uchar *s2 = reinterpret_cast(str2); if (!s1 || !s2) return s1 ? 1 : (s2 ? -1 : 0); for (; len--; ++s1, ++s2) { const uchar c = *s1; if (int res = asciiLower(c) - asciiLower(*s2)) return res; if (!c) // strings are equal break; } return 0; } /*! \internal \since 5.12 A helper for QByteArray::compare. Compares \a len1 bytes from \a str1 to \a len2 bytes from \a str2. If \a len2 is -1, then \a str2 is expected to be '\\0'-terminated. */ int qstrnicmp(const char *str1, qsizetype len1, const char *str2, qsizetype len2) { Q_ASSERT(len1 >= 0); Q_ASSERT(len2 >= -1); const uchar *s1 = reinterpret_cast(str1); const uchar *s2 = reinterpret_cast(str2); if (!s1 || !len1) { if (len2 == 0) return 0; if (len2 == -1) return (!s2 || !*s2) ? 0 : -1; Q_ASSERT(s2); return -1; } if (!s2) return len1 == 0 ? 0 : 1; if (len2 == -1) { // null-terminated str2 qsizetype i; for (i = 0; i < len1; ++i) { const uchar c = s2[i]; if (!c) return 1; if (int res = asciiLower(s1[i]) - asciiLower(c)) return res; } return s2[i] ? -1 : 0; } else { // not null-terminated const qsizetype len = qMin(len1, len2); for (qsizetype i = 0; i < len; ++i) { if (int res = asciiLower(s1[i]) - asciiLower(s2[i])) return res; } if (len1 == len2) return 0; return len1 < len2 ? -1 : 1; } } /*! \internal */ int QtPrivate::compareMemory(QByteArrayView lhs, QByteArrayView rhs) { if (!lhs.isNull() && !rhs.isNull()) { int ret = memcmp(lhs.data(), rhs.data(), qMin(lhs.size(), rhs.size())); if (ret != 0) return ret; } // they matched qMin(l1, l2) bytes // so the longer one is lexically after the shorter one return lhs.size() == rhs.size() ? 0 : lhs.size() > rhs.size() ? 1 : -1; } // the CRC table below is created by the following piece of code #if 0 static void createCRC16Table() // build CRC16 lookup table { unsigned int i; unsigned int j; unsigned short crc_tbl[16]; unsigned int v0, v1, v2, v3; for (i = 0; i < 16; i++) { v0 = i & 1; v1 = (i >> 1) & 1; v2 = (i >> 2) & 1; v3 = (i >> 3) & 1; j = 0; #undef SET_BIT #define SET_BIT(x, b, v) (x) |= (v) << (b) SET_BIT(j, 0, v0); SET_BIT(j, 7, v0); SET_BIT(j, 12, v0); SET_BIT(j, 1, v1); SET_BIT(j, 8, v1); SET_BIT(j, 13, v1); SET_BIT(j, 2, v2); SET_BIT(j, 9, v2); SET_BIT(j, 14, v2); SET_BIT(j, 3, v3); SET_BIT(j, 10, v3); SET_BIT(j, 15, v3); crc_tbl[i] = j; } printf("static const quint16 crc_tbl[16] = {\n"); for (int i = 0; i < 16; i +=4) printf(" 0x%04x, 0x%04x, 0x%04x, 0x%04x,\n", crc_tbl[i], crc_tbl[i+1], crc_tbl[i+2], crc_tbl[i+3]); printf("};\n"); } #endif static const quint16 crc_tbl[16] = { 0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387, 0x8408, 0x9489, 0xa50a, 0xb58b, 0xc60c, 0xd68d, 0xe70e, 0xf78f }; /*! \relates QByteArray \since 5.9 Returns the CRC-16 checksum of \a data. The checksum is independent of the byte order (endianness) and will be calculated accorded to the algorithm published in \a standard. By default the algorithm published in ISO 3309 (Qt::ChecksumIso3309) is used. \note This function is a 16-bit cache conserving (16 entry table) implementation of the CRC-16-CCITT algorithm. */ quint16 qChecksum(QByteArrayView data, Qt::ChecksumType standard) { quint16 crc = 0x0000; switch (standard) { case Qt::ChecksumIso3309: crc = 0xffff; break; case Qt::ChecksumItuV41: crc = 0x6363; break; } uchar c; const uchar *p = reinterpret_cast(data.data()); qsizetype len = data.size(); while (len--) { c = *p++; crc = ((crc >> 4) & 0x0fff) ^ crc_tbl[((crc ^ c) & 15)]; c >>= 4; crc = ((crc >> 4) & 0x0fff) ^ crc_tbl[((crc ^ c) & 15)]; } switch (standard) { case Qt::ChecksumIso3309: crc = ~crc; break; case Qt::ChecksumItuV41: break; } return crc & 0xffff; } /*! \fn QByteArray qCompress(const QByteArray& data, int compressionLevel) \relates QByteArray Compresses the \a data byte array and returns the compressed data in a new byte array. The \a compressionLevel parameter specifies how much compression should be used. Valid values are between 0 and 9, with 9 corresponding to the greatest compression (i.e. smaller compressed data) at the cost of using a slower algorithm. Smaller values (8, 7, ..., 1) provide successively less compression at slightly faster speeds. The value 0 corresponds to no compression at all. The default value is -1, which specifies zlib's default compression. \sa qUncompress(const QByteArray &data) */ /*! \relates QByteArray \overload Compresses the first \a nbytes of \a data at compression level \a compressionLevel and returns the compressed data in a new byte array. */ #ifndef QT_NO_COMPRESS QByteArray qCompress(const uchar* data, qsizetype nbytes, int compressionLevel) { if (nbytes == 0) { return QByteArray(4, '\0'); } if (!data) { qWarning("qCompress: Data is null"); return QByteArray(); } if (compressionLevel < -1 || compressionLevel > 9) compressionLevel = -1; ulong len = nbytes + nbytes / 100 + 13; QByteArray bazip; int res; do { bazip.resize(len + 4); res = ::compress2((uchar*)bazip.data()+4, &len, data, nbytes, compressionLevel); switch (res) { case Z_OK: bazip.resize(len + 4); bazip[0] = (nbytes & 0xff000000) >> 24; bazip[1] = (nbytes & 0x00ff0000) >> 16; bazip[2] = (nbytes & 0x0000ff00) >> 8; bazip[3] = (nbytes & 0x000000ff); break; case Z_MEM_ERROR: qWarning("qCompress: Z_MEM_ERROR: Not enough memory"); bazip.resize(0); break; case Z_BUF_ERROR: len *= 2; break; } } while (res == Z_BUF_ERROR); return bazip; } #endif /*! \fn QByteArray qUncompress(const QByteArray &data) \relates QByteArray Uncompresses the \a data byte array and returns a new byte array with the uncompressed data. Returns an empty QByteArray if the input data was corrupt. This function will uncompress data compressed with qCompress() from this and any earlier Qt version, back to Qt 3.1 when this feature was added. \b{Note:} If you want to use this function to uncompress external data that was compressed using zlib, you first need to prepend a four byte header to the byte array containing the data. The header must contain the expected length (in bytes) of the uncompressed data, expressed as an unsigned, big-endian, 32-bit integer. \sa qCompress() */ #ifndef QT_NO_COMPRESS static QByteArray invalidCompressedData() { qWarning("qUncompress: Input data is corrupted"); return QByteArray(); } /*! \relates QByteArray \overload Uncompresses the first \a nbytes of \a data and returns a new byte array with the uncompressed data. */ QByteArray qUncompress(const uchar* data, qsizetype nbytes) { if (!data) { qWarning("qUncompress: Data is null"); return QByteArray(); } if (nbytes <= 4) { if (nbytes < 4 || (data[0]!=0 || data[1]!=0 || data[2]!=0 || data[3]!=0)) qWarning("qUncompress: Input data is corrupted"); return QByteArray(); } size_t expectedSize = size_t((data[0] << 24) | (data[1] << 16) | (data[2] << 8) | (data[3] )); size_t len = qMax(expectedSize, 1ul); const size_t maxPossibleSize = MaxAllocSize - sizeof(QByteArray::Data); if (Q_UNLIKELY(len >= maxPossibleSize)) { // QByteArray does not support that huge size anyway. return invalidCompressedData(); } QByteArray::DataPointer d(QByteArray::Data::allocate(len)); if (Q_UNLIKELY(d.data() == nullptr)) return invalidCompressedData(); forever { const auto alloc = len; int res = ::uncompress((uchar*)d.data(), reinterpret_cast(&len), data+4, nbytes-4); switch (res) { case Z_OK: { Q_ASSERT(len <= alloc); Q_UNUSED(alloc); d.data()[len] = '\0'; d.size = len; return QByteArray(d); } case Z_MEM_ERROR: qWarning("qUncompress: Z_MEM_ERROR: Not enough memory"); return QByteArray(); case Z_BUF_ERROR: len *= 2; if (Q_UNLIKELY(len >= maxPossibleSize)) { // QByteArray does not support that huge size anyway. return invalidCompressedData(); } else { // grow the block d->reallocate(d->allocatedCapacity()*2, QArrayData::Grow); if (Q_UNLIKELY(d.data() == nullptr)) return invalidCompressedData(); } continue; case Z_DATA_ERROR: qWarning("qUncompress: Z_DATA_ERROR: Input data is corrupted"); return QByteArray(); } } } #endif /*! \class QByteArray \inmodule QtCore \brief The QByteArray class provides an array of bytes. \ingroup tools \ingroup shared \ingroup string-processing \reentrant QByteArray can be used to store both raw bytes (including '\\0's) and traditional 8-bit '\\0'-terminated strings. Using QByteArray is much more convenient than using \c{const char *}. Behind the scenes, it always ensures that the data is followed by a '\\0' terminator, and uses \l{implicit sharing} (copy-on-write) to reduce memory usage and avoid needless copying of data. In addition to QByteArray, Qt also provides the QString class to store string data. For most purposes, QString is the class you want to use. It understands its content as Unicode text (encoded using UTF-16) where QByteArray aims to avoid assumptions about the encoding or semantics of the bytes it stores (aside from a few legacy cases where it uses ASCII). Furthermore, QString is used throughout in the Qt API. The two main cases where QByteArray is appropriate are when you need to store raw binary data, and when memory conservation is critical (e.g., with Qt for Embedded Linux). One way to initialize a QByteArray is simply to pass a \c{const char *} to its constructor. For example, the following code creates a byte array of size 5 containing the data "Hello": \snippet code/src_corelib_text_qbytearray.cpp 0 Although the size() is 5, the byte array also maintains an extra '\\0' byte at the end so that if a function is used that asks for a pointer to the underlying data (e.g. a call to data()), the data pointed to is guaranteed to be '\\0'-terminated. QByteArray makes a deep copy of the \c{const char *} data, so you can modify it later without experiencing side effects. (If, for example for performance reasons, you don't want to take a deep copy of the data, use QByteArray::fromRawData() instead.) Another approach is to set the size of the array using resize() and to initialize the data byte by byte. QByteArray uses 0-based indexes, just like C++ arrays. To access the byte at a particular index position, you can use operator[](). On non-const byte arrays, operator[]() returns a reference to a byte that can be used on the left side of an assignment. For example: \snippet code/src_corelib_text_qbytearray.cpp 1 For read-only access, an alternative syntax is to use at(): \snippet code/src_corelib_text_qbytearray.cpp 2 at() can be faster than operator[](), because it never causes a \l{deep copy} to occur. To extract many bytes at a time, use first(), last(), or sliced(). A QByteArray can embed '\\0' bytes. The size() function always returns the size of the whole array, including embedded '\\0' bytes, but excluding the terminating '\\0' added by QByteArray. For example: \snippet code/src_corelib_text_qbytearray.cpp 48 If you want to obtain the length of the data up to and excluding the first '\\0' byte, call qstrlen() on the byte array. After a call to resize(), newly allocated bytes have undefined values. To set all the bytes to a particular value, call fill(). To obtain a pointer to the actual bytes, call data() or constData(). These functions return a pointer to the beginning of the data. The pointer is guaranteed to remain valid until a non-const function is called on the QByteArray. It is also guaranteed that the data ends with a '\\0' byte unless the QByteArray was created from \l{fromRawData()}{raw data}. This '\\0' byte is automatically provided by QByteArray and is not counted in size(). QByteArray provides the following basic functions for modifying the byte data: append(), prepend(), insert(), replace(), and remove(). For example: \snippet code/src_corelib_text_qbytearray.cpp 3 In the above example the replace() function's first two arguments are the position from which to start replacing and the number of bytes that should be replaced. When data-modifying functions increase the size of the array, they may lead to reallocation of memory for the QByteArray object. When this happens, QByteArray expands by more than it immediately needs so as to have space for further expansion without reallocation until the size of the array has greatly increased. The insert(), remove() and, when replacing a sub-array with one of different size, replace() functions can be slow (\l{linear time}) for large arrays, because they require moving many bytes in the array by at least one position in memory. If you are building a QByteArray gradually and know in advance approximately how many bytes the QByteArray will contain, you can call reserve(), asking QByteArray to preallocate a certain amount of memory. You can also call capacity() to find out how much memory the QByteArray actually has allocated. Note that using non-const operators and functions can cause QByteArray to do a deep copy of the data, due to \l{implicit sharing}. QByteArray provides \l{STL-style iterators} (QByteArray::const_iterator and QByteArray::iterator). In practice, iterators are handy when working with generic algorithms provided by the C++ standard library. \note Iterators and references to individual QByteArray elements are subject to stability issues. They are often invalidated when a QByteArray-modifying operation (e.g. insert() or remove()) is called. When stability and iterator-like functionality is required, you should use indexes instead of iterators as they are not tied to QByteArray's internal state and thus do not get invalidated. \note Iterators over a QByteArray, and references to individual bytes within one, cannot be relied on to remain valid when any non-const method of the QByteArray is called. Accessing such an iterator or reference after the call to a non-const method leads to undefined behavior. When stability for iterator-like functionality is required, you should use indexes instead of iterators as they are not tied to QByteArray's internal state and thus do not get invalidated. If you want to find all occurrences of a particular byte or sequence of bytes in a QByteArray, use indexOf() or lastIndexOf(). The former searches forward starting from a given index position, the latter searches backward. Both return the index position of the byte sequence if they find it; otherwise, they return -1. For example, here's a typical