/**************************************************************************** ** ** Copyright (C) 2018 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qimage.h" #include "qbuffer.h" #include "qdatastream.h" #include "qcolortransform.h" #include "qmap.h" #include "qmatrix.h" #include "qtransform.h" #include "qimagereader.h" #include "qimagewriter.h" #include "qstringlist.h" #include "qvariant.h" #include "qimagepixmapcleanuphooks_p.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include QT_BEGIN_NAMESPACE static inline bool isLocked(QImageData *data) { return data != 0 && data->is_locked; } #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) #pragma message disable narrowptr #endif #define QIMAGE_SANITYCHECK_MEMORY(image) \ if ((image).isNull()) { \ qWarning("QImage: out of memory, returning null image"); \ return QImage(); \ } static QImage rotated90(const QImage &src); static QImage rotated180(const QImage &src); static QImage rotated270(const QImage &src); static int next_qimage_serial_number() { static QBasicAtomicInt serial = Q_BASIC_ATOMIC_INITIALIZER(0); return 1 + serial.fetchAndAddRelaxed(1); } QImageData::QImageData() : ref(0), width(0), height(0), depth(0), nbytes(0), devicePixelRatio(1.0), data(0), format(QImage::Format_ARGB32), bytes_per_line(0), ser_no(next_qimage_serial_number()), detach_no(0), dpmx(qt_defaultDpiX() * 100 / qreal(2.54)), dpmy(qt_defaultDpiY() * 100 / qreal(2.54)), offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false), is_cached(false), is_locked(false), cleanupFunction(0), cleanupInfo(0), paintEngine(0) { } /*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format) \internal Creates a new image data. Returns \nullptr if invalid parameters are give or anything else failed. */ QImageData * QImageData::create(const QSize &size, QImage::Format format) { if (size.isEmpty() || format == QImage::Format_Invalid) return nullptr; // invalid parameter(s) int width = size.width(); int height = size.height(); int depth = qt_depthForFormat(format); auto params = calculateImageParameters(width, height, depth); if (!params.isValid()) return nullptr; QScopedPointer d(new QImageData); switch (format) { case QImage::Format_Mono: case QImage::Format_MonoLSB: d->colortable.resize(2); d->colortable[0] = QColor(Qt::black).rgba(); d->colortable[1] = QColor(Qt::white).rgba(); break; default: break; } d->width = width; d->height = height; d->depth = depth; d->format = format; d->has_alpha_clut = false; d->is_cached = false; d->bytes_per_line = params.bytesPerLine; d->nbytes = params.totalSize; d->data = (uchar *)malloc(d->nbytes); if (!d->data) return nullptr; d->ref.ref(); return d.take(); } QImageData::~QImageData() { if (cleanupFunction) cleanupFunction(cleanupInfo); if (is_cached) QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no)); delete paintEngine; if (data && own_data) free(data); data = 0; } #if defined(_M_ARM) #pragma optimize("", off) #endif bool QImageData::checkForAlphaPixels() const { bool has_alpha_pixels = false; switch (format) { case QImage::Format_Mono: case QImage::Format_MonoLSB: case QImage::Format_Indexed8: has_alpha_pixels = has_alpha_clut; break; case QImage::Format_Alpha8: has_alpha_pixels = true; break; case QImage::Format_ARGB32: case QImage::Format_ARGB32_Premultiplied: { const uchar *bits = data; for (int y=0; y(bits)[x]; has_alpha_pixels = (alphaAnd != 0xff000000); bits += bytes_per_line; } } break; case QImage::Format_RGBA8888: case QImage::Format_RGBA8888_Premultiplied: { const uchar *bits = data; for (int y=0; y(bits)[x]; has_alpha_pixels = (alphaAnd != 0xc0000000); bits += bytes_per_line; } } break; case QImage::Format_ARGB8555_Premultiplied: case QImage::Format_ARGB8565_Premultiplied: { const uchar *bits = data; const uchar *end_bits = data + bytes_per_line; for (int y=0; y(bits)[x]; has_alpha_pixels = (alphaAnd != 0xf000); bits += bytes_per_line; } } break; case QImage::Format_RGBA64: case QImage::Format_RGBA64_Premultiplied: { uchar *bits = data; for (int y=0; y, and the QRgb typedef is equivalent to an unsigned int containing an ARGB quadruplet on the format 0xAARRGGBB. 32-bit images have no color table; instead, each pixel contains an QRgb value. There are three different types of 32-bit images storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB values respectively. In the premultiplied format the red, green, and blue channels are multiplied by the alpha component divided by 255. An image's format can be retrieved using the format() function. Use the convertToFormat() functions to convert an image into another format. The allGray() and isGrayscale() functions tell whether a color image can safely be converted to a grayscale image. \section1 Image Transformations QImage supports a number of functions for creating a new image that is a transformed version of the original: The createAlphaMask() function builds and returns a 1-bpp mask from the alpha buffer in this image, and the createHeuristicMask() function creates and returns a 1-bpp heuristic mask for this image. The latter function works by selecting a color from one of the corners, then chipping away pixels of that color starting at all the edges. The mirrored() function returns a mirror of the image in the desired direction, the scaled() returns a copy of the image scaled to a rectangle of the desired measures, and the rgbSwapped() function constructs a BGR image from a RGB image. The scaledToWidth() and scaledToHeight() functions return scaled copies of the image. The transformed() function returns a copy of the image that is transformed with the given transformation matrix and transformation mode: Internally, the transformation matrix is adjusted to compensate for unwanted translation, i.e. transformed() returns the smallest image containing all transformed points of the original image. The static trueMatrix() function returns the actual matrix used for transforming the image. There are also functions for changing attributes of an image in-place: \table \header \li Function \li Description \row \li setDotsPerMeterX() \li Defines the aspect ratio by setting the number of pixels that fit horizontally in a physical meter. \row \li setDotsPerMeterY() \li Defines the aspect ratio by setting the number of pixels that fit vertically in a physical meter. \row \li fill() \li Fills the entire image with the given pixel value. \row \li invertPixels() \li Inverts all pixel values in the image using the given InvertMode value. \row \li setColorTable() \li Sets the color table used to translate color indexes. Only monochrome and 8-bit formats. \row \li setColorCount() \li Resizes the color table. Only monochrome and 8-bit formats. \endtable \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example}, {Image Viewer Example}, {Scribble Example}, {Pixelator Example} */ /*! \fn QImage::QImage(QImage &&other) Move-constructs a QImage instance, making it point at the same object that \a other was pointing to. \since 5.2 */ /*! \fn QImage &QImage::operator=(QImage &&other) Move-assigns \a other to this QImage instance. \since 5.2 */ /*! \typedef QImageCleanupFunction \relates QImage \since 5.0 A function with the following signature that can be used to implement basic image memory management: \code void myImageCleanupHandler(void *info); \endcode */ /*! \enum QImage::InvertMode This enum type is used to describe how pixel values should be inverted in the invertPixels() function. \value InvertRgb Invert only the RGB values and leave the alpha channel unchanged. \value InvertRgba Invert all channels, including the alpha channel. \sa invertPixels() */ /*! \enum QImage::Format The following image formats are available in Qt. See the notes after the table. \value Format_Invalid The image is invalid. \value Format_Mono The image is stored using 1-bit per pixel. Bytes are packed with the most significant bit (MSB) first. \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are packed with the less significant bit (LSB) first. \value Format_Indexed8 The image is stored using 8-bit indexes into a colormap. \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB). \value Format_ARGB32 The image is stored using a 32-bit ARGB format (0xAARRGGBB). \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit ARGB format (0xAARRGGBB), i.e. the red, green, and blue channels are multiplied by the alpha component divided by 255. (If RR, GG, or BB has a higher value than the alpha channel, the results are undefined.) Certain operations (such as image composition using alpha blending) are faster using premultiplied ARGB32 than with plain ARGB32. \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5). \value Format_ARGB8565_Premultiplied The image is stored using a premultiplied 24-bit ARGB format (8-5-6-5). \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6). The unused most significant bits is always zero. \value Format_ARGB6666_Premultiplied The image is stored using a premultiplied 24-bit ARGB format (6-6-6-6). \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5). The unused most significant bit is always zero. \value Format_ARGB8555_Premultiplied The image is stored using a premultiplied 24-bit ARGB format (8-5-5-5). \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8). \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4). The unused bits are always zero. \value Format_ARGB4444_Premultiplied The image is stored using a premultiplied 16-bit ARGB format (4-4-4-4). \value Format_RGBX8888 The image is stored using a 32-bit byte-ordered RGB(x) format (8-8-8-8). This is the same as the Format_RGBA8888 except alpha must always be 255. (added in Qt 5.2) \value Format_RGBA8888 The image is stored using a 32-bit byte-ordered RGBA format (8-8-8-8). Unlike ARGB32 this is a byte-ordered format, which means the 32bit encoding differs between big endian and little endian architectures, being respectively (0xRRGGBBAA) and (0xAABBGGRR). The order of the colors is the same on any architecture if read as bytes 0xRR,0xGG,0xBB,0xAA. (added in Qt 5.2) \value Format_RGBA8888_Premultiplied The image is stored using a premultiplied 32-bit byte-ordered RGBA format (8-8-8-8). (added in Qt 5.2) \value Format_BGR30 The image is stored using a 32-bit BGR format (x-10-10-10). (added in Qt 5.4) \value Format_A2BGR30_Premultiplied The image is stored using a 32-bit premultiplied ABGR format (2-10-10-10). (added in Qt 5.4) \value Format_RGB30 The image is stored using a 32-bit RGB format (x-10-10-10). (added in Qt 5.4) \value Format_A2RGB30_Premultiplied The image is stored using a 32-bit premultiplied ARGB format (2-10-10-10). (added in Qt 5.4) \value Format_Alpha8 The image is stored using an 8-bit alpha only format. (added in Qt 5.5) \value Format_Grayscale8 The image is stored using an 8-bit grayscale format. (added in Qt 5.5) \value Format_Grayscale16 The image is stored using an 16-bit grayscale format. (added in Qt 5.13) \value Format_RGBX64 The image is stored using a 64-bit halfword-ordered RGB(x) format (16-16-16-16). This is the same as the Format_RGBA64 except alpha must always be 65535. (added in Qt 5.12) \value Format_RGBA64 The image is stored using a 64-bit halfword-ordered RGBA format (16-16-16-16). (added in Qt 5.12) \value Format_RGBA64_Premultiplied The image is stored using a premultiplied 64-bit halfword-ordered RGBA format (16-16-16-16). (added in Qt 5.12) \value Format_BGR888 The image is stored using a 24-bit BGR format. (added in Qt 5.14) \note Drawing into a QImage with QImage::Format_Indexed8 is not supported. \note Avoid most rendering directly to most of these formats using QPainter. Rendering is best optimized to the \c Format_RGB32 and \c Format_ARGB32_Premultiplied formats, and secondarily for rendering to the \c Format_RGB16, \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64 and \c Format_RGBA64_Premultiplied formats \sa format(), convertToFormat() */ /***************************************************************************** QImage member functions *****************************************************************************/ /*! Constructs a null image. \sa isNull() */ QImage::QImage() noexcept : QPaintDevice() { d = 0; } /*! Constructs an image with the given \a width, \a height and \a format. A \l{isNull()}{null} image will be returned if memory cannot be allocated. \warning This will create a QImage with uninitialized data. Call fill() to fill the image with an appropriate pixel value before drawing onto it with QPainter. */ QImage::QImage(int width, int height, Format format) : QImage(QSize(width, height), format) { } /*! Constructs an image with the given \a size and \a format. A \l{isNull()}{null} image is returned if memory cannot be allocated. \warning This will create a QImage with uninitialized data. Call fill() to fill the image with an appropriate pixel value before drawing onto it with QPainter. */ QImage::QImage(const QSize &size, Format format) : QPaintDevice() { d = QImageData::create(size, format); } QImageData *QImageData::create(uchar *data, int width, int height, int bpl, QImage::Format format, bool readOnly, QImageCleanupFunction cleanupFunction, void *cleanupInfo) { if (width <= 0 || height <= 0 || !data || format == QImage::Format_Invalid) return nullptr; const int depth = qt_depthForFormat(format); auto params = calculateImageParameters(width, height, depth); if (!params.isValid()) return nullptr; if (bpl > 0) { // can't overflow, because has calculateImageParameters already done this multiplication const int min_bytes_per_line = (width * depth + 7)/8; if (bpl < min_bytes_per_line) return nullptr; // recalculate the total with this value params.bytesPerLine = bpl; if (mul_overflow(bpl, height, ¶ms.totalSize)) return nullptr; } QImageData *d = new QImageData; d->ref.ref(); d->own_data = false; d->ro_data = readOnly; d->data = data; d->width = width; d->height = height; d->depth = depth; d->format = format; d->bytes_per_line = params.bytesPerLine; d->nbytes = params.totalSize; d->cleanupFunction = cleanupFunction; d->cleanupInfo = cleanupInfo; return d; } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing memory buffer, \a data. The \a width and \a height must be specified in pixels, \a data must be 32-bit aligned, and each scanline of data in the image must also be 32-bit aligned. The buffer must remain valid throughout the life of the QImage and all copies that have not been modified or otherwise detached from the original buffer. The image does not delete the buffer at destruction. You can provide a function pointer \a cleanupFunction along with an extra pointer \a cleanupInfo that will be called when the last copy is destroyed. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setColorCount() or setColorTable() before the image is used. */ QImage::QImage(uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) : QPaintDevice() { d = QImageData::create(data, width, height, 0, format, false, cleanupFunction, cleanupInfo); } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing read-only memory buffer, \a data. The \a width and \a height must be specified in pixels, \a data must be 32-bit aligned, and each scanline of data in the image must also be 32-bit aligned. The buffer must remain valid throughout the life of the QImage and all copies that have not been modified or otherwise detached from the original buffer. The image does not delete the buffer at destruction. You can provide a function pointer \a cleanupFunction along with an extra pointer \a cleanupInfo that will be called when the last copy is destroyed. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setColorCount() or setColorTable() before the image is used. Unlike the similar QImage constructor that takes a non-const data buffer, this version will never alter the contents of the buffer. For example, calling QImage::bits() will return a deep copy of the image, rather than the buffer passed to the constructor. This allows for the efficiency of constructing a QImage from raw data, without the possibility of the raw data being changed. */ QImage::QImage(const uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) : QPaintDevice() { d = QImageData::create(const_cast(data), width, height, 0, format, true, cleanupFunction, cleanupInfo); } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing memory buffer, \a data. The \a width and \a height must be specified in pixels. \a bytesPerLine specifies the number of bytes per line (stride). The buffer must remain valid throughout the life of the QImage and all copies that have not been modified or otherwise detached from the original buffer. The image does not delete the buffer at destruction. You can provide a function pointer \a cleanupFunction along with an extra pointer \a cleanupInfo that will be called when the last copy is destroyed. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setColorCount() or setColorTable() before the image is used. */ QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) :QPaintDevice() { d = QImageData::create(data, width, height, bytesPerLine, format, false, cleanupFunction, cleanupInfo); } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing memory buffer, \a data. The \a width and \a height must be specified in pixels. \a bytesPerLine specifies the number of bytes per line (stride). The buffer must remain valid throughout the life of the QImage and all copies that have not been modified or otherwise detached from the original buffer. The image does not delete the buffer at destruction. You can provide a function pointer \a cleanupFunction along with an extra pointer \a cleanupInfo that will be called when the last copy is destroyed. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setColorCount() or setColorTable() before the image is used. Unlike the similar QImage constructor that takes a non-const data buffer, this version will never alter the contents of the buffer. For example, calling QImage::bits() will return a deep copy of the image, rather than the buffer passed to the constructor. This allows for the efficiency of constructing a QImage from raw data, without the possibility of the raw data being changed. */ QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) :QPaintDevice() { d = QImageData::create(const_cast(data), width, height, bytesPerLine, format, true, cleanupFunction, cleanupInfo); } /*! Constructs an image and tries to load the image from the file with the given \a fileName. The loader attempts to read the image using the specified \a format. If the \a format is not specified (which is the default), it is auto-detected based on the file's suffix and header. For details, see {QImageReader::setAutoDetectImageFormat()}{QImageReader}. If the loading of the image failed, this object is a null image. The file name can either refer to an actual file on disk or to one of the application's embedded resources. See the \l{resources.html}{Resource System} overview for details on how to embed images and other resource files in the application's executable. \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ QImage::QImage(const QString &fileName, const char *format) : QPaintDevice() { d = 0; load(fileName, format); } #ifndef QT_NO_IMAGEFORMAT_XPM extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image); /*! Constructs an image from the given \a xpm image. Make sure that the image is a valid XPM image. Errors are silently ignored. Note that it's possible to squeeze the XPM variable a little bit by using an unusual declaration: \snippet code/src_gui_image_qimage.cpp 2 The extra \c const makes the entire definition read-only, which is slightly more efficient (e.g., when the code is in a shared library) and able to be stored in ROM with the application. */ QImage::QImage(const char * const xpm[]) : QPaintDevice() { d = 0; if (!xpm) return; if (!qt_read_xpm_image_or_array(0, xpm, *this)) // Issue: Warning because the constructor may be ambigious qWarning("QImage::QImage(), XPM is not supported"); } #endif // QT_NO_IMAGEFORMAT_XPM /*! Constructs a shallow copy of the given \a image. For more information about shallow copies, see the \l {Implicit Data Sharing} documentation. \sa copy() */ QImage::QImage(const QImage &image) : QPaintDevice() { if (image.paintingActive() || isLocked(image.d)) { d = 0; image.copy().swap(*this); } else { d = image.d; if (d) d->ref.ref(); } } /*! Destroys the image and cleans up. */ QImage::~QImage() { if (d && !d->ref.deref()) delete d; } /*! Assigns a shallow copy of the given \a image to this image and returns a reference to this image. For more information about shallow copies, see the \l {Implicit Data Sharing} documentation. \sa copy(), QImage() */ QImage &QImage::operator=(const QImage &image) { if (image.paintingActive() || isLocked(image.d)) { operator=(image.copy()); } else { if (image.d) image.d->ref.ref(); if (d && !d->ref.deref()) delete d; d = image.d; } return *this; } /*! \fn void QImage::swap(QImage &other) \since 4.8 Swaps image \a other with this image. This operation is very fast and never fails. */ /*! \internal */ int QImage::devType() const { return QInternal::Image; } /*! Returns the image as a QVariant. */ QImage::operator QVariant() const { return QVariant(QVariant::Image, this); } /*! \internal If multiple images share common data, this image makes a copy of the data and detaches itself from the sharing mechanism, making sure that this image is the only one referring to the data. Nothing is done if there is just a single reference. \sa copy(), {QImage::isDetached()}{isDetached()}, {Implicit Data Sharing} */ void QImage::detach() { if (d) { if (d->is_cached && d->ref.loadRelaxed() == 1) QImagePixmapCleanupHooks::executeImageHooks(cacheKey()); if (d->ref.loadRelaxed() != 1 || d->ro_data) *this = copy(); if (d) ++d->detach_no; } } static void copyPhysicalMetadata(QImageData *dst, const QImageData *src) { dst->dpmx = src->dpmx; dst->dpmy = src->dpmy; dst->devicePixelRatio = src->devicePixelRatio; } static void copyMetadata(QImageData *dst, const QImageData *src) { // Doesn't copy colortable and alpha_clut, or offset. copyPhysicalMetadata(dst, src); dst->text = src->text; dst->colorSpace = src->colorSpace; } static void copyMetadata(QImage *dst, const QImage &src) { dst->setDotsPerMeterX(src.dotsPerMeterX()); dst->setDotsPerMeterY(src.dotsPerMeterY()); dst->setDevicePixelRatio(src.devicePixelRatio()); const auto textKeys = src.textKeys(); for (const auto &key: textKeys) dst->setText(key, src.text(key)); } /*! \fn QImage QImage::copy(int x, int y, int width, int height) const \overload The returned image is copied from the position (\a x, \a y) in this image, and will always have the given \a width and \a height. In areas beyond this image, pixels are set to 0. */ /*! \fn QImage QImage::copy(const QRect& rectangle) const Returns a sub-area of the image as a new image. The returned image is copied from the position (\a {rectangle}.x(), \a{rectangle}.y()) in this image, and will always have the size of the given \a rectangle. In areas beyond this image, pixels are set to 0. For 32-bit RGB images, this means black; for 32-bit ARGB images, this means transparent black; for 8-bit images, this means the color with index 0 in the color table which can be anything; for 1-bit images, this means Qt::color0. If the given \a rectangle is a null rectangle the entire image is copied. \sa QImage() */ QImage QImage::copy(const QRect& r) const { if (!d) return QImage(); if (r.isNull()) { QImage image(d->width, d->height, d->format); if (image.isNull()) return image; // Qt for Embedded Linux can create images with non-default bpl // make sure we don't crash. if (image.d->nbytes != d->nbytes) { int bpl = qMin(bytesPerLine(), image.bytesPerLine()); for (int i = 0; i < height(); i++) memcpy(image.scanLine(i), scanLine(i), bpl); } else memcpy(image.bits(), bits(), d->nbytes); image.d->colortable = d->colortable; image.d->offset = d->offset; image.d->has_alpha_clut = d->has_alpha_clut; copyMetadata(image.d, d); return image; } int x = r.x(); int y = r.y(); int w = r.width(); int h = r.height(); int dx = 0; int dy = 0; if (w <= 0 || h <= 0) return QImage(); QImage image(w, h, d->format); if (image.isNull()) return image; if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) { // bitBlt will not cover entire image - clear it. image.fill(0); if (x < 0) { dx = -x; x = 0; } if (y < 0) { dy = -y; y = 0; } } image.d->colortable = d->colortable; int pixels_to_copy = qMax(w - dx, 0); if (x > d->width) pixels_to_copy = 0; else if (pixels_to_copy > d->width - x) pixels_to_copy = d->width - x; int lines_to_copy = qMax(h - dy, 0); if (y > d->height) lines_to_copy = 0; else if (lines_to_copy > d->height - y) lines_to_copy = d->height - y; bool byteAligned = true; if (d->format == Format_Mono || d->format == Format_MonoLSB) byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7); if (byteAligned) { const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line; uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line; const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3; for (int i = 0; i < lines_to_copy; ++i) { memcpy(dest, src, bytes_to_copy); src += d->bytes_per_line; dest += image.d->bytes_per_line; } } else if (d->format == Format_Mono) { const uchar *src = d->data + y * d->bytes_per_line; uchar *dest = image.d->data + dy * image.d->bytes_per_line; for (int i = 0; i < lines_to_copy; ++i) { for (int j = 0; j < pixels_to_copy; ++j) { if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7))) dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7)); else dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7)); } src += d->bytes_per_line; dest += image.d->bytes_per_line; } } else { // Format_MonoLSB Q_ASSERT(d->format == Format_MonoLSB); const uchar *src = d->data + y * d->bytes_per_line; uchar *dest = image.d->data + dy * image.d->bytes_per_line; for (int i = 0; i < lines_to_copy; ++i) { for (int j = 0; j < pixels_to_copy; ++j) { if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7))) dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7)); else dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7)); } src += d->bytes_per_line; dest += image.d->bytes_per_line; } } copyMetadata(image.d, d); image.d->offset = offset(); image.d->has_alpha_clut = d->has_alpha_clut; return image; } /*! \fn bool QImage::isNull() const Returns \c true if it is a null image, otherwise returns \c false. A null image has all parameters set to zero and no allocated data. */ bool QImage::isNull() const { return !d; } /*! \fn int QImage::width() const Returns the width of the image. \sa {QImage#Image Information}{Image Information} */ int QImage::width() const { return d ? d->width : 0; } /*! \fn int QImage::height() const Returns the height of the image. \sa {QImage#Image Information}{Image Information} */ int QImage::height() const { return d ? d->height : 0; } /*! \fn QSize QImage::size() const Returns the size of the image, i.e. its width() and height(). \sa {QImage#Image Information}{Image Information} */ QSize QImage::size() const { return d ? QSize(d->width, d->height) : QSize(0, 0); } /*! \fn QRect QImage::rect() const Returns the enclosing rectangle (0, 0, width(), height()) of the image. \sa {QImage#Image Information}{Image Information} */ QRect QImage::rect() const { return d ? QRect(0, 0, d->width, d->height) : QRect(); } /*! Returns the depth of the image. The image depth is the number of bits used to store a single pixel, also called bits per pixel (bpp). The supported depths are 1, 8, 16, 24, 32 and 64. \sa bitPlaneCount(), convertToFormat(), {QImage#Image Formats}{Image Formats}, {QImage#Image Information}{Image Information} */ int QImage::depth() const { return d ? d->depth : 0; } /*! \obsolete \fn int QImage::numColors() const Returns the size of the color table for the image. \sa setColorCount() */ /*! \since 4.6 \fn int QImage::colorCount() const Returns the size of the color table for the image. Notice that colorCount() returns 0 for 32-bpp images because these images do not use color tables, but instead encode pixel values as ARGB quadruplets. \sa setColorCount(), {QImage#Image Information}{Image Information} */ int QImage::colorCount() const { return d ? d->colortable.size() : 0; } /*! Sets the color table used to translate color indexes to QRgb values, to the specified \a colors. When the image is used, the color table must be large enough to have entries for all the pixel/index values present in the image, otherwise the results are undefined. \sa colorTable(), setColor(), {QImage#Image Transformations}{Image Transformations} */ #if QT_VERSION >= QT_VERSION_CHECK(6,0,0) void QImage::setColorTable(const QVector &colors) #else void QImage::setColorTable(const QVector colors) #endif { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; #if QT_VERSION >= QT_VERSION_CHECK(6,0,0) d->colortable = colors; #else d->colortable = std::move(const_cast&>(colors)); #endif d->has_alpha_clut = false; for (int i = 0; i < d->colortable.size(); ++i) { if (qAlpha(d->colortable.at(i)) != 255) { d->has_alpha_clut = true; break; } } } /*! Returns a list of the colors contained in the image's color table, or an empty list if the image does not have a color table \sa setColorTable(), colorCount(), color() */ QVector QImage::colorTable() const { return d ? d->colortable : QVector(); } /*! Returns the device pixel ratio for the image. This is the ratio between \e{device pixels} and \e{device independent pixels}. Use this function when calculating layout geometry based on the image size: QSize layoutSize = image.size() / image.devicePixelRatio() The default value is 1.0. \sa setDevicePixelRatio(), QImageReader */ qreal QImage::devicePixelRatio() const { if (!d) return 1.0; return d->devicePixelRatio; } /*! Sets the device pixel ratio for the image. This is the ratio between image pixels and device-independent pixels. The default \a scaleFactor is 1.0. Setting it to something else has two effects: QPainters that are opened on the image will be scaled. For example, painting on a 200x200 image if with a ratio of 2.0 will result in effective (device-independent) painting bounds of 100x100. Code paths in Qt that calculate layout geometry based on the image size will take the ratio into account: QSize layoutSize = image.size() / image.devicePixelRatio() The net effect of this is that the image is displayed as high-DPI image rather than a large image (see \l{Drawing High Resolution Versions of Pixmaps and Images}). \sa devicePixelRatio() */ void QImage::setDevicePixelRatio(qreal scaleFactor) { if (!d) return; if (scaleFactor == d->devicePixelRatio) return; detach(); if (d) d->devicePixelRatio = scaleFactor; } #if QT_DEPRECATED_SINCE(5, 10) /*! \since 4.6 \obsolete Returns the number of bytes occupied by the image data. Note this method should never be called on an image larger than 2 gigabytes. Instead use sizeInBytes(). \sa sizeInBytes(), bytesPerLine(), bits(), {QImage#Image Information}{Image Information} */ int QImage::byteCount() const { Q_ASSERT(!d || d->nbytes < std::numeric_limits::max()); return d ? int(d->nbytes) : 0; } #endif /*! \since 5.10 Returns the image data size in bytes. \sa byteCount(), bytesPerLine(), bits(), {QImage#Image Information}{Image Information} */ qsizetype QImage::sizeInBytes() const { return d ? d->nbytes : 0; } /*! Returns the number of bytes per image scanline. This is equivalent to sizeInBytes() / height() if height() is non-zero. \sa scanLine() */ #if QT_VERSION >= QT_VERSION_CHECK(6,0,0) qsizetype QImage::bytesPerLine() const { return d ? d->bytes_per_line : 0; } #else int QImage::bytesPerLine() const { return d ? d->bytes_per_line : 0; } #endif /*! Returns the color in the color table at index \a i. The first color is at index 0. The colors in an image's color table are specified as ARGB quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and qBlue() functions to get the color value components. \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ QRgb QImage::color(int i) const { Q_ASSERT(i < colorCount()); return d ? d->colortable.at(i) : QRgb(uint(-1)); } /*! \fn void QImage::setColor(int index, QRgb colorValue) Sets the color at the given \a index in the color table, to the given to \a colorValue. The color value is an ARGB quadruplet. If \a index is outside the current size of the color table, it is expanded with setColorCount(). \sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ void QImage::setColor(int i, QRgb c) { if (!d) return; if (i < 0 || d->depth > 8 || i >= 1<depth) { qWarning("QImage::setColor: Index out of bound %d", i); return; } detach(); // In case detach() run out of memory if (!d) return; if (i >= d->colortable.size()) setColorCount(i+1); d->colortable[i] = c; d->has_alpha_clut |= (qAlpha(c) != 255); } /*! Returns a pointer to the pixel data at the scanline with index \a i. The first scanline is at index 0. The scanline data is as minimum 32-bit aligned. For 64-bit formats it follows the native alignment of 64-bit integers (64-bit for most platforms, but notably 32-bit on i386). \warning If you are accessing 32-bpp image data, cast the returned pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to read/write the pixel value. You cannot use the \c{uchar*} pointer directly, because the pixel format depends on the byte order on the underlying platform. Use qRed(), qGreen(), qBlue(), and qAlpha() to access the pixels. \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel Manipulation}, constScanLine() */ uchar *QImage::scanLine(int i) { if (!d) return 0; detach(); // In case detach() ran out of memory if (!d) return 0; return d->data + i * d->bytes_per_line; } /*! \overload */ const uchar *QImage::scanLine(int i) const { if (!d) return 0; Q_ASSERT(i >= 0 && i < height()); return d->data + i * d->bytes_per_line; } /*! Returns a pointer to the pixel data at the scanline with index \a i. The first scanline is at index 0. The scanline data is aligned on a 32-bit boundary. Note that QImage uses \l{Implicit Data Sharing} {implicit data sharing}, but this function does \e not perform a deep copy of the shared pixel data, because the returned data is const. \sa scanLine(), constBits() \since 4.7 */ const uchar *QImage::constScanLine(int i) const { if (!d) return 0; Q_ASSERT(i >= 0 && i < height()); return d->data + i * d->bytes_per_line; } /*! Returns a pointer to the first pixel data. This is equivalent to scanLine(0). Note that QImage uses \l{Implicit Data Sharing} {implicit data sharing}. This function performs a deep copy of the shared pixel data, thus ensuring that this QImage is the only one using the current return value. \sa scanLine(), sizeInBytes(), constBits() */ uchar *QImage::bits() { if (!d) return 0; detach(); // In case detach ran out of memory... if (!d) return 0; return d->data; } /*! \overload Note that QImage uses \l{Implicit Data Sharing} {implicit data sharing}, but this function does \e not perform a deep copy of the shared pixel data, because the returned data is const. */ const uchar *QImage::bits() const { return d ? d->data : 0; } /*! Returns a pointer to the first pixel data. Note that QImage uses \l{Implicit Data Sharing} {implicit data sharing}, but this function does \e not perform a deep copy of the shared pixel data, because the returned data is const. \sa bits(), constScanLine() \since 4.7 */ const uchar *QImage::constBits() const { return d ? d->data : 0; } /*! \fn void QImage::fill(uint pixelValue) Fills the entire image with the given \a pixelValue. If the depth of this image is 1, only the lowest bit is used. If you say fill(0), fill(2), etc., the image is filled with 0s. If you say fill(1), fill(3), etc., the image is filled with 1s. If the depth is 8, the lowest 8 bits are used and if the depth is 16 the lowest 16 bits are used. Note: QImage::pixel() returns the color of the pixel at the given coordinates while QColor::pixel() returns the pixel value of the underlying window system (essentially an index value), so normally you will want to use QImage::pixel() to use a color from an existing image or QColor::rgb() to use a specific color. \sa depth(), {QImage#Image Transformations}{Image Transformations} */ void QImage::fill(uint pixel) { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; if (d->depth == 1 || d->depth == 8) { int w = d->width; if (d->depth == 1) { if (pixel & 1) pixel = 0xffffffff; else pixel = 0; w = (w + 7) / 8; } else { pixel &= 0xff; } qt_rectfill(d->data, pixel, 0, 0, w, d->height, d->bytes_per_line); return; } else if (d->depth == 16) { qt_rectfill(reinterpret_cast(d->data), pixel, 0, 0, d->width, d->height, d->bytes_per_line); return; } else if (d->depth == 24) { qt_rectfill(reinterpret_cast(d->data), pixel, 0, 0, d->width, d->height, d->bytes_per_line); return; } else if (d->depth == 64) { qt_rectfill(reinterpret_cast(d->data), QRgba64::fromArgb32(pixel), 0, 0, d->width, d->height, d->bytes_per_line); return; } if (d->format == Format_RGB32) pixel |= 0xff000000; if (d->format == Format_RGBX8888) #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN pixel |= 0xff000000; #else pixel |= 0x000000ff; #endif if (d->format == Format_BGR30 || d->format == Format_RGB30) pixel |= 0xc0000000; qt_rectfill(reinterpret_cast(d->data), pixel, 0, 0, d->width, d->height, d->bytes_per_line); } /*! \fn void QImage::fill(Qt::GlobalColor color) \overload \since 4.8 Fills the image with the given \a color, described as a standard global color. */ void QImage::fill(Qt::GlobalColor color) { fill(QColor(color)); } /*! \fn void QImage::fill(const QColor &color) \overload Fills the entire image with the given \a color. If the depth of the image is 1, the image will be filled with 1 if \a color equals Qt::color1; it will otherwise be filled with 0. If the depth of the image is 8, the image will be filled with the index corresponding the \a color in the color table if present; it will otherwise be filled with 0. \since 4.8 */ void QImage::fill(const QColor &color) { if (!d) return; detach(); // In case we run out of memory if (!d) return; switch (d->format) { case QImage::Format_RGB32: case QImage::Format_ARGB32: fill(color.rgba()); break; case QImage::Format_ARGB32_Premultiplied: fill(qPremultiply(color.rgba())); break; case QImage::Format_RGBX8888: fill(ARGB2RGBA(color.rgba() | 0xff000000)); break; case QImage::Format_RGBA8888: fill(ARGB2RGBA(color.rgba())); break; case QImage::Format_RGBA8888_Premultiplied: fill(ARGB2RGBA(qPremultiply(color.rgba()))); break; case QImage::Format_BGR30: case QImage::Format_A2BGR30_Premultiplied: fill(qConvertRgb64ToRgb30(color.rgba64())); break; case QImage::Format_RGB30: case QImage::Format_A2RGB30_Premultiplied: fill(qConvertRgb64ToRgb30(color.rgba64())); break; case QImage::Format_RGB16: fill((uint) qConvertRgb32To16(color.rgba())); break; case QImage::Format_Indexed8: { uint pixel = 0; for (int i=0; icolortable.size(); ++i) { if (color.rgba() == d->colortable.at(i)) { pixel = i; break; } } fill(pixel); break; } case QImage::Format_Mono: case QImage::Format_MonoLSB: if (color == Qt::color1) fill((uint) 1); else fill((uint) 0); break; case QImage::Format_RGBX64: { QRgba64 c = color.rgba64(); c.setAlpha(65535); qt_rectfill(reinterpret_cast(d->data), c, 0, 0, d->width, d->height, d->bytes_per_line); break; } case QImage::Format_RGBA64: case QImage::Format_RGBA64_Premultiplied: qt_rectfill(reinterpret_cast(d->data), color.rgba64(), 0, 0, d->width, d->height, d->bytes_per_line); break; default: { QPainter p(this); p.setCompositionMode(QPainter::CompositionMode_Source); p.fillRect(rect(), color); }} } /*! Inverts all pixel values in the image. The given invert \a mode only have a meaning when the image's depth is 32. The default \a mode is InvertRgb, which leaves the alpha channel unchanged. If the \a mode is InvertRgba, the alpha bits are also inverted. Inverting an 8-bit image means to replace all pixels using color index \e i with a pixel using color index 255 minus \e i. The same is the case for a 1-bit image. Note that the color table is \e not changed. If the image has a premultiplied alpha channel, the image is first converted to an unpremultiplied image format to be inverted and then converted back. \sa {QImage#Image Transformations}{Image Transformations} */ void QImage::invertPixels(InvertMode mode) { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; QImage::Format originalFormat = d->format; // Inverting premultiplied pixels would produce invalid image data. if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) { if (depth() > 32) { if (!d->convertInPlace(QImage::Format_RGBA64, 0)) *this = convertToFormat(QImage::Format_RGBA64); } else { if (!d->convertInPlace(QImage::Format_ARGB32, 0)) *this = convertToFormat(QImage::Format_ARGB32); } } if (depth() < 32) { // This assumes no alpha-channel as the only formats with non-premultipled alpha are 32bit. int bpl = (d->width * d->depth + 7) / 8; int pad = d->bytes_per_line - bpl; uchar *sl = d->data; for (int y=0; yheight; ++y) { for (int x=0; xdata; quint16 *end = (quint16*)(d->data + d->nbytes); quint16 xorbits = 0xffff; while (p < end) { *p++ ^= xorbits; *p++ ^= xorbits; *p++ ^= xorbits; if (mode == InvertRgba) *p++ ^= xorbits; else p++; } } else { quint32 *p = (quint32*)d->data; quint32 *end = (quint32*)(d->data + d->nbytes); quint32 xorbits = 0xffffffff; switch (d->format) { case QImage::Format_RGBA8888: if (mode == InvertRgba) break; Q_FALLTHROUGH(); case QImage::Format_RGBX8888: #if Q_BYTE_ORDER == Q_BIG_ENDIAN xorbits = 0xffffff00; break; #else xorbits = 0x00ffffff; break; #endif case QImage::Format_ARGB32: if (mode == InvertRgba) break; Q_FALLTHROUGH(); case QImage::Format_RGB32: xorbits = 0x00ffffff; break; case QImage::Format_BGR30: case QImage::Format_RGB30: xorbits = 0x3fffffff; break; default: Q_UNREACHABLE(); xorbits = 0; break; } while (p < end) *p++ ^= xorbits; } if (originalFormat != d->format) { if (!d->convertInPlace(originalFormat, 0)) *this = convertToFormat(originalFormat); } } // Windows defines these #if defined(write) # undef write #endif #if defined(close) # undef close #endif #if defined(read) # undef read #endif /*! \since 4.6 Resizes the color table to contain \a colorCount entries. If the color table is expanded, all the extra colors will be set to transparent (i.e qRgba(0, 0, 0, 0)). When the image is used, the color table must be large enough to have entries for all the pixel/index values present in the image, otherwise the results are undefined. \sa colorCount(), colorTable(), setColor(), {QImage#Image Transformations}{Image Transformations} */ void QImage::setColorCount(int colorCount) { if (!d) { qWarning("QImage::setColorCount: null image"); return; } detach(); // In case detach() ran out of memory if (!d) return; if (colorCount == d->colortable.size()) return; if (colorCount <= 0) { // use no color table d->colortable = QVector(); return; } int nc = d->colortable.size(); d->colortable.resize(colorCount); for (int i = nc; i < colorCount; ++i) d->colortable[i] = 0; } /*! Returns the format of the image. \sa {QImage#Image Formats}{Image Formats} */ QImage::Format QImage::format() const { return d ? d->format : Format_Invalid; } /*! \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const & \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) && Returns a copy of the image in the given \a format. The specified image conversion \a flags control how the image data is handled during the conversion process. \sa {Image Formats} */ /*! \internal */ QImage QImage::convertToFormat_helper(Format format, Qt::ImageConversionFlags flags) const { if (!d || d->format == format) return *this; if (format == Format_Invalid || d->format == Format_Invalid) return QImage(); const QPixelLayout *destLayout = &qPixelLayouts[format]; Image_Converter converter = qimage_converter_map[d->format][format]; if (!converter && format > QImage::Format_Indexed8 && d->format > QImage::Format_Indexed8) { if (qt_highColorPrecision(d->format, !destLayout->hasAlphaChannel) && qt_highColorPrecision(format, !hasAlphaChannel())) { converter = convert_generic_to_rgb64; } else converter = convert_generic; } if (converter) { QImage image(d->width, d->height, format); QIMAGE_SANITYCHECK_MEMORY(image); image.d->offset = offset(); copyMetadata(image.d, d); converter(image.d, d, flags); return image; } // Convert indexed formats over ARGB32 or RGB32 to the final format. Q_ASSERT(format != QImage::Format_ARGB32 && format != QImage::Format_RGB32); Q_ASSERT(d->format != QImage::Format_ARGB32 && d->format != QImage::Format_RGB32); if (!hasAlphaChannel()) return convertToFormat(Format_RGB32, flags).convertToFormat(format, flags); return convertToFormat(Format_ARGB32, flags).convertToFormat(format, flags); } /*! \internal */ bool QImage::convertToFormat_inplace(Format format, Qt::ImageConversionFlags flags) { return d && d->convertInPlace(format, flags); } static inline int pixel_distance(QRgb p1, QRgb p2) { int r1 = qRed(p1); int g1 = qGreen(p1); int b1 = qBlue(p1); int a1 = qAlpha(p1); int r2 = qRed(p2); int g2 = qGreen(p2); int b2 = qBlue(p2); int a2 = qAlpha(p2); return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2); } static inline int closestMatch(QRgb pixel, const QVector &clut) { int idx = 0; int current_distance = INT_MAX; for (int i=0; i &clut) { QImage dest(src.size(), format); dest.setColorTable(clut); QString textsKeys = src.text(); const auto textKeyList = textsKeys.splitRef(QLatin1Char('\n'), QString::SkipEmptyParts); for (const auto &textKey : textKeyList) { const auto textKeySplitted = textKey.split(QLatin1String(": ")); dest.setText(textKeySplitted[0].toString(), textKeySplitted[1].toString()); } int h = src.height(); int w = src.width(); QHash cache; if (format == QImage::Format_Indexed8) { for (int y=0; y table = clut; table.resize(2); for (int y=0; y &colorTable, Qt::ImageConversionFlags flags) const { if (!d || d->format == format) return *this; if (format == QImage::Format_Invalid) return QImage(); if (format <= QImage::Format_Indexed8) return convertWithPalette(convertToFormat(QImage::Format_ARGB32, flags), format, colorTable); return convertToFormat(format, flags); } /*! \since 5.9 Changes the format of the image to \a format without changing the data. Only works between formats of the same depth. Returns \c true if successful. This function can be used to change images with alpha-channels to their corresponding opaque formats if the data is known to be opaque-only, or to change the format of a given image buffer before overwriting it with new data. \warning The function does not check if the image data is valid in the new format and will still return \c true if the depths are compatible. Operations on an image with invalid data are undefined. \warning If the image is not detached, this will cause the data to be copied. \sa hasAlphaChannel(), convertToFormat() */ bool QImage::reinterpretAsFormat(Format format) { if (!d) return false; if (d->format == format) return true; if (qt_depthForFormat(format) != qt_depthForFormat(d->format)) return false; if (!isDetached()) { // Detach only if shared, not for read-only data. QImageData *oldD = d; detach(); // In case detach() ran out of memory if (!d) { d = oldD; return false; } } d->format = format; return true; } /*! \since 5.13 Detach and convert the image to the given \a format in place. The specified image conversion \a flags control how the image data is handled during the conversion process. \sa convertToFormat() */ void QImage::convertTo(Format format, Qt::ImageConversionFlags flags) { if (!d || format == QImage::Format_Invalid) return; detach(); if (convertToFormat_inplace(format, flags)) return; *this = convertToFormat_helper(format, flags); } /*! \fn bool QImage::valid(const QPoint &pos) const Returns \c true if \a pos is a valid coordinate pair within the image; otherwise returns \c false. \sa rect(), QRect::contains() */ /*! \overload Returns \c true if QPoint(\a x, \a y) is a valid coordinate pair within the image; otherwise returns \c false. */ bool QImage::valid(int x, int y) const { return d && x >= 0 && x < d->width && y >= 0 && y < d->height; } /*! \fn int QImage::pixelIndex(const QPoint &position) const Returns the pixel index at the given \a position. If \a position is not valid, or if the image is not a paletted image (depth() > 8), the results are undefined. \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload Returns the pixel index at (\a x, \a y). */ int QImage::pixelIndex(int x, int y) const { if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range", x, y); return -12345; } const uchar * s = scanLine(y); switch(d->format) { case Format_Mono: return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; case Format_MonoLSB: return (*(s + (x >> 3)) >> (x & 7)) & 1; case Format_Indexed8: return (int)s[x]; default: qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)", d->depth); } return 0; } /*! \fn QRgb QImage::pixel(const QPoint &position) const Returns the color of the pixel at the given \a position. If the \a position is not valid, the results are undefined. \warning This function is expensive when used for massive pixel manipulations. Use constBits() or constScanLine() when many pixels needs to be read. \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload Returns the color of the pixel at coordinates (\a x, \a y). */ QRgb QImage::pixel(int x, int y) const { if (!d || x < 0 || x >= d->width || y < 0 || y >= d->height) { qWarning("QImage::pixel: coordinate (%d,%d) out of range", x, y); return 12345; } const uchar *s = d->data + y * d->bytes_per_line; int index = -1; switch (d->format) { case Format_Mono: index = (*(s + (x >> 3)) >> (~x & 7)) & 1; break; case Format_MonoLSB: index = (*(s + (x >> 3)) >> (x & 7)) & 1; break; case Format_Indexed8: index = s[x]; break; default: break; } if (index >= 0) { // Indexed format if (index >= d->colortable.size()) { qWarning("QImage::pixel: color table index %d out of range.", index); return 0; } return d->colortable.at(index); } switch (d->format) { case Format_RGB32: return 0xff000000 | reinterpret_cast(s)[x]; case Format_ARGB32: // Keep old behaviour. case Format_ARGB32_Premultiplied: return reinterpret_cast(s)[x]; case Format_RGBX8888: case Format_RGBA8888: // Match ARGB32 behavior. case Format_RGBA8888_Premultiplied: return RGBA2ARGB(reinterpret_cast(s)[x]); case Format_BGR30: case Format_A2BGR30_Premultiplied: return qConvertA2rgb30ToArgb32(reinterpret_cast(s)[x]); case Format_RGB30: case Format_A2RGB30_Premultiplied: return qConvertA2rgb30ToArgb32(reinterpret_cast(s)[x]); case Format_RGB16: return qConvertRgb16To32(reinterpret_cast(s)[x]); case Format_RGBX64: case Format_RGBA64: // Match ARGB32 behavior. case Format_RGBA64_Premultiplied: return reinterpret_cast(s)[x].toArgb32(); default: break; } const QPixelLayout *layout = &qPixelLayouts[d->format]; uint result; return *layout->fetchToARGB32PM(&result, s, x, 1, nullptr, nullptr); } /*! \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb) Sets the pixel index or color at the given \a position to \a index_or_rgb. If the image's format is either monochrome or paletted, the given \a index_or_rgb value must be an index in the image's color table, otherwise the parameter must be a QRgb value. If \a position is not a valid coordinate pair in the image, or if \a index_or_rgb >= colorCount() in the case of monochrome and paletted images, the result is undefined. \warning This function is expensive due to the call of the internal \c{detach()} function called within; if performance is a concern, we recommend the use of scanLine() or bits() to access pixel data directly. \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb. */ void QImage::setPixel(int x, int y, uint index_or_rgb) { if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { qWarning("QImage::setPixel: coordinate (%d,%d) out of range", x, y); return; } // detach is called from within scanLine uchar * s = scanLine(y); switch(d->format) { case Format_Mono: case Format_MonoLSB: if (index_or_rgb > 1) { qWarning("QImage::setPixel: Index %d out of range", index_or_rgb); } else if (format() == Format_MonoLSB) { if (index_or_rgb==0) *(s + (x >> 3)) &= ~(1 << (x & 7)); else *(s + (x >> 3)) |= (1 << (x & 7)); } else { if (index_or_rgb==0) *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); else *(s + (x >> 3)) |= (1 << (7-(x & 7))); } return; case Format_Indexed8: if (index_or_rgb >= (uint)d->colortable.size()) { qWarning("QImage::setPixel: Index %d out of range", index_or_rgb); return; } s[x] = index_or_rgb; return; case Format_RGB32: //make sure alpha is 255, we depend on it in qdrawhelper for cases // when image is set as a texture pattern on a qbrush ((uint *)s)[x] = 0xff000000 | index_or_rgb; return; case Format_ARGB32: case Format_ARGB32_Premultiplied: ((uint *)s)[x] = index_or_rgb; return; case Format_RGB16: ((quint16 *)s)[x] = qConvertRgb32To16(qUnpremultiply(index_or_rgb)); return; case Format_RGBX8888: ((uint *)s)[x] = ARGB2RGBA(0xff000000 | index_or_rgb); return; case Format_RGBA8888: case Format_RGBA8888_Premultiplied: ((uint *)s)[x] = ARGB2RGBA(index_or_rgb); return; case Format_BGR30: ((uint *)s)[x] = qConvertRgb32ToRgb30(index_or_rgb); return; case Format_A2BGR30_Premultiplied: ((uint *)s)[x] = qConvertArgb32ToA2rgb30(index_or_rgb); return; case Format_RGB30: ((uint *)s)[x] = qConvertRgb32ToRgb30(index_or_rgb); return; case Format_A2RGB30_Premultiplied: ((uint *)s)[x] = qConvertArgb32ToA2rgb30(index_or_rgb); return; case Format_Invalid: case NImageFormats: Q_ASSERT(false); return; default: break; } const QPixelLayout *layout = &qPixelLayouts[d->format]; layout->storeFromARGB32PM(s, &index_or_rgb, x, 1, nullptr, nullptr); } /*! \fn QColor QImage::pixelColor(const QPoint &position) const \since 5.6 Returns the color of the pixel at the given \a position as a QColor. If the \a position is not valid, an invalid QColor is returned. \warning This function is expensive when used for massive pixel manipulations. Use constBits() or constScanLine() when many pixels needs to be read. \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload \since 5.6 Returns the color of the pixel at coordinates (\a x, \a y) as a QColor. */ QColor QImage::pixelColor(int x, int y) const { if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { qWarning("QImage::pixelColor: coordinate (%d,%d) out of range", x, y); return QColor(); } QRgba64 c; const uchar * s = constScanLine(y); switch (d->format) { case Format_BGR30: case Format_A2BGR30_Premultiplied: c = qConvertA2rgb30ToRgb64(reinterpret_cast(s)[x]); break; case Format_RGB30: case Format_A2RGB30_Premultiplied: c = qConvertA2rgb30ToRgb64(reinterpret_cast(s)[x]); break; case Format_RGBX64: case Format_RGBA64: case Format_RGBA64_Premultiplied: c = reinterpret_cast(s)[x]; break; case Format_Grayscale16: { quint16 v = reinterpret_cast(s)[x]; return QColor(qRgba64(v, v, v, 0xffff)); } default: c = QRgba64::fromArgb32(pixel(x, y)); break; } // QColor is always unpremultiplied if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) c = c.unpremultiplied(); return QColor(c); } /*! \fn void QImage::setPixelColor(const QPoint &position, const QColor &color) \since 5.6 Sets the color at the given \a position to \a color. If \a position is not a valid coordinate pair in the image, or the image's format is either monochrome or paletted, the result is undefined. \warning This function is expensive due to the call of the internal \c{detach()} function called within; if performance is a concern, we recommend the use of scanLine() or bits() to access pixel data directly. \sa pixel(), bits(), scanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload \since 5.6 Sets the pixel color at (\a x, \a y) to \a color. */ void QImage::setPixelColor(int x, int y, const QColor &color) { if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { qWarning("QImage::setPixelColor: coordinate (%d,%d) out of range", x, y); return; } if (!color.isValid()) { qWarning("QImage::setPixelColor: color is invalid"); return; } // QColor is always unpremultiplied QRgba64 c = color.rgba64(); if (!hasAlphaChannel()) c.setAlpha(65535); else if (qPixelLayouts[d->format].premultiplied) c = c.premultiplied(); // detach is called from within scanLine uchar * s = scanLine(y); switch (d->format) { case Format_Mono: case Format_MonoLSB: case Format_Indexed8: qWarning("QImage::setPixelColor: called on monochrome or indexed format"); return; case Format_BGR30: ((uint *)s)[x] = qConvertRgb64ToRgb30(c) | 0xc0000000; return; case Format_A2BGR30_Premultiplied: ((uint *)s)[x] = qConvertRgb64ToRgb30(c); return; case Format_RGB30: ((uint *)s)[x] = qConvertRgb64ToRgb30(c) | 0xc0000000; return; case Format_A2RGB30_Premultiplied: ((uint *)s)[x] = qConvertRgb64ToRgb30(c); return; case Format_RGBX64: ((QRgba64 *)s)[x] = color.rgba64(); ((QRgba64 *)s)[x].setAlpha(65535); return; case Format_RGBA64: case Format_RGBA64_Premultiplied: ((QRgba64 *)s)[x] = color.rgba64(); return; default: setPixel(x, y, c.toArgb32()); return; } } /*! Returns \c true if all the colors in the image are shades of gray (i.e. their red, green and blue components are equal); otherwise false. Note that this function is slow for images without color table. \sa isGrayscale() */ bool QImage::allGray() const { if (!d) return true; switch (d->format) { case Format_Mono: case Format_MonoLSB: case Format_Indexed8: for (int i = 0; i < d->colortable.size(); ++i) { if (!qIsGray(d->colortable.at(i))) return false; } return true; case Format_Alpha8: return false; case Format_Grayscale8: case Format_Grayscale16: return true; case Format_RGB32: case Format_ARGB32: case Format_ARGB32_Premultiplied: #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN case Format_RGBX8888: case Format_RGBA8888: case Format_RGBA8888_Premultiplied: #endif for (int j = 0; j < d->height; ++j) { const QRgb *b = (const QRgb *)constScanLine(j); for (int i = 0; i < d->width; ++i) { if (!qIsGray(b[i])) return false; } } return true; case Format_RGB16: for (int j = 0; j < d->height; ++j) { const quint16 *b = (const quint16 *)constScanLine(j); for (int i = 0; i < d->width; ++i) { if (!qIsGray(qConvertRgb16To32(b[i]))) return false; } } return true; default: break; } uint buffer[BufferSize]; const QPixelLayout *layout = &qPixelLayouts[d->format]; const auto fetch = layout->fetchToARGB32PM; for (int j = 0; j < d->height; ++j) { const uchar *b = constScanLine(j); int x = 0; while (x < d->width) { int l = qMin(d->width - x, BufferSize); const uint *ptr = fetch(buffer, b, x, l, nullptr, nullptr); for (int i = 0; i < l; ++i) { if (!qIsGray(ptr[i])) return false; } x += l; } } return true; } /*! For 32-bit images, this function is equivalent to allGray(). For color indexed images, this function returns \c true if color(i) is QRgb(i, i, i) for all indexes of the color table; otherwise returns \c false. \sa allGray(), {QImage#Image Formats}{Image Formats} */ bool QImage::isGrayscale() const { if (!d) return false; if (d->format == QImage::Format_Alpha8) return false; if (d->format == QImage::Format_Grayscale8 || d->format == QImage::Format_Grayscale16) return true; switch (depth()) { case 32: case 24: case 16: return allGray(); case 8: { Q_ASSERT(d->format == QImage::Format_Indexed8); for (int i = 0; i < colorCount(); i++) if (d->colortable.at(i) != qRgb(i,i,i)) return false; return true; } } return false; } /*! \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformMode) const \overload Returns a copy of the image scaled to a rectangle with the given \a width and \a height according to the given \a aspectRatioMode and \a transformMode. If either the \a width or the \a height is zero or negative, this function returns a null image. */ /*! \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformMode) const Returns a copy of the image scaled to a rectangle defined by the given \a size according to the given \a aspectRatioMode and \a transformMode. \image qimage-scaling.png \list \li If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image is scaled to \a size. \li If \a aspectRatioMode is Qt::KeepAspectRatio, the image is scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio. \li If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding, the image is scaled to a rectangle as small as possible outside \a size, preserving the aspect ratio. \endlist If the given \a size is empty, this function returns a null image. \sa isNull(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const { if (!d) { qWarning("QImage::scaled: Image is a null image"); return QImage(); } if (s.isEmpty()) return QImage(); QSize newSize = size(); newSize.scale(s, aspectMode); newSize.rwidth() = qMax(newSize.width(), 1); newSize.rheight() = qMax(newSize.height(), 1); if (newSize == size()) return *this; QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height()); QImage img = transformed(wm, mode); return img; } /*! \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const Returns a scaled copy of the image. The returned image is scaled to the given \a width using the specified transformation \a mode. This function automatically calculates the height of the image so that its aspect ratio is preserved. If the given \a width is 0 or negative, a null image is returned. \sa {QImage#Image Transformations}{Image Transformations} */ QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const { if (!d) { qWarning("QImage::scaleWidth: Image is a null image"); return QImage(); } if (w <= 0) return QImage(); qreal factor = (qreal) w / width(); QTransform wm = QTransform::fromScale(factor, factor); return transformed(wm, mode); } /*! \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const Returns a scaled copy of the image. The returned image is scaled to the given \a height using the specified transformation \a mode. This function automatically calculates the width of the image so that the ratio of the image is preserved. If the given \a height is 0 or negative, a null image is returned. \sa {QImage#Image Transformations}{Image Transformations} */ QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const { if (!d) { qWarning("QImage::scaleHeight: Image is a null image"); return QImage(); } if (h <= 0) return QImage(); qreal factor = (qreal) h / height(); QTransform wm = QTransform::fromScale(factor, factor); return transformed(wm, mode); } /*! \fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height) Returns the actual matrix used for transforming an image with the given \a width, \a height and \a matrix. When transforming an image using the transformed() function, the transformation matrix is internally adjusted to compensate for unwanted translation, i.e. transformed() returns the smallest image containing all transformed points of the original image. This function returns the modified matrix, which maps points correctly from the original image into the new image. \sa transformed(), {QImage#Image Transformations}{Image Transformations} */ QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h) { return trueMatrix(QTransform(matrix), w, h).toAffine(); } /*! Returns a copy of the image that is transformed using the given transformation \a matrix and transformation \a mode. The returned image will normally have the same {Image Formats}{format} as the original image. However, a complex transformation may result in an image where not all pixels are covered by the transformed pixels of the original image. In such cases, those background pixels will be assigned a transparent color value, and the transformed image will be given a format with an alpha channel, even if the orginal image did not have that. The transformation \a matrix is internally adjusted to compensate for unwanted translation; i.e. the image produced is the smallest image that contains all the transformed points of the original image. Use the trueMatrix() function to retrieve the actual matrix used for transforming an image. \sa trueMatrix(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const { return transformed(QTransform(matrix), mode); } /*! Builds and returns a 1-bpp mask from the alpha buffer in this image. Returns a null image if the image's format is QImage::Format_RGB32. The \a flags argument is a bitwise-OR of the Qt::ImageConversionFlags, and controls the conversion process. Passing 0 for flags sets all the default options. The returned image has little-endian bit order (i.e. the image's format is QImage::Format_MonoLSB), which you can convert to big-endian (QImage::Format_Mono) using the convertToFormat() function. \sa createHeuristicMask(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const { if (!d || d->format == QImage::Format_RGB32) return QImage(); if (d->depth == 1) { // A monochrome pixmap, with alpha channels on those two colors. // Pretty unlikely, so use less efficient solution. return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags); } QImage mask(d->width, d->height, Format_MonoLSB); if (!mask.isNull()) { dither_to_Mono(mask.d, d, flags, true); copyPhysicalMetadata(mask.d, d); } return mask; } #ifndef QT_NO_IMAGE_HEURISTIC_MASK /*! Creates and returns a 1-bpp heuristic mask for this image. The function works by selecting a color from one of the corners, then chipping away pixels of that color starting at all the edges. The four corners vote for which color is to be masked away. In case of a draw (this generally means that this function is not applicable to the image), the result is arbitrary. The returned image has little-endian bit order (i.e. the image's format is QImage::Format_MonoLSB), which you can convert to big-endian (QImage::Format_Mono) using the convertToFormat() function. If \a clipTight is true (the default) the mask is just large enough to cover the pixels; otherwise, the mask is larger than the data pixels. Note that this function disregards the alpha buffer. \sa createAlphaMask(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::createHeuristicMask(bool clipTight) const { if (!d) return QImage(); if (d->depth != 32) { QImage img32 = convertToFormat(Format_RGB32); return img32.createHeuristicMask(clipTight); } #define PIX(x,y) (*((const QRgb*)scanLine(y)+x) & 0x00ffffff) int w = width(); int h = height(); QImage m(w, h, Format_MonoLSB); QIMAGE_SANITYCHECK_MEMORY(m); m.setColorCount(2); m.setColor(0, QColor(Qt::color0).rgba()); m.setColor(1, QColor(Qt::color1).rgba()); m.fill(0xff); QRgb background = PIX(0,0); if (background != PIX(w-1,0) && background != PIX(0,h-1) && background != PIX(w-1,h-1)) { background = PIX(w-1,0); if (background != PIX(w-1,h-1) && background != PIX(0,h-1) && PIX(0,h-1) == PIX(w-1,h-1)) { background = PIX(w-1,h-1); } } int x,y; bool done = false; uchar *ypp, *ypc, *ypn; while(!done) { done = true; ypn = m.scanLine(0); ypc = 0; for (y = 0; y < h; y++) { ypp = ypc; ypc = ypn; ypn = (y == h-1) ? 0 : m.scanLine(y+1); const QRgb *p = (const QRgb *)scanLine(y); for (x = 0; x < w; x++) { // slowness here - it's possible to do six of these tests // together in one go. oh well. if ((x == 0 || y == 0 || x == w-1 || y == h-1 || !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || !(*(ypp + (x >> 3)) & (1 << (x & 7))) || !(*(ypn + (x >> 3)) & (1 << (x & 7)))) && ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) && ((*p & 0x00ffffff) == background)) { done = false; *(ypc + (x >> 3)) &= ~(1 << (x & 7)); } p++; } } } if (!clipTight) { ypn = m.scanLine(0); ypc = 0; for (y = 0; y < h; y++) { ypp = ypc; ypc = ypn; ypn = (y == h-1) ? 0 : m.scanLine(y+1); const QRgb *p = (const QRgb *)scanLine(y); for (x = 0; x < w; x++) { if ((*p & 0x00ffffff) != background) { if (x > 0) *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); if (x < w-1) *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); if (y > 0) *(ypp + (x >> 3)) |= (1 << (x & 7)); if (y < h-1) *(ypn + (x >> 3)) |= (1 << (x & 7)); } p++; } } } #undef PIX copyPhysicalMetadata(m.d, d); return m; } #endif //QT_NO_IMAGE_HEURISTIC_MASK /*! Creates and returns a mask for this image based on the given \a color value. If the \a mode is MaskInColor (the default value), all pixels matching \a color will be opaque pixels in the mask. If \a mode is MaskOutColor, all pixels matching the given color will be transparent. \sa createAlphaMask(), createHeuristicMask() */ QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const { if (!d) return QImage(); QImage maskImage(size(), QImage::Format_MonoLSB); QIMAGE_SANITYCHECK_MEMORY(maskImage); maskImage.fill(0); uchar *s = maskImage.bits(); if (depth() == 32) { for (int h = 0; h < d->height; h++) { const uint *sl = (const uint *) scanLine(h); for (int w = 0; w < d->width; w++) { if (sl[w] == color) *(s + (w >> 3)) |= (1 << (w & 7)); } s += maskImage.bytesPerLine(); } } else { for (int h = 0; h < d->height; h++) { for (int w = 0; w < d->width; w++) { if ((uint) pixel(w, h) == color) *(s + (w >> 3)) |= (1 << (w & 7)); } s += maskImage.bytesPerLine(); } } if (mode == Qt::MaskOutColor) maskImage.invertPixels(); copyPhysicalMetadata(maskImage.d, d); return maskImage; } /*! \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) const & \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) && Returns a mirror of the image, mirrored in the horizontal and/or the vertical direction depending on whether \a horizontal and \a vertical are set to true or false. Note that the original image is not changed. \sa {QImage#Image Transformations}{Image Transformations} */ template inline void do_mirror_data(QImageData *dst, QImageData *src, int dstX0, int dstY0, int dstXIncr, int dstYIncr, int w, int h) { if (dst == src) { // When mirroring in-place, stop in the middle for one of the directions, since we // are swapping the bytes instead of merely copying. const int srcXEnd = (dstX0 && !dstY0) ? w / 2 : w; const int srcYEnd = dstY0 ? h / 2 : h; for (int srcY = 0, dstY = dstY0; srcY < srcYEnd; ++srcY, dstY += dstYIncr) { T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); for (int srcX = 0, dstX = dstX0; srcX < srcXEnd; ++srcX, dstX += dstXIncr) std::swap(srcPtr[srcX], dstPtr[dstX]); } // If mirroring both ways, the middle line needs to be mirrored horizontally only. if (dstX0 && dstY0 && (h & 1)) { int srcY = h / 2; int srcXEnd2 = w / 2; T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); for (int srcX = 0, dstX = dstX0; srcX < srcXEnd2; ++srcX, dstX += dstXIncr) std::swap(srcPtr[srcX], srcPtr[dstX]); } } else { for (int srcY = 0, dstY = dstY0; srcY < h; ++srcY, dstY += dstYIncr) { T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); for (int srcX = 0, dstX = dstX0; srcX < w; ++srcX, dstX += dstXIncr) dstPtr[dstX] = srcPtr[srcX]; } } } inline void do_flip(QImageData *dst, QImageData *src, int w, int h, int depth) { const int data_bytes_per_line = w * (depth / 8); if (dst == src) { uint *srcPtr = reinterpret_cast(src->data); uint *dstPtr = reinterpret_cast(dst->data + (h - 1) * dst->bytes_per_line); h = h / 2; const int uint_per_line = (data_bytes_per_line + 3) >> 2; // bytes per line must be a multiple of 4 for (int y = 0; y < h; ++y) { // This is auto-vectorized, no need for SSE2 or NEON versions: for (int x = 0; x < uint_per_line; x++) { const uint d = dstPtr[x]; const uint s = srcPtr[x]; dstPtr[x] = s; srcPtr[x] = d; } srcPtr += src->bytes_per_line >> 2; dstPtr -= dst->bytes_per_line >> 2; } } else { const uchar *srcPtr = src->data; uchar *dstPtr = dst->data + (h - 1) * dst->bytes_per_line; for (int y = 0; y < h; ++y) { memcpy(dstPtr, srcPtr, data_bytes_per_line); srcPtr += src->bytes_per_line; dstPtr -= dst->bytes_per_line; } } } inline void do_mirror(QImageData *dst, QImageData *src, bool horizontal, bool vertical) { Q_ASSERT(src->width == dst->width && src->height == dst->height && src->depth == dst->depth); int w = src->width; int h = src->height; int depth = src->depth; if (src->depth == 1) { w = (w + 7) / 8; // byte aligned width depth = 8; } if (vertical && !horizontal) { // This one is simple and common, so do it a little more optimized do_flip(dst, src, w, h, depth); return; } int dstX0 = 0, dstXIncr = 1; int dstY0 = 0, dstYIncr = 1; if (horizontal) { // 0 -> w-1, 1 -> w-2, 2 -> w-3, ... dstX0 = w - 1; dstXIncr = -1; } if (vertical) { // 0 -> h-1, 1 -> h-2, 2 -> h-3, ... dstY0 = h - 1; dstYIncr = -1; } switch (depth) { case 64: do_mirror_data(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); break; case 32: do_mirror_data(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); break; case 24: do_mirror_data(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); break; case 16: do_mirror_data(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); break; case 8: do_mirror_data(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); break; default: Q_ASSERT(false); break; } // The bytes are now all in the correct place. In addition, the bits in the individual // bytes have to be flipped too when horizontally mirroring a 1 bit-per-pixel image. if (horizontal && dst->depth == 1) { Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB); const int shift = 8 - (dst->width % 8); const uchar *bitflip = qt_get_bitflip_array(); for (int y = 0; y < h; ++y) { uchar *begin = dst->data + y * dst->bytes_per_line; uchar *end = begin + dst->bytes_per_line; for (uchar *p = begin; p < end; ++p) { *p = bitflip[*p]; // When the data is non-byte aligned, an extra bit shift (of the number of // unused bits at the end) is needed for the entire scanline. if (shift != 8 && p != begin) { if (dst->format == QImage::Format_Mono) { for (int i = 0; i < shift; ++i) { p[-1] <<= 1; p[-1] |= (*p & (128 >> i)) >> (7 - i); } } else { for (int i = 0; i < shift; ++i) { p[-1] >>= 1; p[-1] |= (*p & (1 << i)) << (7 - i); } } } } if (shift != 8) { if (dst->format == QImage::Format_Mono) end[-1] <<= shift; else end[-1] >>= shift; } } } } /*! \internal */ QImage QImage::mirrored_helper(bool horizontal, bool vertical) const { if (!d) return QImage(); if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) return *this; // Create result image, copy colormap QImage result(d->width, d->height, d->format); QIMAGE_SANITYCHECK_MEMORY(result); // check if we ran out of of memory.. if (!result.d) return QImage(); result.d->colortable = d->colortable; result.d->has_alpha_clut = d->has_alpha_clut; copyMetadata(result.d, d); do_mirror(result.d, d, horizontal, vertical); return result; } /*! \internal */ void QImage::mirrored_inplace(bool horizontal, bool vertical) { if (!d || (d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) return; detach(); if (!d) return; if (!d->own_data) *this = copy(); do_mirror(d, d, horizontal, vertical); } /*! \fn QImage QImage::rgbSwapped() const & \fn QImage QImage::rgbSwapped() && Returns a QImage in which the values of the red and blue components of all pixels have been swapped, effectively converting an RGB image to an BGR image. The original QImage is not changed. \sa {QImage#Image Transformations}{Image Transformations} */ static inline void rgbSwapped_generic(int width, int height, const QImage *src, QImage *dst, const QPixelLayout* layout) { const RbSwapFunc func = layout->rbSwap; if (!func) { qWarning("Trying to rb-swap an image format where it doesn't make sense"); if (src != dst) *dst = *src; return; } for (int i = 0; i < height; ++i) { uchar *q = dst->scanLine(i); const uchar *p = src->constScanLine(i); func(q, p, width); } } /*! \internal */ QImage QImage::rgbSwapped_helper() const { if (isNull()) return *this; QImage res; switch (d->format) { case Format_Invalid: case NImageFormats: Q_ASSERT(false); break; case Format_Alpha8: case Format_Grayscale8: case Format_Grayscale16: return *this; case Format_Mono: case Format_MonoLSB: case Format_Indexed8: res = copy(); for (int i = 0; i < res.d->colortable.size(); i++) { QRgb c = res.d->colortable.at(i); res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); } break; case Format_RGBX8888: case Format_RGBA8888: case Format_RGBA8888_Premultiplied: #if Q_BYTE_ORDER == Q_BIG_ENDIAN res = QImage(d->width, d->height, d->format); QIMAGE_SANITYCHECK_MEMORY(res); for (int i = 0; i < d->height; i++) { uint *q = (uint*)res.scanLine(i); const uint *p = (const uint*)constScanLine(i); const uint *end = p + d->width; while (p < end) { uint c = *p; *q = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); p++; q++; } } break; #else // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 Q_FALLTHROUGH(); #endif case Format_RGB32: case Format_ARGB32: case Format_ARGB32_Premultiplied: res = QImage(d->width, d->height, d->format); QIMAGE_SANITYCHECK_MEMORY(res); for (int i = 0; i < d->height; i++) { uint *q = (uint*)res.scanLine(i); const uint *p = (const uint*)constScanLine(i); const uint *end = p + d->width; while (p < end) { uint c = *p; *q = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); p++; q++; } } break; case Format_RGB16: res = QImage(d->width, d->height, d->format); QIMAGE_SANITYCHECK_MEMORY(res); for (int i = 0; i < d->height; i++) { ushort *q = (ushort*)res.scanLine(i); const ushort *p = (const ushort*)constScanLine(i); const ushort *end = p + d->width; while (p < end) { ushort c = *p; *q = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); p++; q++; } } break; case Format_RGBX64: case Format_RGBA64: case Format_RGBA64_Premultiplied: res = QImage(d->width, d->height, d->format); QIMAGE_SANITYCHECK_MEMORY(res); for (int i = 0; i < d->height; i++) { QRgba64 *q = reinterpret_cast(res.scanLine(i)); const QRgba64 *p = reinterpret_cast(constScanLine(i)); const QRgba64 *end = p + d->width; while (p < end) { QRgba64 c = *p; *q = QRgba64::fromRgba64(c.blue(), c.green(), c.red(), c.alpha()); p++; q++; } } break; default: res = QImage(d->width, d->height, d->format); rgbSwapped_generic(d->width, d->height, this, &res, &qPixelLayouts[d->format]); break; } copyMetadata(res.d, d); return res; } /*! \internal */ void QImage::rgbSwapped_inplace() { if (isNull()) return; detach(); if (!d) return; if (!d->own_data) *this = copy(); switch (d->format) { case Format_Invalid: case NImageFormats: Q_ASSERT(false); break; case Format_Alpha8: case Format_Grayscale8: case Format_Grayscale16: return; case Format_Mono: case Format_MonoLSB: case Format_Indexed8: for (int i = 0; i < d->colortable.size(); i++) { QRgb c = d->colortable.at(i); d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); } break; case Format_RGBX8888: case Format_RGBA8888: case Format_RGBA8888_Premultiplied: #if Q_BYTE_ORDER == Q_BIG_ENDIAN for (int i = 0; i < d->height; i++) { uint *p = (uint*)scanLine(i); uint *end = p + d->width; while (p < end) { uint c = *p; *p = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); p++; } } break; #else // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 Q_FALLTHROUGH(); #endif case Format_RGB32: case Format_ARGB32: case Format_ARGB32_Premultiplied: for (int i = 0; i < d->height; i++) { uint *p = (uint*)scanLine(i); uint *end = p + d->width; while (p < end) { uint c = *p; *p = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); p++; } } break; case Format_RGB16: for (int i = 0; i < d->height; i++) { ushort *p = (ushort*)scanLine(i); ushort *end = p + d->width; while (p < end) { ushort c = *p; *p = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); p++; } } break; case Format_BGR30: case Format_A2BGR30_Premultiplied: case Format_RGB30: case Format_A2RGB30_Premultiplied: for (int i = 0; i < d->height; i++) { uint *p = (uint*)scanLine(i); uint *end = p + d->width; while (p < end) { *p = qRgbSwapRgb30(*p); p++; } } break; case Format_RGBX64: case Format_RGBA64: case Format_RGBA64_Premultiplied: for (int i = 0; i < d->height; i++) { QRgba64 *p = reinterpret_cast(scanLine(i)); QRgba64 *end = p + d->width; while (p < end) { QRgba64 c = *p; *p = QRgba64::fromRgba64(c.blue(), c.green(), c.red(), c.alpha()); p++; } } break; default: rgbSwapped_generic(d->width, d->height, this, this, &qPixelLayouts[d->format]); break; } } /*! Loads an image from the file with the given \a fileName. Returns \c true if the image was successfully loaded; otherwise invalidates the image and returns \c false. The loader attempts to read the image using the specified \a format, e.g., PNG or JPG. If \a format is not specified (which is the default), it is auto-detected based on the file's suffix and header. For details, see QImageReader::setAutoDetectImageFormat(). The file name can either refer to an actual file on disk or to one of the application's embedded resources. See the \l{resources.html}{Resource System} overview for details on how to embed images and other resource files in the application's executable. \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ bool QImage::load(const QString &fileName, const char* format) { *this = QImageReader(fileName, format).read(); return !isNull(); } /*! \overload This function reads a QImage from the given \a device. This can, for example, be used to load an image directly into a QByteArray. */ bool QImage::load(QIODevice* device, const char* format) { *this = QImageReader(device, format).read(); return !isNull(); } /*! \fn bool QImage::loadFromData(const uchar *data, int len, const char *format) Loads an image from the first \a len bytes of the given binary \a data. Returns \c true if the image was successfully loaded; otherwise invalidates the image and returns \c false. The loader attempts to read the image using the specified \a format, e.g., PNG or JPG. If \a format is not specified (which is the default), the loader probes the file for a header to guess the file format. \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ bool QImage::loadFromData(const uchar *data, int len, const char *format) { *this = fromData(data, len, format); return !isNull(); } /*! \fn bool QImage::loadFromData(const QByteArray &data, const char *format) \overload Loads an image from the given QByteArray \a data. */ /*! \fn QImage QImage::fromData(const uchar *data, int size, const char *format) Constructs a QImage from the first \a size bytes of the given binary \a data. The loader attempts to read the image using the specified \a format. If \a format is not specified (which is the default), the loader probes the data for a header to guess the file format. If \a format is specified, it must be one of the values returned by QImageReader::supportedImageFormats(). If the loading of the image fails, the image returned will be a null image. \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ QImage QImage::fromData(const uchar *data, int size, const char *format) { QByteArray a = QByteArray::fromRawData(reinterpret_cast(data), size); QBuffer b; b.setData(a); b.open(QIODevice::ReadOnly); return QImageReader(&b, format).read(); } /*! \fn QImage QImage::fromData(const QByteArray &data, const char *format) \overload Loads an image from the given QByteArray \a data. */ /*! Saves the image to the file with the given \a fileName, using the given image file \a format and \a quality factor. If \a format is 0, QImage will attempt to guess the format by looking at \a fileName's suffix. The \a quality factor must be in the range 0 to 100 or -1. Specify 0 to obtain small compressed files, 100 for large uncompressed files, and -1 (the default) to use the default settings. Returns \c true if the image was successfully saved; otherwise returns \c false. \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ bool QImage::save(const QString &fileName, const char *format, int quality) const { if (isNull()) return false; QImageWriter writer(fileName, format); return d->doImageIO(this, &writer, quality); } /*! \overload This function writes a QImage to the given \a device. This can, for example, be used to save an image directly into a QByteArray: \snippet image/image.cpp 0 */ bool QImage::save(QIODevice* device, const char* format, int quality) const { if (isNull()) return false; // nothing to save QImageWriter writer(device, format); return d->doImageIO(this, &writer, quality); } /* \internal */ bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const { if (quality > 100 || quality < -1) qWarning("QPixmap::save: Quality out of range [-1, 100]"); if (quality >= 0) writer->setQuality(qMin(quality,100)); return writer->write(*image); } /***************************************************************************** QImage stream functions *****************************************************************************/ #if !defined(QT_NO_DATASTREAM) /*! \fn QDataStream &operator<<(QDataStream &stream, const QImage &image) \relates QImage Writes the given \a image to the given \a stream as a PNG image, or as a BMP image if the stream's version is 1. Note that writing the stream to a file will not produce a valid image file. \sa QImage::save(), {Serializing Qt Data Types} */ QDataStream &operator<<(QDataStream &s, const QImage &image) { if (s.version() >= 5) { if (image.isNull()) { s << (qint32) 0; // null image marker return s; } else { s << (qint32) 1; // continue ... } } QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png"); writer.write(image); return s; } /*! \fn QDataStream &operator>>(QDataStream &stream, QImage &image) \relates QImage Reads an image from the given \a stream and stores it in the given \a image. \sa QImage::load(), {Serializing Qt Data Types} */ QDataStream &operator>>(QDataStream &s, QImage &image) { if (s.version() >= 5) { qint32 nullMarker; s >> nullMarker; if (!nullMarker) { image = QImage(); // null image return s; } } image = QImageReader(s.device(), s.version() == 1 ? "bmp" : "png").read(); if (image.isNull() && s.version() >= 5) s.setStatus(QDataStream::ReadPastEnd); return s; } #endif // QT_NO_DATASTREAM /*! \fn bool QImage::operator==(const QImage & image) const Returns \c true if this image and the given \a image have the same contents; otherwise returns \c false. The comparison can be slow, unless there is some obvious difference (e.g. different size or format), in which case the function will return quickly. \sa operator=() */ bool QImage::operator==(const QImage & i) const { // same object, or shared? if (i.d == d) return true; if (!i.d || !d) return false; // obviously different stuff? if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format) return false; if (d->format != Format_RGB32) { if (d->format >= Format_ARGB32) { // all bits defined const int n = d->width * d->depth / 8; if (n == d->bytes_per_line && n == i.d->bytes_per_line) { if (memcmp(bits(), i.bits(), d->nbytes)) return false; } else { for (int y = 0; y < d->height; ++y) { if (memcmp(scanLine(y), i.scanLine(y), n)) return false; } } } else { const int w = width(); const int h = height(); const QVector &colortable = d->colortable; const QVector &icolortable = i.d->colortable; for (int y=0; yheight; l++) { int w = d->width; const uint *p1 = reinterpret_cast(scanLine(l)); const uint *p2 = reinterpret_cast(i.scanLine(l)); while (w--) { if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff)) return false; } } } return true; } /*! \fn bool QImage::operator!