loop that finds all occurrences of a particular string: \snippet code/src_corelib_text_qbytearray.cpp 4 If you simply want to check whether a QByteArray contains a particular byte sequence, use contains(). If you want to find out how many times a particular byte sequence occurs in the byte array, use count(). If you want to replace all occurrences of a particular value with another, use one of the two-parameter replace() overloads. \l{QByteArray}s can be compared using overloaded operators such as operator<(), operator<=(), operator==(), operator>=(), and so on. The comparison is based exclusively on the numeric values of the bytes and is very fast, but is not what a human would expect. QString::localeAwareCompare() is a better choice for sorting user-interface strings. For historical reasons, QByteArray distinguishes between a null byte array and an empty byte array. A \e null byte array is a byte array that is initialized using QByteArray's default constructor or by passing (const char *)0 to the constructor. An \e empty byte array is any byte array with size 0. A null byte array is always empty, but an empty byte array isn't necessarily null: \snippet code/src_corelib_text_qbytearray.cpp 5 All functions except isNull() treat null byte arrays the same as empty byte arrays. For example, data() returns a valid pointer (\e not nullptr) to a '\\0' byte for a null byte array and QByteArray() compares equal to QByteArray(""). We recommend that you always use isEmpty() and avoid isNull(). \section1 Maximum size and out-of-memory conditions The maximum size of QByteArray depends on the architecture. Most 64-bit systems can allocate more than 2 GB of memory, with a typical limit of 2^63 bytes. The actual value also depends on the overhead required for managing the data block. As a result, you can expect the maximum size of 2 GB minus overhead on 32-bit platforms, and 2^63 bytes minus overhead on 64-bit platforms. The number of elements that can be stored in a QByteArray is this maximum size. When memory allocation fails, QByteArray throws a \c std::bad_alloc exception if the application is being compiled with exception support. Out of memory conditions in Qt containers are the only case where Qt will throw exceptions. If exceptions are disabled, then running out of memory is undefined behavior. Note that the operating system may impose further limits on applications holding a lot of allocated memory, especially large, contiguous blocks. Such considerations, the configuration of such behavior or any mitigation are outside the scope of the QByteArray API. \section1 C locale and ASCII functions QByteArray generally handles data as bytes, without presuming any semantics; where it does presume semantics, it uses the C locale and ASCII encoding. Standard Unicode encodings are supported by QString, other encodings may be supported using QStringEncoder and QStringDecoder to convert to Unicode. For locale-specific interpretation of text, use QLocale or QString. \section2 C Strings Traditional C strings, also known as '\\0'-terminated strings, are sequences of bytes, specified by a start-point and implicitly including each byte up to, but not including, the first '\\0' byte thereafter. Methods that accept such a pointer, without a length, will interpret it as this sequence of bytes. Such a sequence, by construction, cannot contain a '\\0' byte. Other overloads accept a start-pointer and a byte-count; these use the given number of bytes, following the start address, regardless of whether any of them happen to be '\\0' bytes. In some cases, where there is no overload taking only a pointer, passing a length of -1 will cause the method to use the offset of the first '\\0' byte after the pointer as the length; a length of -1 should only be passed if the method explicitly says it does this (in which case it is typically a default argument). \section2 Spacing Characters A frequent requirement is to remove spacing characters from a byte array ('\\n', '\\t', ' ', etc.). If you want to remove spacing from both ends of a QByteArray, use trimmed(). If you want to also replace each run of spacing characters with a single space character within the byte array, use simplified(). Only ASCII spacing characters are recognized for these purposes. \section2 Number-String Conversions Functions that perform conversions between numeric data types and strings are performed in the C locale, regardless of the user's locale settings. Use QLocale to perform locale-aware conversions between numbers and strings. \section2 Character Case In QByteArray, the notion of uppercase and lowercase and of case-independent comparison is limited to ASCII. Non-ASCII characters are treated as caseless, since their case depends on encoding. This affects functions that support a case insensitive option or that change the case of their arguments. Functions that this affects include contains(), indexOf(), lastIndexOf(), isLower(), isUpper(), toLower() and toUpper(). This issue does not apply to \l{QString}s since they represent characters using Unicode. \sa QByteArrayView, QString, QBitArray */ /*! \enum QByteArray::Base64Option \since 5.2 This enum contains the options available for encoding and decoding Base64. Base64 is defined by \l{RFC 4648}, with the following options: \value Base64Encoding (default) The regular Base64 alphabet, called simply "base64" \value Base64UrlEncoding An alternate alphabet, called "base64url", which replaces two characters in the alphabet to be more friendly to URLs. \value KeepTrailingEquals (default) Keeps the trailing padding equal signs at the end of the encoded data, so the data is always a size multiple of four. \value OmitTrailingEquals Omits adding the padding equal signs at the end of the encoded data. \value IgnoreBase64DecodingErrors When decoding Base64-encoded data, ignores errors in the input; invalid characters are simply skipped. This enum value has been added in Qt 5.15. \value AbortOnBase64DecodingErrors When decoding Base64-encoded data, stops at the first decoding error. This enum value has been added in Qt 5.15. QByteArray::fromBase64Encoding() and QByteArray::fromBase64() ignore the KeepTrailingEquals and OmitTrailingEquals options. If the IgnoreBase64DecodingErrors option is specified, they will not flag errors in case trailing equal signs are missing or if there are too many of them. If instead the AbortOnBase64DecodingErrors is specified, then the input must either have no padding or have the correct amount of equal signs. */ /*! \fn QByteArray::iterator QByteArray::begin() Returns an \l{STL-style iterators}{STL-style iterator} pointing to the first byte in the byte-array. //! [iterator-invalidation-func-desc] \warning The returned iterator is invalidated on detachment or when the QByteArray is modified. //! [iterator-invalidation-func-desc] \sa constBegin(), end() */ /*! \fn QByteArray::const_iterator QByteArray::begin() const \overload begin() */ /*! \fn QByteArray::const_iterator QByteArray::cbegin() const \since 5.0 Returns a const \l{STL-style iterators}{STL-style iterator} pointing to the first byte in the byte-array. \include qbytearray.cpp iterator-invalidation-func-desc \sa begin(), cend() */ /*! \fn QByteArray::const_iterator QByteArray::constBegin() const Returns a const \l{STL-style iterators}{STL-style iterator} pointing to the first byte in the byte-array. \include qbytearray.cpp iterator-invalidation-func-desc \sa begin(), constEnd() */ /*! \fn QByteArray::iterator QByteArray::end() Returns an \l{STL-style iterators}{STL-style iterator} pointing just after the last byte in the byte-array. \include qbytearray.cpp iterator-invalidation-func-desc \sa begin(), constEnd() */ /*! \fn QByteArray::const_iterator QByteArray::end() const \overload end() */ /*! \fn QByteArray::const_iterator QByteArray::cend() const \since 5.0 Returns a const \l{STL-style iterators}{STL-style iterator} pointing just after the last byte in the byte-array. \include qbytearray.cpp iterator-invalidation-func-desc \sa cbegin(), end() */ /*! \fn QByteArray::const_iterator QByteArray::constEnd() const Returns a const \l{STL-style iterators}{STL-style iterator} pointing just after the last byte in the byte-array. \include qbytearray.cpp iterator-invalidation-func-desc \sa constBegin(), end() */ /*! \fn QByteArray::reverse_iterator QByteArray::rbegin() \since 5.6 Returns a \l{STL-style iterators}{STL-style} reverse iterator pointing to the first byte in the byte-array, in reverse order. \include qbytearray.cpp iterator-invalidation-func-desc \sa begin(), crbegin(), rend() */ /*! \fn QByteArray::const_reverse_iterator QByteArray::rbegin() const \since 5.6 \overload */ /*! \fn QByteArray::const_reverse_iterator QByteArray::crbegin() const \since 5.6 Returns a const \l{STL-style iterators}{STL-style} reverse iterator pointing to the first byte in the byte-array, in reverse order. \include qbytearray.cpp iterator-invalidation-func-desc \sa begin(), rbegin(), rend() */ /*! \fn QByteArray::reverse_iterator QByteArray::rend() \since 5.6 Returns a \l{STL-style iterators}{STL-style} reverse iterator pointing just after the last byte in the byte-array, in reverse order. \include qbytearray.cpp iterator-invalidation-func-desc \sa end(), crend(), rbegin() */ /*! \fn QByteArray::const_reverse_iterator QByteArray::rend() const \since 5.6 \overload */ /*! \fn QByteArray::const_reverse_iterator QByteArray::crend() const \since 5.6 Returns a const \l{STL-style iterators}{STL-style} reverse iterator pointing just after the last byte in the byte-array, in reverse order. \include qbytearray.cpp iterator-invalidation-func-desc \sa end(), rend(), rbegin() */ /*! \fn void QByteArray::push_back(const QByteArray &other) This function is provided for STL compatibility. It is equivalent to append(\a other). */ /*! \fn void QByteArray::push_back(QByteArrayView str) \since 6.0 \overload Same as append(\a str). */ /*! \fn void QByteArray::push_back(const char *str) \overload Same as append(\a str). */ /*! \fn void QByteArray::push_back(char ch) \overload Same as append(\a ch). */ /*! \fn void QByteArray::push_front(const QByteArray &other) This function is provided for STL compatibility. It is equivalent to prepend(\a other). */ /*! \fn void QByteArray::push_front(QByteArrayView str) \since 6.0 \overload Same as prepend(\a str). */ /*! \fn void QByteArray::push_front(const char *str) \overload Same as prepend(\a str). */ /*! \fn void QByteArray::push_front(char ch) \overload Same as prepend(\a ch). */ /*! \fn void QByteArray::shrink_to_fit() \since 5.10 This function is provided for STL compatibility. It is equivalent to squeeze(). */ /*! \since 6.1 Removes from the byte array the characters in the half-open range [ \a first , \a last ). Returns an iterator to the character referred to by \a last before the erase. */ QByteArray::iterator QByteArray::erase(QByteArray::const_iterator first, QByteArray::const_iterator last) { const auto start = std::distance(cbegin(), first); const auto len = std::distance(first, last); remove(start, len); return begin() + start; } /*! \fn QByteArray::QByteArray(const QByteArray &other) Constructs a copy of \a other. This operation takes \l{constant time}, because QByteArray is \l{implicitly shared}. This makes returning a QByteArray from a function very fast. If a shared instance is modified, it will be copied (copy-on-write), taking \l{linear time}. \sa operator=() */ /*! \fn QByteArray::QByteArray(QByteArray &&other) Move-constructs a QByteArray instance, making it point at the same object that \a other was pointing to. \since 5.2 */ /*! \fn QByteArray::QByteArray(QByteArrayDataPtr dd) \internal Constructs a byte array pointing to the same data as \a dd. */ /*! \fn QByteArray::~QByteArray() Destroys the byte array. */ /*! Assigns \a other to this byte array and returns a reference to this byte array. */ QByteArray &QByteArray::operator=(const QByteArray & other) noexcept { d = other.d; return *this; } /*! \overload Assigns \a str to this byte array. */ QByteArray &QByteArray::operator=(const char *str) { if (!str) { d.clear(); } else if (!*str) { d = DataPointer::fromRawData(&_empty, 0); } else { const qsizetype len = qsizetype(strlen(str)); const auto capacityAtEnd = d->allocatedCapacity() - d.freeSpaceAtBegin(); if (d->needsDetach() || len > capacityAtEnd || (len < size() && len < (capacityAtEnd >> 1))) // ### inefficient! reallocData() does copy the old data and we then overwrite it in the next line reallocData(len, QArrayData::KeepSize); memcpy(d.data(), str, len + 1); // include null terminator d.size = len; } return *this; } /*! \fn QByteArray &QByteArray::operator=(QByteArray &&other) Move-assigns \a other to this QByteArray instance. \since 5.2 */ /*! \fn void QByteArray::swap(QByteArray &other) \since 4.8 Swaps byte array \a other with this byte array. This operation is very fast and never fails. */ /*! \fn qsizetype QByteArray::size() const Returns the number of bytes in this byte array. The last byte in the byte array is at position size() - 1. In addition, QByteArray ensures that the byte at position size() is always '\\0', so that you can use the return value of data() and constData() as arguments to functions that expect '\\0'-terminated strings. If the QByteArray object was created from a \l{fromRawData()}{raw data} that didn't include the trailing '\\0'-termination byte, then QByteArray doesn't add it automaticall unless a \l{deep copy} is created. Example: \snippet code/src_corelib_text_qbytearray.cpp 6 \sa isEmpty(), resize() */ /*! \fn bool QByteArray::isEmpty() const Returns \c true if the byte array has size 0; otherwise returns \c false. Example: \snippet code/src_corelib_text_qbytearray.cpp 7 \sa size() */ /*! \fn qsizetype QByteArray::capacity() const Returns the maximum number of bytes that can be stored in the byte array without forcing a reallocation. The sole purpose of this function is to provide a means of fine tuning QByteArray's memory usage. In general, you will rarely ever need to call this function. If you want to know how many bytes are in the byte array, call size(). \note a statically allocated byte array will report a capacity of 0, even if it's not empty. \note The free space position in the allocated memory block is undefined. In other words, one should not assume that the free memory is always located after the initialized elements. \sa reserve(), squeeze() */ /*! \fn void QByteArray::reserve(qsizetype size) Attempts to allocate memory for at least \a size bytes. If you know in advance how large the byte array will be, you can call this function, and if you call resize() often you are likely to get better performance. If in doubt about how much space shall be needed, it is usually better to use an upper bound as \a size, or a high estimate of the most likely size, if a strict upper bound would be much bigger than this. If \a size is an underestimate, the array will grow as needed once the reserved size is exceeded, which may lead to a larger allocation than your best overestimate would have and will slow the operation that triggers it. \warning reserve() reserves memory but does not change the size of the byte array. Accessing data beyond the end of the byte array is undefined behavior. If you need to access memory beyond the current end of the array, use resize(). The sole purpose of this function is to provide a means of fine tuning QByteArray's memory usage. In general, you will rarely ever need to call this function. \sa squeeze(), capacity() */ /*! \fn void QByteArray::squeeze() Releases any memory not required to store the array's data. The sole purpose of this function is to provide a means of fine tuning QByteArray's memory usage. In general, you will rarely ever need to call this function. \sa reserve(), capacity() */ /*! \fn QByteArray::operator const char *() const \fn QByteArray::operator const void *() const \note Use constData() instead in new code. Returns a pointer to the data stored in the byte array. The pointer can be used to access the bytes that compose the array. The data is '\\0'-terminated. //! [pointer-invalidation-desc] The pointer remains valid as long as no detach happens and the QByteArray is not modified. //! [pointer-invalidation-desc] This operator is mostly useful to pass a byte array to a function that accepts a \c{const char *}. You can disable this operator by defining \c QT_NO_CAST_FROM_BYTEARRAY when you compile your applications. Note: A QByteArray can store any byte values including '\\0's, but most functions that take \c{char *} arguments assume that the data ends at the first '\\0' they encounter. \sa constData() */ /*! \macro QT_NO_CAST_FROM_BYTEARRAY \relates QByteArray Disables automatic conversions from QByteArray to const char * or const void *. \sa QT_NO_CAST_TO_ASCII, QT_NO_CAST_FROM_ASCII */ /*! \fn char *QByteArray::data() Returns a pointer to the data stored in the byte array. The pointer can be used to access and modify the bytes that compose the array. The data is '\\0'-terminated, i.e. the number of bytes you can access following the returned pointer is size() + 1, including the '\\0' terminator. Example: \snippet code/src_corelib_text_qbytearray.cpp 8 \include qbytearray.cpp pointer-invalidation-desc For read-only access, constData() is faster because it never causes a \l{deep copy} to occur. This function is mostly useful to pass a byte array to a function that accepts a \c{const char *}. The following example makes a copy of the char* returned by data(), but it will corrupt the heap and cause a crash because it does not allocate a byte for the '\\0' at the end: \snippet code/src_corelib_text_qbytearray.cpp 46 This one allocates the correct amount of space: \snippet code/src_corelib_text_qbytearray.cpp 47 Note: A QByteArray can store any byte values including '\\0's, but most functions that take \c{char *} arguments assume that the data ends at the first '\\0' they encounter. \sa constData(), operator[]() */ /*! \fn const char *QByteArray::data() const \overload */ /*! \fn const char *QByteArray::constData() const Returns a pointer to the const data stored in the byte array. The pointer can be used to access the bytes that compose the array. The data is '\\0'-terminated unless the QByteArray object was created from raw data. \include qbytearray.cpp pointer-invalidation-desc This function is mostly useful to pass a byte array to a function that accepts a \c{const char *}. Note: A QByteArray can store any byte values including '\\0's, but most functions that take \c{char *} arguments assume that the data ends at the first '\\0' they encounter. \sa data(), operator[](), fromRawData() */ /*! \fn void QByteArray::detach() \internal */ /*! \fn bool QByteArray::isDetached() const \internal */ /*! \fn bool QByteArray::isSharedWith(const QByteArray &other) const \internal */ /*! \fn char QByteArray::at(qsizetype i) const Returns the byte at index position \a i in the byte array. \a i must be a valid index position in the byte array (i.e., 0 <= \a i < size()). \sa operator[]() */ /*! \fn char &QByteArray::operator[](qsizetype i) Returns the byte at index position \a i as a modifiable reference. \a i must be a valid index position in the byte array (i.e., 0 <= \a i < size()). Example: \snippet code/src_corelib_text_qbytearray.cpp 9 \sa at() */ /*! \fn char QByteArray::operator[](qsizetype i) const \overload Same as at(\a i). */ /*! \fn char QByteArray::front() const \since 5.10 Returns the first byte in the byte array. Same as \c{at(0)}. This function is provided for STL compatibility. \warning Calling this function on an empty byte array constitutes undefined behavior. \sa back(), at(), operator[]() */ /*! \fn char QByteArray::back() const \since 5.10 Returns the last byte in the byte array. Same as \c{at(size() - 1)}. This function is provided for STL compatibility. \warning Calling this function on an empty byte array constitutes undefined behavior. \sa front(), at(), operator[]() */ /*! \fn char &QByteArray::front() \since 5.10 Returns a reference to the first byte in the byte array. Same as \c{operator[](0)}. This function is provided for STL compatibility. \warning Calling this function on an empty byte array constitutes undefined behavior. \sa back(), at(), operator[]() */ /*! \fn char &QByteArray::back() \since 5.10 Returns a reference to the last byte in the byte array. Same as \c{operator[](size() - 1)}. This function is provided for STL compatibility. \warning Calling this function on an empty byte array constitutes undefined behavior. \sa front(), at(), operator[]() */ /*! \fn bool QByteArray::contains(QByteArrayView bv) const \since 6.0 Returns \c true if this byte array contains an occurrence of the sequence of bytes viewed by \a bv; otherwise returns \c false. \sa indexOf(), count() */ /*! \fn bool QByteArray::contains(char ch) const \overload Returns \c true if the byte array contains the byte \a ch; otherwise returns \c false. */ /*! Truncates the byte array at index position \a pos. If \a pos is beyond the end of the array, nothing happens. Example: \snippet code/src_corelib_text_qbytearray.cpp 10 \sa chop(), resize(), first() */ void QByteArray::truncate(qsizetype pos) { if (pos < size()) resize(pos); } /*! Removes \a n bytes from the end of the byte array. If \a n is greater than size(), the result is an empty byte array. Example: \snippet code/src_corelib_text_qbytearray.cpp 11 \sa truncate(), resize(), first() */ void QByteArray::chop(qsizetype n) { if (n > 0) resize(size() - n); } /*! \fn QByteArray &QByteArray::operator+=(const QByteArray &ba) Appends the byte array \a ba onto the end of this byte array and returns a reference to this byte array. Example: \snippet code/src_corelib_text_qbytearray.cpp 12 Note: QByteArray is an \l{implicitly shared} class. Consequently, if you append to an empty byte array, then the byte array will just share the data held in \a ba. In this case, no copying of data is done, taking \l{constant time}. If a shared instance is modified, it will be copied (copy-on-write), taking \l{linear time}. If the byte array being appended to is not empty, a deep copy of the data is performed, taking \l{linear time}. This operation typically does not suffer from allocation overhead, because QByteArray preallocates extra space at the end of the data so that it may grow without reallocating for each append operation. \sa append(), prepend() */ /*! \fn QByteArray &QByteArray::operator+=(const char *str) \overload Appends the '\\0'-terminated string \a str onto the end of this byte array and returns a reference to this byte array. */ /*! \fn QByteArray &QByteArray::operator+=(char ch) \overload Appends the byte \a ch onto the end of this byte array and returns a reference to this byte array. */ /*! \fn qsizetype QByteArray::length() const Same as size(). */ /*! \fn bool QByteArray::isNull() const Returns \c true if this byte array is null; otherwise returns \c false. Example: \snippet code/src_corelib_text_qbytearray.cpp 13 Qt makes a distinction between null byte arrays and empty byte arrays for historical reasons. For most applications, what matters is whether or not a byte array contains any data, and this can be determined using isEmpty(). \sa isEmpty() */ /*! \fn QByteArray::QByteArray() Constructs an empty byte array. \sa isEmpty() */ /*! Constructs a byte array containing the first \a size bytes of array \a data. If \a data is 0, a null byte array is constructed. If \a size is negative, \a data is assumed to point to a '\\0'-terminated string and its length is determined dynamically. QByteArray makes a deep copy of the string data. \sa fromRawData() */ QByteArray::QByteArray(const char *data, qsizetype size) { if (!data) { d = DataPointer(); } else { if (size < 0) size = qstrlen(data); if (!size) { d = DataPointer::fromRawData(&_empty, 0); } else { d = DataPointer(Data::allocate(size), size); Q_CHECK_PTR(d.data()); memcpy(d.data(), data, size); d.data()[size] = '\0'; } } } /*! Constructs a byte array of size \a size with every byte set to \a ch. \sa fill() */ QByteArray::QByteArray(qsizetype size, char ch) { if (size <= 0) { d = DataPointer::fromRawData(&_empty, 0); } else { d = DataPointer(Data::allocate(size), size); Q_CHECK_PTR(d.data()); memset(d.data(), ch, size); d.data()[size] = '\0'; } } /*! \internal Constructs a byte array of size \a size with uninitialized contents. */ QByteArray::QByteArray(qsizetype size, Qt::Initialization) { if (size <= 0) { d = DataPointer::fromRawData(&_empty, 0); } else { d = DataPointer(Data::allocate(size), size); Q_CHECK_PTR(d.data()); d.data()[size] = '\0'; } } /*! Sets the size of the byte array to \a size bytes. If \a size is greater than the current size, the byte array is extended to make it \a size bytes with the extra bytes added to the end. The new bytes are uninitialized. If \a size is less than the current size, bytes beyond position \a size are excluded from the byte array. \note While resize() will grow the capacity if needed, it never shrinks capacity. To shed excess capacity, use squeeze(). \sa size(), truncate(), squeeze() */ void QByteArray::resize(qsizetype size) { if (size < 0) size = 0; const auto capacityAtEnd = capacity() - d.freeSpaceAtBegin(); if (d->needsDetach() || size > capacityAtEnd) reallocData(size, QArrayData::Grow); d.size = size; if (d->allocatedCapacity()) d.data()[size] = 0; } /*! Sets every byte in the byte array to \a ch. If \a size is different from -1 (the default), the byte array is resized to size \a size beforehand. Example: \snippet code/src_corelib_text_qbytearray.cpp 14 \sa resize() */ QByteArray &QByteArray::fill(char ch, qsizetype size) { resize(size < 0 ? this->size() : size); if (this->size()) memset(d.data(), ch, this->size()); return *this; } void QByteArray::reallocData(qsizetype alloc, QArrayData::AllocationOption option) { if (!alloc) { d = DataPointer::fromRawData(&_empty, 0); return; } // don't use reallocate path when reducing capacity and there's free space // at the beginning: might shift data pointer outside of allocated space const bool cannotUseReallocate = d.freeSpaceAtBegin() > 0; if (d->needsDetach() || cannotUseReallocate) { DataPointer dd(Data::allocate(alloc, option), qMin(alloc, d.size)); Q_CHECK_PTR(dd.data()); if (dd.size > 0) ::memcpy(dd.data(), d.data(), dd.size); dd.data()[dd.size] = 0; d = dd; } else { d->reallocate(alloc, option); } } void QByteArray::reallocGrowData(qsizetype n) { if (!n) // expected to always allocate n = 1; if (d->needsDetach()) { DataPointer dd(DataPointer::allocateGrow(d, n, QArrayData::GrowsAtEnd)); Q_CHECK_PTR(dd.data()); dd->copyAppend(d.data(), d.data() + d.size); dd.data()[dd.size] = 0; d = dd; } else { d->reallocate(d.constAllocatedCapacity() + n, QArrayData::Grow); } } void QByteArray::expand(qsizetype i) { resize(qMax(i + 1, size())); } /*! \internal Return a QByteArray that is sure to be '\\0'-terminated. By default, all QByteArray have an extra NUL at the end, guaranteeing that assumption. However, if QByteArray::fromRawData is used, then the NUL is there only if the user put it there. We can't be sure. */ QByteArray QByteArray::nulTerminated() const { // is this fromRawData? if (d.isMutable()) return *this; // no, then we're sure we're zero terminated QByteArray copy(*this); copy.detach(); return copy; } /*! \fn QByteArray &QByteArray::prepend(QByteArrayView ba) Prepends the byte array view \a ba to this byte array and returns a reference to this byte array. This operation is typically very fast (\l{constant time}), because QByteArray preallocates extra space at the beginning of the data, so it can grow without reallocating the entire array each time. Example: \snippet code/src_corelib_text_qbytearray.cpp 15 This is the same as insert(0, \a ba). \sa append(), insert() */ /*! \fn QByteArray &QByteArray::prepend(const QByteArray &ba) \overload Prepends \a ba to this byte array. */ QByteArray &QByteArray::prepend(const QByteArray &ba) { if (size() == 0 && ba.size() > d.constAllocatedCapacity() && ba.d.isMutable()) return (*this = ba); return prepend(QByteArrayView(ba)); } /*! \fn QByteArray &QByteArray::prepend(const char *str) \overload Prepends the '\\0'-terminated string \a str to this byte array. */ /*! \fn QByteArray &QByteArray::prepend(const char *str, qsizetype len) \overload \since 4.6 Prepends \a len bytes starting at \a str to this byte array. The bytes prepended may include '\\0' bytes. */ /*! \fn QByteArray &QByteArray::prepend(qsizetype count, char ch) \overload \since 5.7 Prepends \a count copies of byte \a ch to this byte array. */ /*! \fn QByteArray &QByteArray::prepend(char ch) \overload Prepends the byte \a ch to this byte array. */ /*! Appends the byte array \a ba onto the end of this byte array. Example: \snippet code/src_corelib_text_qbytearray.cpp 16 This is the same as insert(size(), \a ba). Note: QByteArray is an \l{implicitly shared} class. Consequently, if you append to an empty byte array, then the byte array will just share the data held in \a ba. In this case, no copying of data is done, taking \l{constant time}. If a shared instance is modified, it will be copied (copy-on-write), taking \l{linear time}. If the byte array being appended to is not empty, a deep copy of the data is performed, taking \l{linear time}. The append() function is typically very fast (\l{constant time}), because QByteArray preallocates extra space at the end of the data, so it can grow without reallocating the entire array each time. \sa operator+=(), prepend(), insert() */ QByteArray &QByteArray::append(const QByteArray &ba) { if (size() == 0 && ba.size() > d->freeSpaceAtEnd() && ba.d.isMutable()) return (*this = ba); return append(QByteArrayView(ba)); } /*! \fn QByteArray &QByteArray::append(QByteArrayView data) \overload Appends \a data to this byte array. */ /*! \fn QByteArray& QByteArray::append(const char *str) \overload Appends the '\\0'-terminated string \a str to this byte array. */ /*! \fn QByteArray &QByteArray::append(const char *str, qsizetype len) \overload Appends the first \a len bytes starting at \a str to this byte array and returns a reference to this byte array. The bytes appended may include '\\0' bytes. If \a len is negative, \a str will be assumed to be a '\\0'-terminated string and the length to be copied will be determined automatically using qstrlen(). If \a len is zero or \a str is null, nothing is appended to the byte array. Ensure that \a len is \e not longer than \a str. */ /*! \fn QByteArray &QByteArray::append(qsizetype count, char ch) \overload \since 5.7 Appends \a count copies of byte \a ch to this byte array and returns a reference to this byte array. If \a count is negative or zero nothing is appended to the byte array. */ /*! \overload Appends the byte \a ch to this byte array. */ QByteArray& QByteArray::append(char ch) { d.detachAndGrow(QArrayData::GrowsAtEnd, 1, nullptr, nullptr); d->copyAppend(1, ch); d.data()[d.size] = '\0'; return *this; } /*! Inserts \a data at index position \a i and returns a reference to this byte array. Example: \snippet code/src_corelib_text_qbytearray.cpp 17 \since 6.0 For large byte arrays, this operation can be slow (\l{linear time}), because it requires moving all the bytes at indexes \a i and above by at least one position further in memory. //! [array-grow-at-insertion] This array grows to accommodate the insertion. If \a i is beyond the end of the array, the array is first extended with space characters to reach this \a i. //! [array-grow-at-insertion] \sa append(), prepend(), replace(), remove() */ QByteArray &QByteArray::insert(qsizetype i, QByteArrayView data) { const char *str = data.data(); qsizetype size = data.size(); if (i < 0 || size <= 0) return *this; // handle this specially, as QArrayDataOps::insert() doesn't handle out of // bounds positions if (i >= d->size) { // In case when data points into the range or is == *this, we need to // defer a call to free() so that it comes after we copied the data from // the old memory: DataPointer detached{}; // construction is free d.detachAndGrow(Data::GrowsAtEnd, (i - d.size) + size, &str, &detached); Q_CHECK_PTR(d.data()); d->copyAppend(i - d->size, ' '); d->copyAppend(str, str + size); d.data()[d.size] = '\0'; return *this; } if (!d->needsDetach() && QtPrivate::q_points_into_range(str, d.data(), d.data() + d.size)) { QVarLengthArray a(str, str + size); return insert(i, a); } d->insert(i, str, size); d.data()[d.size] = '\0'; return *this; } /*! \fn QByteArray &QByteArray::insert(qsizetype i, const QByteArray &data) Inserts \a data at index position \a i and returns a reference to this byte array. \include qbytearray.cpp array-grow-at-insertion \sa append(), prepend(), replace(), remove() */ /*! \fn QByteArray &QByteArray::insert(qsizetype i, const char *s) Inserts \a s at index position \a i and returns a reference to this byte array. \include qbytearray.cpp array-grow-at-insertion The function is equivalent to \c{insert(i, QByteArrayView(s))} \sa append(), prepend(), replace(), remove() */ /*! \fn QByteArray &QByteArray::insert(qsizetype i, const char *data, qsizetype len) \overload \since 4.6 Inserts \a len bytes, starting at \a data, at position \a i in the byte array. \include qbytearray.cpp array-grow-at-insertion */ /*! \fn QByteArray &QByteArray::insert(qsizetype i, char ch) \overload Inserts byte \a ch at index position \a i in the byte array. \include qbytearray.cpp array-grow-at-insertion */ /*! \fn QByteArray &QByteArray::insert(qsizetype i, qsizetype count, char ch) \overload \since 5.7 Inserts \a count copies of byte \a ch at index position \a i in the byte array. \include qbytearray.cpp array-grow-at-insertion */ QByteArray &QByteArray::insert(qsizetype i, qsizetype count, char ch) { if (i < 0 || count <= 0) return *this; if (i >= d->size) { // handle this specially, as QArrayDataOps::insert() doesn't handle out of bounds positions d.detachAndGrow(Data::GrowsAtEnd, (i - d.size) + count, nullptr, nullptr); Q_CHECK_PTR(d.data()); d->copyAppend(i - d->size, ' '); d->copyAppend(count, ch); d.data()[d.size] = '\0'; return *this; } d->insert(i, count, ch); d.data()[d.size] = '\0'; return *this; } /*! Removes \a len bytes from the array, starting at index position \a pos, and returns a reference to the array. If \a pos is out of range, nothing happens. If \a pos is valid, but \a pos + \a len is larger than the size of the array, the array is truncated at position \a pos. Example: \snippet code/src_corelib_text_qbytearray.cpp 18 Element removal will preserve the array's capacity and not reduce the amount of allocated memory. To shed extra capacity and free as much memory as possible, call squeeze() after the last change to the array's size. \sa insert(), replace(), squeeze() */ QByteArray &QByteArray::remove(qsizetype pos, qsizetype len) { if (len <= 0 || pos < 0 || size_t(pos) >= size_t(size())) return *this; detach(); if (pos + len > d->size) len = d->size - pos; d->erase(d.begin() + pos, len); d.data()[d.size] = '\0'; return *this; } /*! \fn template QByteArray &QByteArray::removeIf(Predicate pred) \since 6.1 Removes all bytes for which the predicate \a pred returns true from the byte array. Returns a reference to the byte array. \sa remove() */ /*! Replaces \a len bytes from index position \a pos with the byte array \a after, and returns a reference to this byte array. Example: \snippet code/src_corelib_text_qbytearray.cpp 19 \sa insert(), remove() */ QByteArray &QByteArray::replace(qsizetype pos, qsizetype len, QByteArrayView after) { if (QtPrivate::q_points_into_range(after.data(), d.data(), d.data() + d.size)) { QVarLengthArray copy(after.data(), after.data() + after.size()); return replace(pos, len, QByteArrayView{copy}); } if (len == after.size() && (pos + len <= size())) { detach(); memmove(d.data() + pos, after.data(), len*sizeof(char)); return *this; } else { // ### optimize me remove(pos, len); return insert(pos, after); } } /*! \fn QByteArray &QByteArray::replace(qsizetype pos, qsizetype len, const char *after, qsizetype alen) \overload Replaces \a len bytes from index position \a pos with \a alen bytes starting at position \a after. The bytes inserted may include '\\0' bytes. \since 4.7 */ /*! \fn QByteArray &QByteArray::replace(const char *before, qsizetype bsize, const char *after, qsizetype asize) \overload Replaces every occurrence of the \a bsize bytes starting at \a before with the \a asize bytes starting at \a after. Since the sizes of the strings are given by \a bsize and \a asize, they may contain '\\0' bytes and do not need to be '\\0'-terminated. */ /*! \overload \since 6.0 Replaces every occurrence of the byte array \a before with the byte array \a after. Example: \snippet code/src_corelib_text_qbytearray.cpp 20 */ QByteArray &QByteArray::replace(QByteArrayView before, QByteArrayView after) { const char *b = before.data(); qsizetype bsize = before.size(); const char *a = after.data(); qsizetype asize = after.size(); if (isNull() || (b == a && bsize == asize)) return *this; // protect against before or after being part of this if (QtPrivate::q_points_into_range(a, d.data(), d.data() + d.size)) { QVarLengthArray copy(a, a + asize); return replace(before, QByteArrayView{copy}); } if (QtPrivate::q_points_into_range(b, d.data(), d.data() + d.size)) { QVarLengthArray copy(b, b + bsize); return replace(QByteArrayView{copy}, after); } QByteArrayMatcher matcher(b, bsize); qsizetype index = 0; qsizetype len = size(); char *d = data(); // detaches if (bsize == asize) { if (bsize) { while ((index = matcher.indexIn(*this, index)) != -1) { memcpy(d + index, a, asize); index += bsize; } } } else if (asize < bsize) { size_t to = 0; size_t movestart = 0; size_t num = 0; while ((index = matcher.indexIn(*this, index)) != -1) { if (num) { qsizetype msize = index - movestart; if (msize > 0) { memmove(d + to, d + movestart, msize); to += msize; } } else { to = index; } if (asize) { memcpy(d + to, a, asize); to += asize; } index += bsize; movestart = index; num++; } if (num) { qsizetype msize = len - movestart; if (msize > 0) memmove(d + to, d + movestart, msize); resize(len - num*(bsize-asize)); } } else { // the most complex case. We don't want to lose performance by doing repeated // copies and reallocs of the data. while (index != -1) { size_t indices[4096]; size_t pos = 0; while(pos < 4095) { index = matcher.indexIn(*this, index); if (index == -1) break; indices[pos++] = index; index += bsize; // avoid infinite loop if (!bsize) index++; } if (!pos) break; // we have a table of replacement positions, use them for fast replacing qsizetype adjust = pos*(asize-bsize); // index has to be adjusted in case we get back into the loop above. if (index != -1) index += adjust; qsizetype newlen = len + adjust; qsizetype moveend = len; if (newlen > len) { resize(newlen); len = newlen; } d = this->d.data(); // data(), without the detach() check while(pos) { pos--; qsizetype movestart = indices[pos] + bsize; qsizetype insertstart = indices[pos] + pos*(asize-bsize); qsizetype moveto = insertstart + asize; memmove(d + moveto, d + movestart, (moveend - movestart)); if (asize) memcpy(d + insertstart, a, asize); moveend = movestart - bsize; } } } return *this; } /*! \fn QByteArray &QByteArray::replace(char before, QByteArrayView after) \overload Replaces every occurrence of the byte \a before with the byte array \a after. */ /*! \overload Replaces every occurrence of the byte \a before with the byte \a after. */ QByteArray &QByteArray::replace(char before, char after) { if (!isEmpty()) { char *i = data(); char *e = i + size(); for (; i != e; ++i) if (*i == before) * i = after; } return *this; } /*! Splits the byte array into subarrays wherever \a sep occurs, and returns the list of those arrays. If \a sep does not match anywhere in the byte array, split() returns a single-element list containing this byte array. */ QList QByteArray::split(char sep) const { QList list; qsizetype start = 0; qsizetype end; while ((end = indexOf(sep, start)) != -1) { list.append(mid(start, end - start)); start = end + 1; } list.append(mid(start)); return list; } /*! \since 4.5 Returns a copy of this byte array repeated the specified number of \a times. If \a times is less than 1, an empty byte array is returned. Example: \snippet code/src_corelib_text_qbytearray.cpp 49 */ QByteArray QByteArray::repeated(qsizetype times) const { if (isEmpty()) return *this; if (times <= 1) { if (times == 1) return *this; return QByteArray(); } const qsizetype resultSize = times * size(); QByteArray result; result.reserve(resultSize); if (result.capacity() != resultSize) return QByteArray(); // not enough memory memcpy(result.d.data(), data(), size()); qsizetype sizeSoFar = size(); char *end = result.d.data() + sizeSoFar; const qsizetype halfResultSize = resultSize >> 1; while (sizeSoFar <= halfResultSize) { memcpy(end, result.d.data(), sizeSoFar); end += sizeSoFar; sizeSoFar <<= 1; } memcpy(end, result.d.data(), resultSize - sizeSoFar); result.d.data()[resultSize] = '\0'; result.d.size = resultSize; return result; } #define REHASH(a) \ if (ol_minus_1 < sizeof(std::size_t) * CHAR_BIT) \ hashHaystack -= std::size_t(a) << ol_minus_1; \ hashHaystack <<= 1 static inline qsizetype findCharHelper(QByteArrayView haystack, qsizetype from, char needle) noexcept { if (from < 0) from = qMax(from + haystack.size(), qsizetype(0)); if (from < haystack.size()) { const char *const b = haystack.data(); if (const auto n = static_cast( memchr(b + from, needle, static_cast(haystack.size() - from)))) { return n - b; } } return -1; } qsizetype QtPrivate::findByteArray(QByteArrayView haystack, qsizetype from, QByteArrayView needle) noexcept { const auto ol = needle.size(); if (ol == 0) return from; if (ol == 1) return findCharHelper(haystack, from, needle.front()); const auto l = haystack.size(); if (from > l || ol + from > l) return -1; return qFindByteArray(haystack.data(), haystack.size(), from, needle.data(), ol); } /*! \fn qsizetype QByteArray::indexOf(QByteArrayView bv, qsizetype from) const \since 6.0 Returns the index position of the start of the first occurrence of the sequence of bytes viewed by \a bv in this byte array, searching forward from index position \a from. Returns -1 if no match is found. Example: \snippet code/src_corelib_text_qbytearray.cpp 21 \sa lastIndexOf(), contains(), count() */ /*! \overload Returns the index position of the start of the first occurrence of the byte \a ch in this byte array, searching forward from index position \a from. Returns -1 if no match is found. Example: \snippet code/src_corelib_text_qbytearray.cpp 22 \sa lastIndexOf(), contains() */ qsizetype QByteArray::indexOf(char ch, qsizetype from) const { return static_cast(findCharHelper(*this, from, ch)); } static qsizetype lastIndexOfHelper(const char *haystack, qsizetype l, const char *needle, qsizetype ol, qsizetype from) { auto delta = l - ol; if (from < 0) from = delta; if (from < 0 || from > l) return -1; if (from > delta) from = delta; const char *end = haystack; haystack += from; const auto ol_minus_1 = std::size_t(ol - 1); const char *n = needle + ol_minus_1; const char *h = haystack + ol_minus_1; std::size_t hashNeedle = 0, hashHaystack = 0; qsizetype idx; for (idx = 0; idx < ol; ++idx) { hashNeedle = ((hashNeedle<<1) + *(n-idx)); hashHaystack = ((hashHaystack<<1) + *(h-idx)); } hashHaystack -= *haystack; while (haystack >= end) { hashHaystack += *haystack; if (hashHaystack == hashNeedle && memcmp(needle, haystack, ol) == 0) return haystack - end; --haystack; REHASH(*(haystack + ol)); } return -1; } static inline qsizetype lastIndexOfCharHelper(QByteArrayView haystack, qsizetype from, char needle) noexcept { if (from < 0) from += haystack.size(); else if (from > haystack.size()) from = haystack.size() - 1; if (from >= 0) { const char *b = haystack.data(); const char *n = b + from + 1; while (n-- != b) { if (*n == needle) return n - b; } } return -1; } qsizetype QtPrivate::lastIndexOf(QByteArrayView haystack, qsizetype from, QByteArrayView needle) noexcept { if (haystack.isEmpty()) return !needle.size() ? 0 : -1; const auto ol = needle.size(); if (ol == 1) return lastIndexOfCharHelper(haystack, from, needle.front()); return lastIndexOfHelper(haystack.data(), haystack.size(), needle.data(), ol, from); } /*! \fn qsizetype QByteArray::lastIndexOf(QByteArrayView bv, qsizetype from) const \since 6.0 Returns the index position of the start of the last occurrence of the sequence of bytes viewed by \a bv in this byte array, searching backward from index position \a from. If \a from is -1 (the default), the search starts from the end of the byte array. Returns -1 if no match is found. Example: \snippet code/src_corelib_text_qbytearray.cpp 23 \sa indexOf(), contains(), count() */ /*! \overload Returns the index position of the start of the last occurrence of byte \a ch in this byte array, searching backward from index position \a from. If \a from is -1 (the default), the search starts at the last byte (at index size() - 1). Returns -1 if no match is found. Example: \snippet code/src_corelib_text_qbytearray.cpp 24 \sa indexOf(), contains() */ qsizetype QByteArray::lastIndexOf(char ch, qsizetype from) const { return static_cast(lastIndexOfCharHelper(*this, from, ch)); } static inline qsizetype countCharHelper(QByteArrayView haystack, char needle) noexcept { qsizetype num = 0; for (char ch : haystack) { if (ch == needle) ++num; } return num; } qsizetype QtPrivate::count(QByteArrayView haystack, QByteArrayView needle) noexcept { if (needle.size() == 1) return countCharHelper(haystack, needle[0]); qsizetype num = 0; qsizetype i = -1; if (haystack.size() > 500 && needle.size() > 5) { QByteArrayMatcher matcher(needle.data(), needle.size()); while ((i = matcher.indexIn(haystack.data(), haystack.size(), i + 1)) != -1) ++num; } else { while ((i = haystack.indexOf(needle, i + 1)) != -1) ++num; } return num; } /*! \fn qsizetype QByteArray::count(QByteArrayView bv) const \since 6.0 Returns the number of (potentially overlapping) occurrences of the sequence of bytes viewed by \a bv in this byte array. \sa contains(), indexOf() */ /*! \overload Returns the number of occurrences of byte \a ch in the byte array. \sa contains(), indexOf() */ qsizetype QByteArray::count(char ch) const { return static_cast(countCharHelper(*this, ch)); } /*! \fn qsizetype QByteArray::count() const \overload Same as size(). */ /*! \fn int QByteArray::compare(QByteArrayView bv, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \since 6.0 Returns an integer less than, equal to, or greater than zero depending on whether this QByteArray sorts before, at the same position as, or after the QByteArrayView \a bv. The comparison is performed according to case sensitivity \a cs. \sa operator==, {Character Case} */ bool QtPrivate::startsWith(QByteArrayView haystack, QByteArrayView needle) noexcept { if (haystack.size() < needle.size()) return false; if (haystack.data() == needle.data() || needle.size() == 0) return true; return memcmp(haystack.data(), needle.data(), needle.size()) == 0; } /*! \fn bool QByteArray::startsWith(QByteArrayView bv) const \since 6.0 Returns \c true if this byte array starts with the sequence of bytes viewed by \a bv; otherwise returns \c false. Example: \snippet code/src_corelib_text_qbytearray.cpp 25 \sa endsWith(), first() */ /*! \fn bool QByteArray::startsWith(char ch) const \overload Returns \c true if this byte array starts with byte \a ch; otherwise returns \c false. */ bool QtPrivate::endsWith(QByteArrayView haystack, QByteArrayView needle) noexcept { if (haystack.size() < needle.size()) return false; if (haystack.end() == needle.end() || needle.size() == 0) return true; return memcmp(haystack.end() - needle.size(), needle.data(), needle.size()) == 0; } /*! \fn bool QByteArray::endsWith(QByteArrayView bv) const \since 6.0 Returns \c true if this byte array ends with the sequence of bytes viewed by \a bv; otherwise returns \c false. Example: \snippet code/src_corelib_text_qbytearray.cpp 26 \sa startsWith(), last() */ /*! \fn bool QByteArray::endsWith(char ch) const \overload Returns \c true if this byte array ends with byte \a ch; otherwise returns \c false. */ /* Returns true if \a c is an uppercase ASCII letter. */ static constexpr inline bool isUpperCaseAscii(char c) { return c >= 'A' && c <= 'Z'; } /*! Returns \c true if this byte array contains only ASCII uppercase letters, otherwise returns \c false. \since 5.12 \sa isLower(), toUpper() */ bool QByteArray::isUpper() const { if (isEmpty()) return false; const char *d = data(); for (qsizetype i = 0, max = size(); i < max; ++i) { if (!isUpperCaseAscii(d[i])) return false; } return true; } /* Returns true if \a c is an lowercase ASCII letter. */ static constexpr inline bool isLowerCaseAscii(char c) { return c >= 'a' && c <= 'z'; } /*! Returns \c true if this byte array contains only lowercase ASCII letters, otherwise returns \c false. \since 5.12 \sa isUpper(), toLower() */ bool QByteArray::isLower() const { if (isEmpty()) return false; const char *d = data(); for (qsizetype i = 0, max = size(); i < max; ++i) { if (!isLowerCaseAscii(d[i])) return false; } return true; } /*! Returns a byte array that contains the first \a len bytes of this byte array. If you know that \a len cannot be out of bounds, use first() instead in new code, because it is faster. The entire byte array is returned if \a len is greater than size(). Returns an empty QByteArray if \a len is smaller than 0. \sa first(), last(), startsWith(), chopped(), chop(), truncate() */ QByteArray QByteArray::left(qsizetype len) const { if (len >= size()) return *this; if (len < 0) len = 0; return QByteArray(data(), len); } /*! Returns a byte array that contains the last \a len bytes of this byte array. If you know that \a len cannot be out of bounds, use last() instead in new code, because it is faster. The entire byte array is returned if \a len is greater than size(). Returns an empty QByteArray if \a len is smaller than 0. \sa endsWith(), last(), first(), sliced(), chopped(), chop(), truncate() */ QByteArray QByteArray::right(qsizetype len) const { if (len >= size()) return *this; if (len < 0) len = 0; return QByteArray(end() - len, len); } /*! Returns a byte array containing \a len bytes from this byte array, starting at position \a pos. If you know that \a pos and \a len cannot be out of bounds, use sliced() instead in new code, because it is faster. If \a len is -1 (the default), or \a pos + \a len >= size(), returns a byte array containing all bytes starting at position \a pos until the end of the byte array. \sa first(), last(), sliced(), chopped(), chop(), truncate() */ QByteArray QByteArray::mid(qsizetype pos, qsizetype len) const { qsizetype p = pos; qsizetype l = len; using namespace QtPrivate; switch (QContainerImplHelper::mid(size(), &p, &l)) { case QContainerImplHelper::Null: return QByteArray(); case QContainerImplHelper::Empty: { return QByteArray(DataPointer::fromRawData(&_empty, 0)); } case QContainerImplHelper::Full: return *this; case QContainerImplHelper::Subset: return QByteArray(d.data() + p, l); } Q_UNREACHABLE(); return QByteArray(); } /*! \fn QByteArray QByteArray::first(qsizetype n) const \since 6.0 Returns the first \a n bytes of the byte array. \note The behavior is undefined when \a n < 0 or \a n > size(). Example: \snippet code/src_corelib_text_qbytearray.cpp 27 \sa last(), sliced(), startsWith(), chopped(), chop(), truncate() */ /*! \fn QByteArray QByteArray::last(qsizetype n) const \since 6.0 Returns the last \a n bytes of the byte array. \note The behavior is undefined when \a n < 0 or \a n > size(). Example: \snippet code/src_corelib_text_qbytearray.cpp 28 \sa first(), sliced(), endsWith(), chopped(), chop(), truncate() */ /*! \fn QByteArray QByteArray::sliced(qsizetype pos, qsizetype n) const \since 6.0 Returns a byte array containing the \a n bytes of this object starting at position \a pos. \note The behavior is undefined when \a pos < 0, \a n < 0, or \a pos + \a n > size(). Example: \snippet code/src_corelib_text_qbytearray.cpp 29 \sa first(), last(), chopped(), chop(), truncate() */ /*! \fn QByteArray QByteArray::sliced(qsizetype pos) const \since 6.0 \overload Returns a byte array containing the bytes starting at position \a pos in this object, and extending to the end of this object. \note The behavior is undefined when \a pos < 0 or \a pos > size(). \sa first(), last(), sliced(), chopped(), chop(), truncate() */ /*! \fn QByteArray QByteArray::chopped(qsizetype len) const \since 5.10 Returns a byte array that contains the leftmost size() - \a len bytes of this byte array. \note The behavior is undefined if \a len is negative or greater than size(). \sa endsWith(), first(), last(), sliced(), chop(), truncate() */ /*! \fn QByteArray QByteArray::toLower() const Returns a copy of the byte array in which each ASCII uppercase letter converted to lowercase. Example: \snippet code/src_corelib_text_qbytearray.cpp 30 \sa isLower(), toUpper(), {Character Case} */ // prevent the compiler from inlining the function in each of // toLower and toUpper when the only difference is the table being used // (even with constant propagation, there's no gain in performance). template Q_NEVER_INLINE static QByteArray toCase_template(T &input, uchar (*lookup)(uchar)) { // find the first bad character in input const char *orig_begin = input.constBegin(); const char *firstBad = orig_begin; const char *e = input.constEnd(); for ( ; firstBad != e ; ++firstBad) { uchar ch = uchar(*firstBad); uchar converted = lookup(ch); if (ch != converted) break; } if (firstBad == e) return std::move(input); // transform the rest QByteArray s = std::move(input); // will copy if T is const QByteArray char *b = s.begin(); // will detach if necessary char *p = b + (firstBad - orig_begin); e = b + s.size(); for ( ; p != e; ++p) *p = char(lookup(uchar(*p))); return s; } QByteArray QByteArray::toLower_helper(const QByteArray &a) { return toCase_template(a, asciiLower); } QByteArray QByteArray::toLower_helper(QByteArray &a) { return toCase_template(a, asciiLower); } /*! \fn QByteArray QByteArray::toUpper() const Returns a copy of the byte array in which each ASCII lowercase letter converted to uppercase. Example: \snippet code/src_corelib_text_qbytearray.cpp 31 \sa isUpper(), toLower(), {Character Case} */ QByteArray QByteArray::toUpper_helper(const QByteArray &a) { return toCase_template(a, asciiUpper); } QByteArray QByteArray::toUpper_helper(QByteArray &a) { return toCase_template(a, asciiUpper); } /*! \fn void QByteArray::clear() Clears the contents of the byte array and makes it null. \sa resize(), isNull() */ void QByteArray::clear() { d.clear(); } #if !defined(QT_NO_DATASTREAM) || defined(QT_BOOTSTRAPPED) /*! \relates QByteArray Writes byte array \a ba to the stream \a out and returns a reference to the stream. \sa {Serializing Qt Data Types} */ QDataStream &operator<<(QDataStream &out, const QByteArray &ba) { if (ba.isNull() && out.version() >= 6) { out << (quint32)0xffffffff; return out; } return out.writeBytes(ba.constData(), ba.size()); } /*! \relates QByteArray Reads a byte array into \a ba from the stream \a in and returns a reference to the stream. \sa {Serializing Qt Data Types} */ QDataStream &operator>>(QDataStream &in, QByteArray &ba) { ba.clear(); quint32 len; in >> len; if (len == 0xffffffff) return in; const quint32 Step = 1024 * 1024; quint32 allocated = 0; do { qsizetype blockSize = qMin(Step, len - allocated); ba.resize(allocated + blockSize); if (in.readRawData(ba.data() + allocated, blockSize) != blockSize) { ba.clear(); in.setStatus(QDataStream::ReadPastEnd); return in; } allocated += blockSize; } while (allocated < len); return in; } #endif // QT_NO_DATASTREAM /*! \fn bool QByteArray::operator==(const QString &str) const Returns \c true if this byte array is equal to the UTF-8 encoding of \a str; otherwise returns \c false. The comparison is case sensitive. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. You then need to call QString::fromUtf8(), QString::fromLatin1(), or QString::fromLocal8Bit() explicitly if you want to convert the byte array to a QString before doing the comparison. */ /*! \fn bool QByteArray::operator!=(const QString &str) const Returns \c true if this byte array is not equal to the UTF-8 encoding of \a str; otherwise returns \c false. The comparison is case sensitive. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. You then need to call QString::fromUtf8(), QString::fromLatin1(), or QString::fromLocal8Bit() explicitly if you want to convert the byte array to a QString before doing the comparison. */ /*! \fn bool QByteArray::operator<(const QString &str) const Returns \c true if this byte array is lexically less than the UTF-8 encoding of \a str; otherwise returns \c false. The comparison is case sensitive. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. You then need to call QString::fromUtf8(), QString::fromLatin1(), or QString::fromLocal8Bit() explicitly if you want to convert the byte array to a QString before doing the comparison. */ /*! \fn bool QByteArray::operator>(const QString &str) const Returns \c true if this byte array is lexically greater than the UTF-8 encoding of \a str; otherwise returns \c false. The comparison is case sensitive. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. You then need to call QString::fromUtf8(), QString::fromLatin1(), or QString::fromLocal8Bit() explicitly if you want to convert the byte array to a QString before doing the comparison. */ /*! \fn bool QByteArray::operator<=(const QString &str) const Returns \c true if this byte array is lexically less than or equal to the UTF-8 encoding of \a str; otherwise returns \c false. The comparison is case sensitive. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. You then need to call QString::fromUtf8(), QString::fromLatin1(), or QString::fromLocal8Bit() explicitly if you want to convert the byte array to a QString before doing the comparison. */ /*! \fn bool QByteArray::operator>=(const QString &str) const Returns \c true if this byte array is greater than or equal to the UTF-8 encoding of \a str; otherwise returns \c false. The comparison is case sensitive. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. You then need to call QString::fromUtf8(), QString::fromLatin1(), or QString::fromLocal8Bit() explicitly if you want to convert the byte array to a QString before doing the comparison. */ /*! \fn bool QByteArray::operator==(const QByteArray &a1, const QByteArray &a2) \overload Returns \c true if byte array \a a1 is equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator==(const QByteArray &a1, const char *a2) \overload Returns \c true if byte array \a a1 is equal to the '\\0'-terminated string \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator==(const char *a1, const QByteArray &a2) \overload Returns \c true if '\\0'-terminated string \a a1 is equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator!=(const QByteArray &a1, const QByteArray &a2) \overload Returns \c true if byte array \a a1 is not equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator!=(const QByteArray &a1, const char *a2) \overload Returns \c true if byte array \a a1 is not equal to the '\\0'-terminated string \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator!=(const char *a1, const QByteArray &a2) \overload Returns \c true if '\\0'-terminated string \a a1 is not equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator<(const QByteArray &a1, const QByteArray &a2) \overload Returns \c true if byte array \a a1 is lexically less than byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator<(const QByteArray &a1, const char *a2) \overload Returns \c true if byte array \a a1 is lexically less than the '\\0'-terminated string \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator<(const char *a1, const QByteArray &a2) \overload Returns \c true if '\\0'-terminated string \a a1 is lexically less than byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator<=(const QByteArray &a1, const QByteArray &a2) \overload Returns \c true if byte array \a a1 is lexically less than or equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator<=(const QByteArray &a1, const char *a2) \overload Returns \c true if byte array \a a1 is lexically less than or equal to the '\\0'-terminated string \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator<=(const char *a1, const QByteArray &a2) \overload Returns \c true if '\\0'-terminated string \a a1 is lexically less than or equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator>(const QByteArray &a1, const QByteArray &a2) \overload Returns \c true if byte array \a a1 is lexically greater than byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator>(const QByteArray &a1, const char *a2) \overload Returns \c true if byte array \a a1 is lexically greater than the '\\0'-terminated string \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator>(const char *a1, const QByteArray &a2) \overload Returns \c true if '\\0'-terminated string \a a1 is lexically greater than byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator>=(const QByteArray &a1, const QByteArray &a2) \overload Returns \c true if byte array \a a1 is lexically greater than or equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator>=(const QByteArray &a1, const char *a2) \overload Returns \c true if byte array \a a1 is lexically greater than or equal to the '\\0'-terminated string \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn bool QByteArray::operator>=(const char *a1, const QByteArray &a2) \overload Returns \c true if '\\0'-terminated string \a a1 is lexically greater than or equal to byte array \a a2; otherwise returns \c false. \sa QByteArray::compare() */ /*! \fn const QByteArray operator+(const QByteArray &a1, const QByteArray &a2) \relates QByteArray Returns a byte array that is the result of concatenating byte array \a a1 and byte array \a a2. \sa QByteArray::operator+=() */ /*! \fn const QByteArray operator+(const QByteArray &a1, const char *a2) \relates QByteArray \overload Returns a byte array that is the result of concatenating byte array \a a1 and '\\0'-terminated string \a a2. */ /*! \fn const QByteArray operator+(const QByteArray &a1, char a2) \relates QByteArray \overload Returns a byte array that is the result of concatenating byte array \a a1 and byte \a a2. */ /*! \fn const QByteArray operator+(const char *a1, const QByteArray &a2) \relates QByteArray \overload Returns a byte array that is the result of concatenating '\\0'-terminated string \a a1 and byte array \a a2. */ /*! \fn const QByteArray operator+(char a1, const QByteArray &a2) \relates QByteArray \overload Returns a byte array that is the result of concatenating byte \a a1 and byte array \a a2. */ /*! \fn QByteArray QByteArray::simplified() const Returns a copy of this byte array that has spacing characters removed from the start and end, and in which each sequence of internal spacing characters is replaced with a single space. The spacing characters are those for which the standard C++ \c isspace() function returns \c true in the C locale; these are the ASCII characters tabulation '\\t', line feed '\\n', carriage return '\\r', vertical tabulation '\\v', form feed '\\f', and space ' '. Example: \snippet code/src_corelib_text_qbytearray.cpp 32 \sa trimmed(), QChar::SpecialCharacter, {Spacing Characters} */ QByteArray QByteArray::simplified_helper(const QByteArray &a) { return QStringAlgorithms::simplified_helper(a); } QByteArray QByteArray::simplified_helper(QByteArray &a) { return QStringAlgorithms::simplified_helper(a); } /*! \fn QByteArray QByteArray::trimmed() const Returns a copy of this byte array with spacing characters removed from the start and end. The spacing characters are those for which the standard C++ \c isspace() function returns \c true in the C locale; these are the ASCII characters tabulation '\\t', line feed '\\n', carriage return '\\r', vertical tabulation '\\v', form feed '\\f', and space ' '. Example: \snippet code/src_corelib_text_qbytearray.cpp 33 Unlike simplified(), \l {QByteArray::trimmed()}{trimmed()} leaves internal spacing unchanged. \sa simplified(), QChar::SpecialCharacter, {Spacing Characters} */ QByteArray QByteArray::trimmed_helper(const QByteArray &a) { return QStringAlgorithms::trimmed_helper(a); } QByteArray QByteArray::trimmed_helper(QByteArray &a) { return QStringAlgorithms::trimmed_helper(a); } /*! Returns a byte array of size \a width that contains this byte array padded with the \a fill byte. If \a truncate is false and the size() of the byte array is more than \a width, then the returned byte array is a copy of this byte array. If \a truncate is true and the size() of the byte array is more than \a width, then any bytes in a copy of the byte array after position \a width are removed, and the copy is returned. Example: \snippet code/src_corelib_text_qbytearray.cpp 34 \sa rightJustified() */ QByteArray QByteArray::leftJustified(qsizetype width, char fill, bool truncate) const { QByteArray result; qsizetype len = size(); qsizetype padlen = width - len; if (padlen > 0) { result.resize(len+padlen); if (len) memcpy(result.d.data(), data(), len); memset(result.d.data()+len, fill, padlen); } else { if (truncate) result = left(width); else result = *this; } return result; } /*! Returns a byte array of size \a width that contains the \a fill byte followed by this byte array. If \a truncate is false and the size of the byte array is more than \a width, then the returned byte array is a copy of this byte array. If \a truncate is true and the size of the byte array is more than \a width, then the resulting byte array is truncated at position \a width. Example: \snippet code/src_corelib_text_qbytearray.cpp 35 \sa leftJustified() */ QByteArray QByteArray::rightJustified(qsizetype width, char fill, bool truncate) const { QByteArray result; qsizetype len = size(); qsizetype padlen = width - len; if (padlen > 0) { result.resize(len+padlen); if (len) memcpy(result.d.data()+padlen, data(), len); memset(result.d.data(), fill, padlen); } else { if (truncate) result = left(width); else result = *this; } return result; } bool QByteArray::isNull() const { return d->isNull(); } static qlonglong toIntegral_helper(const char *data, bool *ok, int base, qlonglong) { return QLocaleData::bytearrayToLongLong(data, base, ok); } static qulonglong toIntegral_helper(const char *data, bool *ok, int base, qulonglong) { return QLocaleData::bytearrayToUnsLongLong(data, base, ok); } template static inline T toIntegral_helper(const char *data, bool *ok, int base) { using Int64 = typename std::conditional::value, qulonglong, qlonglong>::type; #if defined(QT_CHECK_RANGE) if (base != 0 && (base < 2 || base > 36)) { qWarning("QByteArray::toIntegral: Invalid base %d", base); base = 10; } #endif if (!data) { if (ok) *ok = false; return 0; } // we select the right overload by the last, unused parameter Int64 val = toIntegral_helper(data, ok, base, Int64()); if (T(val) != val) { if (ok) *ok = false; val = 0; } return T(val); } /*! Returns the byte array converted to a \c {long long} using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal (base 16); otherwise, if it begins with "0", it is assumed to be octal (base 8); otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ qlonglong QByteArray::toLongLong(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! Returns the byte array converted to an \c {unsigned long long} using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal (base 16); otherwise, if it begins with "0", it is assumed to be octal (base 8); otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ qulonglong QByteArray::toULongLong(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! Returns the byte array converted to an \c int using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal (base 16); otherwise, if it begins with "0", it is assumed to be octal (base 8); otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \snippet code/src_corelib_text_qbytearray.cpp 36 \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ int QByteArray::toInt(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! Returns the byte array converted to an \c {unsigned int} using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal (base 16); otherwise, if it begins with "0", it is assumed to be octal (base 8); otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ uint QByteArray::toUInt(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! \since 4.1 Returns the byte array converted to a \c long int using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal (base 16); otherwise, if it begins with "0", it is assumed to be octal (base 8); otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \snippet code/src_corelib_text_qbytearray.cpp 37 \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ long QByteArray::toLong(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! \since 4.1 Returns the byte array converted to an \c {unsigned long int} using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal (base 16); otherwise, if it begins with "0", it is assumed to be octal (base 8); otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ ulong QByteArray::toULong(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! Returns the byte array converted to a \c short using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal; otherwise, if it begins with "0", it is assumed to be octal; otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ short QByteArray::toShort(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! Returns the byte array converted to an \c {unsigned short} using base \a base, which is ten by default. Bases 0 and 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. If \a base is 0, the base is determined automatically using the following rules: If the byte array begins with "0x", it is assumed to be hexadecimal; otherwise, if it begins with "0", it is assumed to be octal; otherwise it is assumed to be decimal. Returns 0 if the conversion fails. If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number() */ ushort QByteArray::toUShort(bool *ok, int base) const { return toIntegral_helper(nulTerminated().constData(), ok, base); } /*! Returns the byte array converted to a \c double value. Returns an infinity if the conversion overflows or 0.0 if the conversion fails for other reasons (e.g. underflow). If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \snippet code/src_corelib_text_qbytearray.cpp 38 \warning The QByteArray content may only contain valid numerical characters which includes the plus/minus sign, the character e used in scientific notation, and the decimal point. Including the unit or additional characters leads to a conversion error. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. This function ignores leading and trailing whitespace. \sa number() */ double QByteArray::toDouble(bool *ok) const { bool nonNullOk = false; int processed = 0; double d = qt_asciiToDouble(constData(), size(), nonNullOk, processed, WhitespacesAllowed); if (ok) *ok = nonNullOk; return d; } /*! Returns the byte array converted to a \c float value. Returns an infinity if the conversion overflows or 0.0 if the conversion fails for other reasons (e.g. underflow). If \a ok is not \nullptr, failure is reported by setting *\a{ok} to \c false, and success by setting *\a{ok} to \c true. \snippet code/src_corelib_text_qbytearray.cpp 38float \warning The QByteArray content may only contain valid numerical characters which includes the plus/minus sign, the character e used in scientific notation, and the decimal point. Including the unit or additional characters leads to a conversion error. \note The conversion of the number is performed in the default C locale, regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. This function ignores leading and trailing whitespace. \sa number() */ float QByteArray::toFloat(bool *ok) const { return QLocaleData::convertDoubleToFloat(toDouble(ok), ok); } /*! \since 5.2 Returns a copy of the byte array, encoded using the options \a options. \snippet code/src_corelib_text_qbytearray.cpp 39 The algorithm used to encode Base64-encoded data is defined in \l{RFC 4648}. \sa fromBase64() */ QByteArray QByteArray::toBase64(Base64Options options) const { const char alphabet_base64[] = "ABCDEFGH" "IJKLMNOP" "QRSTUVWX" "YZabcdef" "ghijklmn" "opqrstuv" "wxyz0123" "456789+/"; const char alphabet_base64url[] = "ABCDEFGH" "IJKLMNOP" "QRSTUVWX" "YZabcdef" "ghijklmn" "opqrstuv" "wxyz0123" "456789-_"; const char *const alphabet = options & Base64UrlEncoding ? alphabet_base64url : alphabet_base64; const char padchar = '='; qsizetype padlen = 0; QByteArray tmp((size() + 2) / 3 * 4, Qt::Uninitialized); qsizetype i = 0; char *out = tmp.data(); while (i < size()) { // encode 3 bytes at a time int chunk = 0; chunk |= int(uchar(data()[i++])) << 16; if (i == size()) { padlen = 2; } else { chunk |= int(uchar(data()[i++])) << 8; if (i == size()) padlen = 1; else chunk |= int(uchar(data()[i++])); } int j = (chunk & 0x00fc0000) >> 18; int k = (chunk & 0x0003f000) >> 12; int l = (chunk & 0x00000fc0) >> 6; int m = (chunk & 0x0000003f); *out++ = alphabet[j]; *out++ = alphabet[k]; if (padlen > 1) { if ((options & OmitTrailingEquals) == 0) *out++ = padchar; } else { *out++ = alphabet[l]; } if (padlen > 0) { if ((options & OmitTrailingEquals) == 0) *out++ = padchar; } else { *out++ = alphabet[m]; } } Q_ASSERT((options & OmitTrailingEquals) || (out == tmp.size() + tmp.data())); if (options & OmitTrailingEquals) tmp.truncate(out - tmp.data()); return tmp; } /*! \fn QByteArray &QByteArray::setNum(int n, int base) Sets the byte array to the printed value of \a n in base \a base (ten by default) and returns a reference to the byte array. Bases 2 through 36 are supported, using letters for digits beyond 9; A is ten, B is eleven and so on. For bases other than ten, n is treated as an unsigned integer. Example: \snippet code/src_corelib_text_qbytearray.cpp 40 \note The format of the number is not localized; the default C locale is used regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa number(), toInt() */ /*! \fn QByteArray &QByteArray::setNum(uint n, int base) \overload \sa toUInt() */ /*! \fn QByteArray &QByteArray::setNum(long n, int base) \overload \sa toLong() */ /*! \fn QByteArray &QByteArray::setNum(ulong n, int base) \overload \sa toULong() */ /*! \fn QByteArray &QByteArray::setNum(short n, int base) \overload \sa toShort() */ /*! \fn QByteArray &QByteArray::setNum(ushort n, int base) \overload \sa toUShort() */ static char *qulltoa2(char *p, qulonglong n, int base) { #if defined(QT_CHECK_RANGE) if (base < 2 || base > 36) { qWarning("QByteArray::setNum: Invalid base %d", base); base = 10; } #endif const char b = 'a' - 10; do { const int c = n % base; n /= base; *--p = c + (c < 10 ? '0' : b); } while (n); return p; } /*! \overload \sa toLongLong() */ QByteArray &QByteArray::setNum(qlonglong n, int base) { const int buffsize = 66; // big enough for MAX_ULLONG in base 2 char buff[buffsize]; char *p; if (n < 0 && base == 10) { p = qulltoa2(buff + buffsize, qulonglong(-(1 + n)) + 1, base); *--p = '-'; } else { p = qulltoa2(buff + buffsize, qulonglong(n), base); } clear(); append(p, buffsize - (p - buff)); return *this; } /*! \overload \sa toULongLong() */ QByteArray &QByteArray::setNum(qulonglong n, int base) { const int buffsize = 66; // big enough for MAX_ULLONG in base 2 char buff[buffsize]; char *p = qulltoa2(buff + buffsize, n, base); clear(); append(p, buffsize - (p - buff)); return *this; } /*! \overload Sets the byte array to the printed value of \a n, formatted in format \a f with precision \a prec, and returns a reference to the byte array. The format \a f can be any of the following: \table \header \li Format \li Meaning \row \li \c e \li format as [-]9.9e[+|-]999 \row \li \c E \li format as [-]9.9E[+|-]999 \row \li \c f \li format as [-]9.9 \row \li \c g \li use \c e or \c f format, whichever is the most concise \row \li \c G \li use \c E or \c f format, whichever is the most concise \endtable With 'e', 'E', and 'f', \a prec is the number of digits after the decimal point. With 'g' and 'G', \a prec is the maximum number of significant digits (trailing zeroes are omitted). \note The format of the number is not localized; the default C locale is used regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa toDouble() */ QByteArray &QByteArray::setNum(double n, char f, int prec) { QLocaleData::DoubleForm form = QLocaleData::DFDecimal; uint flags = QLocaleData::ZeroPadExponent; char lower = asciiLower(uchar(f)); if (f != lower) flags |= QLocaleData::CapitalEorX; f = lower; switch (f) { case 'f': form = QLocaleData::DFDecimal; break; case 'e': form = QLocaleData::DFExponent; break; case 'g': form = QLocaleData::DFSignificantDigits; break; default: #if defined(QT_CHECK_RANGE) qWarning("QByteArray::setNum: Invalid format char '%c'", f); #endif break; } *this = QLocaleData::c()->doubleToString(n, prec, form, -1, flags).toUtf8(); return *this; } /*! \fn QByteArray &QByteArray::setNum(float n, char f, int prec) \overload Sets the byte array to the printed value of \a n, formatted in format \a f with precision \a prec, and returns a reference to the byte array. \note The format of the number is not localized; the default C locale is used regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa toFloat() */ /*! Returns a byte array containing the printed value of the number \a n to base \a base (ten by default). Bases 2 through 36 are supported, using letters for digits beyond 9: A is ten, B is eleven and so on. Example: \snippet code/src_corelib_text_qbytearray.cpp 41 \note The format of the number is not localized; the default C locale is used regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa setNum(), toInt() */ QByteArray QByteArray::number(int n, int base) { QByteArray s; s.setNum(n, base); return s; } /*! \overload \sa toUInt() */ QByteArray QByteArray::number(uint n, int base) { QByteArray s; s.setNum(n, base); return s; } /*! \overload \sa toLong() */ QByteArray QByteArray::number(long n, int base) { QByteArray s; s.setNum(n, base); return s; } /*! \overload \sa toULong() */ QByteArray QByteArray::number(ulong n, int base) { QByteArray s; s.setNum(n, base); return s; } /*! \overload \sa toLongLong() */ QByteArray QByteArray::number(qlonglong n, int base) { QByteArray s; s.setNum(n, base); return s; } /*! \overload \sa toULongLong() */ QByteArray QByteArray::number(qulonglong n, int base) { QByteArray s; s.setNum(n, base); return s; } /*! \overload Returns a byte array that contains the printed value of \a n, formatted in format \a f with precision \a prec. Argument \a n is formatted according to the \a f format specified, which is \c g by default, and can be any of the following: \table \header \li Format \li Meaning \row \li \c e \li format as [-]9.9e[+|-]999 \row \li \c E \li format as [-]9.9E[+|-]999 \row \li \c f \li format as [-]9.9 \row \li \c g \li use \c e or \c f format, whichever is the most concise \row \li \c G \li use \c E or \c f format, whichever is the most concise \endtable With 'e', 'E', and 'f', \a prec is the number of digits after the decimal point. With 'g' and 'G', \a prec is the maximum number of significant digits (trailing zeroes are omitted). \snippet code/src_corelib_text_qbytearray.cpp 42 \note The format of the number is not localized; the default C locale is used regardless of the user's locale. Use QLocale to perform locale-aware conversions between numbers and strings. \sa toDouble() */ QByteArray QByteArray::number(double n, char f, int prec) { QByteArray s; s.setNum(n, f, prec); return s; } /*! \fn QByteArray QByteArray::fromRawData(const char *data, qsizetype size) constexpr Constructs a QByteArray that uses the first \a size bytes of the \a data array. The bytes are \e not copied. The QByteArray will contain the \a data pointer. The caller guarantees that \a data will not be deleted or modified as long as this QByteArray and any copies of it exist that have not been modified. In other words, because QByteArray is an \l{implicitly shared} class and the instance returned by this function contains the \a data pointer, the caller must not delete \a data or modify it directly as long as the returned QByteArray and any copies exist. However, QByteArray does not take ownership of \a data, so the QByteArray destructor will never delete the raw \a data, even when the last QByteArray referring to \a data is destroyed. A subsequent attempt to modify the contents of the returned QByteArray or any copy made from it will cause it to create a deep copy of the \a data array before doing the modification. This ensures that the raw \a data array itself will never be modified by QByteArray. Here is an example of how to read data using a QDataStream on raw data in memory without copying the raw data into a QByteArray: \snippet code/src_corelib_text_qbytearray.cpp 43 \warning A byte array created with fromRawData() is \e not '\\0'-terminated, unless the raw data contains a '\\0' byte at position \a size. While that does not matter for QDataStream or functions like indexOf(), passing the byte array to a function accepting a \c{const char *} expected to be '\\0'-terminated will fail. \sa setRawData(), data(), constData() */ /*! \since 4.7 Resets the QByteArray to use the first \a size bytes of the \a data array. The bytes are \e not copied. The QByteArray will contain the \a data pointer. The caller guarantees that \a data will not be deleted or modified as long as this QByteArray and any copies of it exist that have not been modified. This function can be used instead of fromRawData() to re-use existing QByteArray objects to save memory re-allocations. \sa fromRawData(), data(), constData() */ QByteArray &QByteArray::setRawData(const char *data, qsizetype size) { if (!data || !size) clear(); else *this = fromRawData(data, size); return *this; } namespace { struct fromBase64_helper_result { qsizetype decodedLength; QByteArray::Base64DecodingStatus status; }; fromBase64_helper_result fromBase64_helper(const char *input, qsizetype inputSize, char *output /* may alias input */, QByteArray::Base64Options options) { fromBase64_helper_result result{ 0, QByteArray::Base64DecodingStatus::Ok }; unsigned int buf = 0; int nbits = 0; qsizetype offset = 0; for (qsizetype i = 0; i < inputSize; ++i) { int ch = input[i]; int d; if (ch >= 'A' && ch <= 'Z') { d = ch - 'A'; } else if (ch >= 'a' && ch <= 'z') { d = ch - 'a' + 26; } else if (ch >= '0' && ch <= '9') { d = ch - '0' + 52; } else if (ch == '+' && (options & QByteArray::Base64UrlEncoding) == 0) { d = 62; } else if (ch == '-' && (options & QByteArray::Base64UrlEncoding) != 0) { d = 62; } else if (ch == '/' && (options & QByteArray::Base64UrlEncoding) == 0) { d = 63; } else if (ch == '_' && (options & QByteArray::Base64UrlEncoding) != 0) { d = 63; } else { if (options & QByteArray::AbortOnBase64DecodingErrors) { if (ch == '=') { // can have 1 or 2 '=' signs, in both cases padding base64Size to // a multiple of 4. Any other case is illegal. if ((inputSize % 4) != 0) { result.status = QByteArray::Base64DecodingStatus::IllegalInputLength; return result; } else if ((i == inputSize - 1) || (i == inputSize - 2 && input[++i] == '=')) { d = -1; // ... and exit the loop, normally } else { result.status = QByteArray::Base64DecodingStatus::IllegalPadding; return result; } } else { result.status = QByteArray::Base64DecodingStatus::IllegalCharacter; return result; } } else { d = -1; } } if (d != -1) { buf = (buf << 6) | d; nbits += 6; if (nbits >= 8) { nbits -= 8; Q_ASSERT(offset < i); output[offset++] = buf >> nbits; buf &= (1 << nbits) - 1; } } } result.decodedLength = offset; return result; } } // anonymous namespace /*! \fn QByteArray::FromBase64Result QByteArray::fromBase64Encoding(QByteArray &&base64, Base64Options options) \fn QByteArray::FromBase64Result QByteArray::fromBase64Encoding(const QByteArray &base64, Base64Options options) \since 5.15 \overload Decodes the Base64 array \a base64, using the options defined by \a options. If \a options contains \c{IgnoreBase64DecodingErrors} (the default), the input is not checked for validity; invalid characters in the input are skipped, enabling the decoding process to continue with subsequent characters. If \a options contains \c{AbortOnBase64DecodingErrors}, then decoding will stop at the first invalid character. For example: \snippet code/src_corelib_text_qbytearray.cpp 44ter The algorithm used to decode Base64-encoded data is defined in \l{RFC 4648}. Returns a QByteArrayFromBase64Result object, containing the decoded data and a flag telling whether decoding was successful. If the \c{AbortOnBase64DecodingErrors} option was passed and the input data was invalid, it is unspecified what the decoded data contains. \sa toBase64() */ QByteArray::FromBase64Result QByteArray::fromBase64Encoding(QByteArray &&base64, Base64Options options) { // try to avoid a detach when calling data(), as it would over-allocate // (we need less space when decoding than the one required by the full copy) if (base64.isDetached()) { const auto base64result = fromBase64_helper(base64.data(), base64.size(), base64.data(), // in-place options); base64.truncate(int(base64result.decodedLength)); return { std::move(base64), base64result.status }; } return fromBase64Encoding(base64, options); } QByteArray::FromBase64Result QByteArray::fromBase64Encoding(const QByteArray &base64, Base64Options options) { const auto base64Size = base64.size(); QByteArray result((base64Size * 3) / 4, Qt::Uninitialized); const auto base64result = fromBase64_helper(base64.data(), base64Size, const_cast(result.constData()), options); result.truncate(int(base64result.decodedLength)); return { std::move(result), base64result.status }; } /*! \since 5.2 Returns a decoded copy of the Base64 array \a base64, using the options defined by \a options. If \a options contains \c{IgnoreBase64DecodingErrors} (the default), the input is not checked for validity; invalid characters in the input are skipped, enabling the decoding process to continue with subsequent characters. If \a options contains \c{AbortOnBase64DecodingErrors}, then decoding will stop at the first invalid character. For example: \snippet code/src_corelib_text_qbytearray.cpp 44 The algorithm used to decode Base64-encoded data is defined in \l{RFC 4648}. Returns the decoded data, or, if the \c{AbortOnBase64DecodingErrors} option was passed and the input data was invalid, an empty byte array. \note The fromBase64Encoding() function is recommended in new code. \sa toBase64(), fromBase64Encoding() */ QByteArray QByteArray::fromBase64(const QByteArray &base64, Base64Options options) { if (auto result = fromBase64Encoding(base64, options)) return std::move(result.decoded); return QByteArray(); } /*! Returns a decoded copy of the hex encoded array \a hexEncoded. Input is not checked for validity; invalid characters in the input are skipped, enabling the decoding process to continue with subsequent characters. For example: \snippet code/src_corelib_text_qbytearray.cpp 45 \sa toHex() */ QByteArray QByteArray::fromHex(const QByteArray &hexEncoded) { QByteArray res((hexEncoded.size() + 1)/ 2, Qt::Uninitialized); uchar *result = (uchar *)res.data() + res.size(); bool odd_digit = true; for (qsizetype i = hexEncoded.size() - 1; i >= 0; --i) { uchar ch = uchar(hexEncoded.at(i)); int tmp = QtMiscUtils::fromHex(ch); if (tmp == -1) continue; if (odd_digit) { --result; *result = tmp; odd_digit = false; } else { *result |= tmp << 4; odd_digit = true; } } res.remove(0, result - (const uchar *)res.constData()); return res; } /*! Returns a hex encoded copy of the byte array. The hex encoding uses the numbers 0-9 and the letters a-f. If \a separator is not '\0', the separator character is inserted between the hex bytes. Example: \snippet code/src_corelib_text_qbytearray.cpp 50 \since 5.9 \sa fromHex() */ QByteArray QByteArray::toHex(char separator) const { if (isEmpty()) return QByteArray(); const qsizetype length = separator ? (size() * 3 - 1) : (size() * 2); QByteArray hex(length, Qt::Uninitialized); char *hexData = hex.data(); const uchar *data = (const uchar *)this->data(); for (qsizetype i = 0, o = 0; i < size(); ++i) { hexData[o++] = QtMiscUtils::toHexLower(data[i] >> 4); hexData[o++] = QtMiscUtils::toHexLower(data[i] & 0xf); if ((separator) && (o < length)) hexData[o++] = separator; } return hex; } static void q_fromPercentEncoding(QByteArray *ba, char percent) { if (ba->isEmpty()) return; char *data = ba->data(); const char *inputPtr = data; qsizetype i = 0; qsizetype len = ba->count(); qsizetype outlen = 0; int a, b; char c; while (i < len) { c = inputPtr[i]; if (c == percent && i + 2 < len) { a = inputPtr[++i]; b = inputPtr[++i]; if (a >= '0' && a <= '9') a -= '0'; else if (a >= 'a' && a <= 'f') a = a - 'a' + 10; else if (a >= 'A' && a <= 'F') a = a - 'A' + 10; if (b >= '0' && b <= '9') b -= '0'; else if (b >= 'a' && b <= 'f') b = b - 'a' + 10; else if (b >= 'A' && b <= 'F') b = b - 'A' + 10; *data++ = (char)((a << 4) | b); } else { *data++ = c; } ++i; ++outlen; } if (outlen != len) ba->truncate(outlen); } void q_fromPercentEncoding(QByteArray *ba) { q_fromPercentEncoding(ba, '%'); } /*! \since 4.4 Returns a decoded copy of the URI/URL-style percent-encoded \a input. The \a percent parameter allows you to replace the '%' character for another (for instance, '_' or '='). For example: \snippet code/src_corelib_text_qbytearray.cpp 51 \note Given invalid input (such as a string containing the sequence "%G5", which is not a valid hexadecimal number) the output will be invalid as well. As an example: the sequence "%G5" could be decoded to 'W'. \sa toPercentEncoding(), QUrl::fromPercentEncoding() */ QByteArray QByteArray::fromPercentEncoding(const QByteArray &input, char percent) { if (input.isNull()) return QByteArray(); // preserve null if (input.isEmpty()) return QByteArray(input.data(), 0); QByteArray tmp = input; q_fromPercentEncoding(&tmp, percent); return tmp; } /*! \fn QByteArray QByteArray::fromStdString(const std::string &str) \since 5.4 Returns a copy of the \a str string as a QByteArray. \sa toStdString(), QString::fromStdString() */ /*! \fn std::string QByteArray::toStdString() const \since 5.4 Returns a std::string object with the data contained in this QByteArray. This operator is mostly useful to pass a QByteArray to a function that accepts a std::string object. \sa fromStdString(), QString::toStdString() */ static inline bool q_strchr(const char str[], char chr) { if (!str) return false; const char *ptr = str; char c; while ((c = *ptr++)) if (c == chr) return true; return false; } static void q_toPercentEncoding(QByteArray *ba, const char *dontEncode, const char *alsoEncode, char percent) { if (ba->isEmpty()) return; QByteArray input = *ba; qsizetype len = input.count(); const char *inputData = input.constData(); char *output = nullptr; qsizetype length = 0; for (qsizetype i = 0; i < len; ++i) { unsigned char c = *inputData++; if (((c >= 0x61 && c <= 0x7A) // ALPHA || (c >= 0x41 && c <= 0x5A) // ALPHA || (c >= 0x30 && c <= 0x39) // DIGIT || c == 0x2D // - || c == 0x2E // . || c == 0x5F // _ || c == 0x7E // ~ || q_strchr(dontEncode, c)) && !q_strchr(alsoEncode, c)) { if (output) output[length] = c; ++length; } else { if (!output) { // detach now ba->resize(len*3); // worst case output = ba->data(); } output[length++] = percent; output[length++] = QtMiscUtils::toHexUpper((c & 0xf0) >> 4); output[length++] = QtMiscUtils::toHexUpper(c & 0xf); } } if (output) ba->truncate(length); } void q_toPercentEncoding(QByteArray *ba, const char *exclude, const char *include) { q_toPercentEncoding(ba, exclude, include, '%'); } void q_normalizePercentEncoding(QByteArray *ba, const char *exclude) { q_fromPercentEncoding(ba, '%'); q_toPercentEncoding(ba, exclude, nullptr, '%'); } /*! \since 4.4 Returns a URI/URL-style percent-encoded copy of this byte array. The \a percent parameter allows you to override the default '%' character for another. By default, this function will encode all bytes that are not one of the following: ALPHA ("a" to "z" and "A" to "Z") / DIGIT (0 to 9) / "-" / "." / "_" / "~" To prevent bytes from being encoded pass them to \a exclude. To force bytes to be encoded pass them to \a include. The \a percent character is always encoded. Example: \snippet code/src_corelib_text_qbytearray.cpp 52 The hex encoding uses the numbers 0-9 and the uppercase letters A-F. \sa fromPercentEncoding(), QUrl::toPercentEncoding() */ QByteArray QByteArray::toPercentEncoding(const QByteArray &exclude, const QByteArray &include, char percent) const { if (isNull()) return QByteArray(); // preserve null if (isEmpty()) return QByteArray(data(), 0); QByteArray include2 = include; if (percent != '%') // the default if ((percent >= 0x61 && percent <= 0x7A) // ALPHA || (percent >= 0x41 && percent <= 0x5A) // ALPHA || (percent >= 0x30 && percent <= 0x39) // DIGIT || percent == 0x2D // - || percent == 0x2E // . || percent == 0x5F // _ || percent == 0x7E) // ~ include2 += percent; QByteArray result = *this; q_toPercentEncoding(&result, exclude.nulTerminated().constData(), include2.nulTerminated().constData(), percent); return result; } /*! \typedef QByteArray::ConstIterator \internal */ /*! \typedef QByteArray::Iterator \internal */ /*! \typedef QByteArray::const_iterator This typedef provides an STL-style const iterator for QByteArray. \sa QByteArray::const_reverse_iterator, QByteArray::iterator */ /*! \typedef QByteArray::iterator This typedef provides an STL-style non-const iterator for QByteArray. \sa QByteArray::reverse_iterator, QByteArray::const_iterator */ /*! \typedef QByteArray::const_reverse_iterator \since 5.6 This typedef provides an STL-style const reverse iterator for QByteArray. \sa QByteArray::reverse_iterator, QByteArray::const_iterator */ /*! \typedef QByteArray::reverse_iterator \since 5.6 This typedef provides an STL-style non-const reverse iterator for QByteArray. \sa QByteArray::const_reverse_iterator, QByteArray::iterator */ /*! \typedef QByteArray::size_type \internal */ /*! \typedef QByteArray::difference_type \internal */ /*! \typedef QByteArray::const_reference \internal */ /*! \typedef QByteArray::reference \internal */ /*! \typedef QByteArray::const_pointer \internal */ /*! \typedef QByteArray::pointer \internal */ /*! \typedef QByteArray::value_type \internal */ /*! \fn DataPtr &QByteArray::data_ptr() \internal */ /*! \typedef QByteArray::DataPtr \internal */ /*! \macro QByteArrayLiteral(ba) \relates QByteArray The macro generates the data for a QByteArray out of the string literal \a ba at compile time. Creating a QByteArray from it is free in this case, and the generated byte array data is stored in the read-only segment of the compiled object file. For instance: \snippet code/src_corelib_text_qbytearray.cpp 53 Using QByteArrayLiteral instead of a double quoted plain C++ string literal can significantly speed up creation of QByteArray instances from data known at compile time. \sa QStringLiteral */ /*! \fn QtLiterals::operator""_qba(const char *str, size_t size) \relates QByteArray \since 6.2 Literal operator that creates a QByteArray out of the first \a size characters in the char string literal \a str. The QByteArray is created at compile time, and the generated string data is stored in the read-only segment of the compiled object file. Duplicate literals may share the same read-only memory. This functionality is interchangeable with QByteArrayLiteral, but saves typing when many string literals are present in the code. The following code creates a QByteArray: \code auto str = "hello"_qba; \endcode \sa QByteArrayLiteral, QtLiterals::operator""_qs(const char16_t *str, size_t size) */ /*! \class QByteArray::FromBase64Result \inmodule QtCore \ingroup tools \since 5.15 \brief The QByteArray::FromBase64Result class holds the result of a call to QByteArray::fromBase64Encoding. Objects of this class can be used to check whether the conversion was successful, and if so, retrieve the decoded QByteArray. The conversion operators defined for QByteArray::FromBase64Result make its usage straightforward: \snippet code/src_corelib_text_qbytearray.cpp 44ter Alternatively, it is possible to access the conversion status and the decoded data directly: \snippet code/src_corelib_text_qbytearray.cpp 44quater \sa QByteArray::fromBase64 */ /*! \variable QByteArray::FromBase64Result::decoded Contains the decoded byte array. */ /*! \variable QByteArray::FromBase64Result::decodingStatus Contains whether the decoding was successful, expressed as a value of type QByteArray::Base64DecodingStatus. */ /*! \fn QByteArray::FromBase64Result::operator bool() const Returns whether the decoding was successful. This is equivalent to checking whether the \c{decodingStatus} member is equal to QByteArray::Base64DecodingStatus::Ok. */ /*! \fn QByteArray &QByteArray::FromBase64Result::operator*() const Returns the decoded byte array. */ /*! \fn bool QByteArray::FromBase64Result::operator==(const QByteArray::FromBase64Result &lhs, const QByteArray::FromBase64Result &rhs) noexcept Returns \c true if \a lhs and \a rhs are equal, otherwise returns \c false. \a lhs and \a rhs are equal if and only if they contain the same decoding status and, if the status is QByteArray::Base64DecodingStatus::Ok, if and only if they contain the same decoded data. */ /*! \fn bool QByteArray::FromBase64Result::operator!=(const QByteArray::FromBase64Result &lhs, const QByteArray::FromBase64Result &rhs) noexcept Returns \c true if \a lhs and \a rhs are different, otherwise returns \c false. */ /*! \relates QByteArray::FromBase64Result Returns the hash value for \a key, using \a seed to seed the calculation. */ size_t qHash(const QByteArray::FromBase64Result &key, size_t seed) noexcept { return qHashMulti(seed, key.decoded, static_cast(key.decodingStatus)); } /*! \fn template qsizetype erase(QByteArray &ba, const T &t) \relates QByteArray \since 6.1 Removes all elements that compare equal to \a t from the byte array \a ba. Returns the number of elements removed, if any. \sa erase_if */ /*! \fn template qsizetype erase_if(QByteArray &ba, Predicate pred) \relates QByteArray \since 6.1 Removes all elements for which the predicate \a pred returns true from the byte array \a ba. Returns the number of elements removed, if any. \sa erase */ QT_END_NAMESPACE