=(const QImage & image) const Returns \c true if this image and the given \a image have different contents; otherwise returns \c false. The comparison can be slow, unless there is some obvious difference, such as different widths, in which case the function will return quickly. \sa operator=() */ bool QImage::operator!=(const QImage & i) const { return !(*this == i); } /*! Returns the number of pixels that fit horizontally in a physical meter. Together with dotsPerMeterY(), this number defines the intended scale and aspect ratio of the image. \sa setDotsPerMeterX(), {QImage#Image Information}{Image Information} */ int QImage::dotsPerMeterX() const { return d ? qRound(d->dpmx) : 0; } /*! Returns the number of pixels that fit vertically in a physical meter. Together with dotsPerMeterX(), this number defines the intended scale and aspect ratio of the image. \sa setDotsPerMeterY(), {QImage#Image Information}{Image Information} */ int QImage::dotsPerMeterY() const { return d ? qRound(d->dpmy) : 0; } /*! Sets the number of pixels that fit horizontally in a physical meter, to \a x. Together with dotsPerMeterY(), this number defines the intended scale and aspect ratio of the image, and determines the scale at which QPainter will draw graphics on the image. It does not change the scale or aspect ratio of the image when it is rendered on other paint devices. \sa dotsPerMeterX(), {QImage#Image Information}{Image Information} */ void QImage::setDotsPerMeterX(int x) { if (!d || !x) return; detach(); if (d) d->dpmx = x; } /*! Sets the number of pixels that fit vertically in a physical meter, to \a y. Together with dotsPerMeterX(), this number defines the intended scale and aspect ratio of the image, and determines the scale at which QPainter will draw graphics on the image. It does not change the scale or aspect ratio of the image when it is rendered on other paint devices. \sa dotsPerMeterY(), {QImage#Image Information}{Image Information} */ void QImage::setDotsPerMeterY(int y) { if (!d || !y) return; detach(); if (d) d->dpmy = y; } /*! \fn QPoint QImage::offset() const Returns the number of pixels by which the image is intended to be offset by when positioning relative to other images. \sa setOffset(), {QImage#Image Information}{Image Information} */ QPoint QImage::offset() const { return d ? d->offset : QPoint(); } /*! \fn void QImage::setOffset(const QPoint& offset) Sets the number of pixels by which the image is intended to be offset by when positioning relative to other images, to \a offset. \sa offset(), {QImage#Image Information}{Image Information} */ void QImage::setOffset(const QPoint& p) { if (!d) return; detach(); if (d) d->offset = p; } /*! Returns the text keys for this image. You can use these keys with text() to list the image text for a certain key. \sa text() */ QStringList QImage::textKeys() const { return d ? QStringList(d->text.keys()) : QStringList(); } /*! Returns the image text associated with the given \a key. If the specified \a key is an empty string, the whole image text is returned, with each key-text pair separated by a newline. \sa setText(), textKeys() */ QString QImage::text(const QString &key) const { if (!d) return QString(); if (!key.isEmpty()) return d->text.value(key); QString tmp; for (auto it = d->text.begin(), end = d->text.end(); it != end; ++it) tmp += it.key() + QLatin1String(": ") + it.value().simplified() + QLatin1String("\n\n"); if (!tmp.isEmpty()) tmp.chop(2); // remove final \n\n return tmp; } /*! \fn void QImage::setText(const QString &key, const QString &text) Sets the image text to the given \a text and associate it with the given \a key. If you just want to store a single text block (i.e., a "comment" or just a description), you can either pass an empty key, or use a generic key like "Description". The image text is embedded into the image data when you call save() or QImageWriter::write(). Not all image formats support embedded text. You can find out if a specific image or format supports embedding text by using QImageWriter::supportsOption(). We give an example: \snippet image/supportedformat.cpp 0 You can use QImageWriter::supportedImageFormats() to find out which image formats are available to you. \sa text(), textKeys() */ void QImage::setText(const QString &key, const QString &value) { if (!d) return; detach(); if (d) d->text.insert(key, value); } /*! \fn QString QImage::text(const char* key, const char* language) const \obsolete Returns the text recorded for the given \a key in the given \a language, or in a default language if \a language is 0. Use text() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. */ /*! \fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const \overload \obsolete Returns the text recorded for the given \a keywordAndLanguage. Use text() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. */ /*! \fn void QImage::setText(const char* key, const char* language, const QString& text) \obsolete Sets the image text to the given \a text and associate it with the given \a key. The text is recorded in the specified \a language, or in a default language if \a language is 0. Use setText() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. \omit Records string \a for the keyword \a key. The \a key should be a portable keyword recognizable by other software - some suggested values can be found in \l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text} {the PNG specification}. \a s can be any text. \a lang should specify the language code (see \l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or 0. \endomit */ /* Sets the image bits to the \a pixmap contents and returns a reference to the image. If the image shares data with other images, it will first dereference the shared data. Makes a call to QPixmap::convertToImage(). */ /*! \internal Used by QPainter to retrieve a paint engine for the image. */ QPaintEngine *QImage::paintEngine() const { if (!d) return 0; if (!d->paintEngine) { QPaintDevice *paintDevice = const_cast(this); QPlatformIntegration *platformIntegration = QGuiApplicationPrivate::platformIntegration(); if (platformIntegration) d->paintEngine = platformIntegration->createImagePaintEngine(paintDevice); if (!d->paintEngine) d->paintEngine = new QRasterPaintEngine(paintDevice); } return d->paintEngine; } /*! \internal Returns the size for the specified \a metric on the device. */ int QImage::metric(PaintDeviceMetric metric) const { if (!d) return 0; switch (metric) { case PdmWidth: return d->width; case PdmHeight: return d->height; case PdmWidthMM: return qRound(d->width * 1000 / d->dpmx); case PdmHeightMM: return qRound(d->height * 1000 / d->dpmy); case PdmNumColors: return d->colortable.size(); case PdmDepth: return d->depth; case PdmDpiX: return qRound(d->dpmx * 0.0254); break; case PdmDpiY: return qRound(d->dpmy * 0.0254); break; case PdmPhysicalDpiX: return qRound(d->dpmx * 0.0254); break; case PdmPhysicalDpiY: return qRound(d->dpmy * 0.0254); break; case PdmDevicePixelRatio: return d->devicePixelRatio; break; case PdmDevicePixelRatioScaled: return d->devicePixelRatio * QPaintDevice::devicePixelRatioFScale(); break; default: qWarning("QImage::metric(): Unhandled metric type %d", metric); break; } return 0; } /***************************************************************************** QPixmap (and QImage) helper functions *****************************************************************************/ /* This internal function contains the common (i.e. platform independent) code to do a transformation of pixel data. It is used by QPixmap::transform() and by QImage::transform(). \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and \a xoffset is an offset to the matrix. \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a depth specifies the colordepth of the data. \a dptr is a pointer to the destination data, \a dbpl specifies the bits per line for the destination data, \a p_inc is the offset that we advance for every scanline and \a dHeight is the height of the destination image. \a sprt is the pointer to the source data, \a sbpl specifies the bits per line of the source data, \a sWidth and \a sHeight are the width and height of the source data. */ #undef IWX_MSB #define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \ if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ (1 << (7-((trigx>>12)&7)))) \ *dptr |= b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO #undef IWX_LSB #define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \ if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ (1 << ((trigx>>12)&7))) \ *dptr |= b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO #undef IWX_PIX #define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \ if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ (1 << (7-((trigx>>12)&7)))) == 0) \ *dptr &= ~b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth, uchar *dptr, int dbpl, int p_inc, int dHeight, const uchar *sptr, int sbpl, int sWidth, int sHeight) { int m11 = int(trueMat.m11()*4096.0); int m12 = int(trueMat.m12()*4096.0); int m21 = int(trueMat.m21()*4096.0); int m22 = int(trueMat.m22()*4096.0); int dx = qRound(trueMat.dx()*4096.0); int dy = qRound(trueMat.dy()*4096.0); int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2; int m22ydy = dy + (m12 + m22) / 2; uint trigx; uint trigy; uint maxws = sWidth<<12; uint maxhs = sHeight<<12; for (int y=0; y>12)+(trigx>>12)); trigx += m11; trigy += m12; dptr++; } break; case 16: // 16 bpp transform while (dptr < maxp) { if (trigx < maxws && trigy < maxhs) *((ushort*)dptr) = *((const ushort *)(sptr+sbpl*(trigy>>12) + ((trigx>>12)<<1))); trigx += m11; trigy += m12; dptr++; dptr++; } break; case 24: // 24 bpp transform while (dptr < maxp) { if (trigx < maxws && trigy < maxhs) { const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3); dptr[0] = p2[0]; dptr[1] = p2[1]; dptr[2] = p2[2]; } trigx += m11; trigy += m12; dptr += 3; } break; case 32: // 32 bpp transform while (dptr < maxp) { if (trigx < maxws && trigy < maxhs) *((uint*)dptr) = *((const uint *)(sptr+sbpl*(trigy>>12) + ((trigx>>12)<<2))); trigx += m11; trigy += m12; dptr += 4; } break; default: { return false; } } } else { switch (type) { case QT_XFORM_TYPE_MSBFIRST: while (dptr < maxp) { IWX_MSB(128); IWX_MSB(64); IWX_MSB(32); IWX_MSB(16); IWX_MSB(8); IWX_MSB(4); IWX_MSB(2); IWX_MSB(1); dptr++; } break; case QT_XFORM_TYPE_LSBFIRST: while (dptr < maxp) { IWX_LSB(1); IWX_LSB(2); IWX_LSB(4); IWX_LSB(8); IWX_LSB(16); IWX_LSB(32); IWX_LSB(64); IWX_LSB(128); dptr++; } break; } } m21ydx += m21; m22ydy += m22; dptr += p_inc; } return true; } #undef IWX_MSB #undef IWX_LSB #undef IWX_PIX /*! \fn int QImage::serialNumber() const \obsolete Returns a number that identifies the contents of this QImage object. Distinct QImage objects can only have the same serial number if they refer to the same contents (but they don't have to). Use cacheKey() instead. \warning The serial number doesn't necessarily change when the image is altered. This means that it may be dangerous to use it as a cache key. \sa operator==() */ /*! Returns a number that identifies the contents of this QImage object. Distinct QImage objects can only have the same key if they refer to the same contents. The key will change when the image is altered. */ qint64 QImage::cacheKey() const { if (!d) return 0; else return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no); } /*! \internal Returns \c true if the image is detached; otherwise returns \c false. \sa detach(), {Implicit Data Sharing} */ bool QImage::isDetached() const { return d && d->ref.loadRelaxed() == 1; } /*! \obsolete Sets the alpha channel of this image to the given \a alphaChannel. If \a alphaChannel is an 8 bit grayscale image, the intensity values are written into this buffer directly. Otherwise, \a alphaChannel is converted to 32 bit and the intensity of the RGB pixel values is used. Note that the image will be converted to the Format_ARGB32_Premultiplied format if the function succeeds. Use one of the composition modes in QPainter::CompositionMode instead. \warning This function is expensive. \sa alphaChannel(), {QImage#Image Transformations}{Image Transformations}, {QImage#Image Formats}{Image Formats} */ void QImage::setAlphaChannel(const QImage &alphaChannel) { if (!d) return; int w = d->width; int h = d->height; if (w != alphaChannel.d->width || h != alphaChannel.d->height) { qWarning("QImage::setAlphaChannel: " "Alpha channel must have same dimensions as the target image"); return; } if (d->paintEngine && d->paintEngine->isActive()) { qWarning("QImage::setAlphaChannel: " "Unable to set alpha channel while image is being painted on"); return; } if (d->format == QImage::Format_ARGB32_Premultiplied) detach(); else *this = convertToFormat(QImage::Format_ARGB32_Premultiplied); if (isNull()) return; // Slight optimization since alphachannels are returned as 8-bit grays. if (alphaChannel.format() == QImage::Format_Alpha8 ||( alphaChannel.d->depth == 8 && alphaChannel.isGrayscale())) { const uchar *src_data = alphaChannel.d->data; uchar *dest_data = d->data; for (int y=0; ybytes_per_line; dest_data += d->bytes_per_line; } } else { const QImage sourceImage = alphaChannel.convertToFormat(QImage::Format_RGB32); if (sourceImage.isNull()) return; const uchar *src_data = sourceImage.d->data; uchar *dest_data = d->data; for (int y=0; ybytes_per_line; dest_data += d->bytes_per_line; } } } /*! \obsolete Returns the alpha channel of the image as a new grayscale QImage in which each pixel's red, green, and blue values are given the alpha value of the original image. The color depth of the returned image is 8-bit. You can see an example of use of this function in QPixmap's \l{QPixmap::}{alphaChannel()}, which works in the same way as this function on QPixmaps. Most usecases for this function can be replaced with QPainter and using composition modes. Note this returns a color-indexed image if you want the alpha channel in the alpha8 format instead use convertToFormat(Format_Alpha8) on the source image. \warning This is an expensive function. \sa setAlphaChannel(), hasAlphaChannel(), convertToFormat(), {QPixmap#Pixmap Information}{Pixmap}, {QImage#Image Transformations}{Image Transformations} */ QImage QImage::alphaChannel() const { if (!d) return QImage(); int w = d->width; int h = d->height; QImage image(w, h, Format_Indexed8); image.setColorCount(256); // set up gray scale table. for (int i=0; i<256; ++i) image.setColor(i, qRgb(i, i, i)); if (!hasAlphaChannel()) { image.fill(255); return image; } if (d->format == Format_Indexed8) { const uchar *src_data = d->data; uchar *dest_data = image.d->data; for (int y=0; ycolortable.at(*src)); ++dest; ++src; } src_data += d->bytes_per_line; dest_data += image.d->bytes_per_line; } } else if (d->format == Format_Alpha8) { const uchar *src_data = d->data; uchar *dest_data = image.d->data; memcpy(dest_data, src_data, d->bytes_per_line * h); } else { QImage alpha32 = *this; bool canSkipConversion = (d->format == Format_ARGB32 || d->format == Format_ARGB32_Premultiplied); #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN canSkipConversion = canSkipConversion || (d->format == Format_RGBA8888 || d->format == Format_RGBA8888_Premultiplied); #endif if (!canSkipConversion) alpha32 = convertToFormat(Format_ARGB32); const uchar *src_data = alpha32.d->data; uchar *dest_data = image.d->data; for (int y=0; ybytes_per_line; dest_data += image.d->bytes_per_line; } } return image; } /*! Returns \c true if the image has a format that respects the alpha channel, otherwise returns \c false. \sa {QImage#Image Information}{Image Information} */ bool QImage::hasAlphaChannel() const { if (!d) return false; const QPixelFormat format = pixelFormat(); if (format.alphaUsage() == QPixelFormat::UsesAlpha) return true; if (format.colorModel() == QPixelFormat::Indexed) return d->has_alpha_clut; return false; } /*! \since 4.7 Returns the number of bit planes in the image. The number of bit planes is the number of bits of color and transparency information for each pixel. This is different from (i.e. smaller than) the depth when the image format contains unused bits. \sa depth(), format(), {QImage#Image Formats}{Image Formats} */ int QImage::bitPlaneCount() const { if (!d) return 0; int bpc = 0; switch (d->format) { case QImage::Format_Invalid: break; case QImage::Format_BGR30: case QImage::Format_RGB30: bpc = 30; break; case QImage::Format_RGB32: case QImage::Format_RGBX8888: bpc = 24; break; case QImage::Format_RGB666: bpc = 18; break; case QImage::Format_RGB555: bpc = 15; break; case QImage::Format_ARGB8555_Premultiplied: bpc = 23; break; case QImage::Format_RGB444: bpc = 12; break; case QImage::Format_RGBX64: bpc = 48; break; default: bpc = qt_depthForFormat(d->format); break; } return bpc; } /*! Returns a smoothly scaled copy of the image. The returned image has a size of width \a w by height \a h pixels. */ QImage QImage::smoothScaled(int w, int h) const { QImage src = *this; switch (src.format()) { case QImage::Format_RGB32: case QImage::Format_ARGB32_Premultiplied: #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN case QImage::Format_RGBX8888: #endif case QImage::Format_RGBA8888_Premultiplied: #if QT_CONFIG(raster_64bit) case QImage::Format_RGBX64: case QImage::Format_RGBA64_Premultiplied: break; case QImage::Format_RGBA64: src = src.convertToFormat(QImage::Format_RGBA64_Premultiplied); break; #endif default: if (src.hasAlphaChannel()) src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied); else src = src.convertToFormat(QImage::Format_RGB32); } src = qSmoothScaleImage(src, w, h); if (!src.isNull()) copyMetadata(src.d, d); return src; } static QImage rotated90(const QImage &image) { QImage out(image.height(), image.width(), image.format()); copyMetadata(&out, image); if (image.colorCount() > 0) out.setColorTable(image.colorTable()); int w = image.width(); int h = image.height(); const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][2]; if (memrotate) { memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); } else { for (int y=0; y 0) out.setColorTable(image.colorTable()); int w = image.width(); int h = image.height(); memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); return out; } static QImage rotated270(const QImage &image) { QImage out(image.height(), image.width(), image.format()); copyMetadata(&out, image); if (image.colorCount() > 0) out.setColorTable(image.colorTable()); int w = image.width(); int h = image.height(); const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][0]; if (memrotate) { memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); } else { for (int y=0; yformat; if (complex_xform || mode == Qt::SmoothTransformation) { if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) { target_format = qt_alphaVersion(d->format); } } QImage dImage(wd, hd, target_format); QIMAGE_SANITYCHECK_MEMORY(dImage); if (target_format == QImage::Format_MonoLSB || target_format == QImage::Format_Mono || target_format == QImage::Format_Indexed8) { dImage.d->colortable = d->colortable; dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform; } // initizialize the data if (target_format == QImage::Format_Indexed8) { if (dImage.d->colortable.size() < 256) { // colors are left in the color table, so pick that one as transparent dImage.d->colortable.append(0x0); memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.d->nbytes); } else { memset(dImage.bits(), 0, dImage.d->nbytes); } } else memset(dImage.bits(), 0x00, dImage.d->nbytes); if (target_format >= QImage::Format_RGB32) { // Prevent QPainter from applying devicePixelRatio corrections const QImage sImage = (devicePixelRatio() != 1) ? QImage(constBits(), width(), height(), format()) : *this; Q_ASSERT(sImage.devicePixelRatio() == 1); Q_ASSERT(sImage.devicePixelRatio() == dImage.devicePixelRatio()); QPainter p(&dImage); if (mode == Qt::SmoothTransformation) { p.setRenderHint(QPainter::Antialiasing); p.setRenderHint(QPainter::SmoothPixmapTransform); } p.setTransform(mat); p.drawImage(QPoint(0, 0), sImage); } else { bool invertible; mat = mat.inverted(&invertible); // invert matrix if (!invertible) // error, return null image return QImage(); // create target image (some of the code is from QImage::copy()) int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST; int dbpl = dImage.bytesPerLine(); qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs); } copyMetadata(dImage.d, d); return dImage; } /*! \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height) Returns the actual matrix used for transforming an image with the given \a width, \a height and \a matrix. When transforming an image using the transformed() function, the transformation matrix is internally adjusted to compensate for unwanted translation, i.e. transformed() returns the smallest image containing all transformed points of the original image. This function returns the modified matrix, which maps points correctly from the original image into the new image. Unlike the other overload, this function creates transformation matrices that can be used to perform perspective transformations on images. \sa transformed(), {QImage#Image Transformations}{Image Transformations} */ QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h) { const QRectF rect(0, 0, w, h); const QRect mapped = matrix.mapRect(rect).toAlignedRect(); const QPoint delta = mapped.topLeft(); return matrix * QTransform().translate(-delta.x(), -delta.y()); } /*! \since 5.14 Sets the image color space to \a colorSpace without performing any conversions on image data. \sa colorSpace() */ void QImage::setColorSpace(const QColorSpace &colorSpace) { if (!d) return; if (d->colorSpace == colorSpace) return; if (!isDetached()) // Detach only if shared, not for read-only data. detach(); d->colorSpace = colorSpace; } /*! \since 5.14 Converts the image to \a colorSpace. If the image has no valid color space, the method does nothing. \sa convertedToColorSpace(), setColorSpace() */ void QImage::convertToColorSpace(const QColorSpace &colorSpace) { if (!d) return; if (!d->colorSpace.isValid()) return; if (!colorSpace.isValid()) { qWarning() << "QImage::convertToColorSpace: Output colorspace is not valid"; return; } detach(); applyColorTransform(d->colorSpace.transformationToColorSpace(colorSpace)); d->colorSpace = colorSpace; } /*! \since 5.14 Returns the image converted to \a colorSpace. If the image has no valid color space, a null QImage is returned. \sa convertToColorSpace() */ QImage QImage::convertedToColorSpace(const QColorSpace &colorSpace) const { if (!d || !d->colorSpace.isValid() || !colorSpace.isValid()) return QImage(); QImage image = copy(); image.convertToColorSpace(colorSpace); return image; } /*! \since 5.14 Returns the color space of the image if a color space is defined. */ QColorSpace QImage::colorSpace() const { if (!d) return QColorSpace(); return d->colorSpace; } /*! \since 5.14 Applies the color transformation \a transform to all pixels in the image. */ void QImage::applyColorTransform(const QColorTransform &transform) { QImage::Format oldFormat = format(); if (depth() > 32) { if (format() != QImage::Format_RGBX64 && format() != QImage::Format_RGBA64 && format() != QImage::Format_RGBA64_Premultiplied) *this = std::move(*this).convertToFormat(QImage::Format_RGBA64); } else if (format() != QImage::Format_ARGB32 && format() != QImage::Format_RGB32 && format() != QImage::Format_ARGB32_Premultiplied) { if (hasAlphaChannel()) *this = std::move(*this).convertToFormat(QImage::Format_ARGB32); else *this = std::move(*this).convertToFormat(QImage::Format_RGB32); } QColorTransformPrivate::TransformFlags flags = QColorTransformPrivate::Unpremultiplied; switch (format()) { case Format_ARGB32_Premultiplied: case Format_RGBA64_Premultiplied: flags = QColorTransformPrivate::Premultiplied; break; case Format_RGB32: case Format_RGBX64: flags = QColorTransformPrivate::InputOpaque; break; case Format_ARGB32: case Format_RGBA64: break; default: Q_UNREACHABLE(); } if (depth() > 32) { for (int i = 0; i < height(); ++i) { QRgba64 *scanline = reinterpret_cast(scanLine(i)); transform.d->apply(scanline, scanline, width(), flags); } } else { for (int i = 0; i < height(); ++i) { QRgb *scanline = reinterpret_cast(scanLine(i)); transform.d->apply(scanline, scanline, width(), flags); } } if (oldFormat != format()) *this = std::move(*this).convertToFormat(oldFormat); } bool QImageData::convertInPlace(QImage::Format newFormat, Qt::ImageConversionFlags flags) { if (format == newFormat) return true; // No in-place conversion if we have to detach if (ref.loadRelaxed() > 1 || !own_data) return false; InPlace_Image_Converter converter = qimage_inplace_converter_map[format][newFormat]; if (converter) return converter(this, flags); else if (format > QImage::Format_Indexed8 && newFormat > QImage::Format_Indexed8 && !qimage_converter_map[format][newFormat]) // Convert inplace generic, but only if there are no direct converters, // any direct ones are probably better even if not inplace. return convert_generic_inplace(this, newFormat, flags); else return false; } /*! \typedef QImage::DataPtr \internal */ /*! \fn DataPtr & QImage::data_ptr() \internal */ #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QImage &i) { QDebugStateSaver saver(dbg); dbg.nospace(); dbg.noquote(); dbg << "QImage("; if (i.isNull()) { dbg << "null"; } else { dbg << i.size() << ",format=" << i.format() << ",depth=" << i.depth(); if (i.colorCount()) dbg << ",colorCount=" << i.colorCount(); const int bytesPerLine = i.bytesPerLine(); dbg << ",devicePixelRatio=" << i.devicePixelRatio() << ",bytesPerLine=" << bytesPerLine << ",sizeInBytes=" << i.sizeInBytes(); if (dbg.verbosity() > 2 && i.height() > 0) { const int outputLength = qMin(bytesPerLine, 24); dbg << ",line0=" << QByteArray(reinterpret_cast(i.scanLine(0)), outputLength).toHex() << "..."; } } dbg << ')'; return dbg; } #endif /*! \fn void QImage::setNumColors(int n) \obsolete Resizes the color table to contain \a n entries. \sa setColorCount() */ /*! \fn int QImage::numBytes() const \obsolete Returns the number of bytes occupied by the image data. \sa sizeInBytes() */ /*! \fn QStringList QImage::textLanguages() const \obsolete Returns the language identifiers for which some texts are recorded. Note that if you want to iterate over the list, you should iterate over a copy. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. \sa textKeys() */ /*! \fn QList QImage::textList() const \obsolete Returns a list of QImageTextKeyLang objects that enumerate all the texts key/language pairs set for this image. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. \sa textKeys() */ static Q_CONSTEXPR QPixelFormat pixelformats[] = { //QImage::Format_Invalid: QPixelFormat(), //QImage::Format_Mono: QPixelFormat(QPixelFormat::Indexed, /*RED*/ 1, /*GREEN*/ 0, /*BLUE*/ 0, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_MonoLSB: QPixelFormat(QPixelFormat::Indexed, /*RED*/ 1, /*GREEN*/ 0, /*BLUE*/ 0, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_Indexed8: QPixelFormat(QPixelFormat::Indexed, /*RED*/ 8, /*GREEN*/ 0, /*BLUE*/ 0, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB32: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_ARGB32: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_ARGB32_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB16: QPixelFormat(QPixelFormat::RGB, /*RED*/ 5, /*GREEN*/ 6, /*BLUE*/ 5, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_ARGB8565_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 5, /*GREEN*/ 6, /*BLUE*/ 5, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB666: QPixelFormat(QPixelFormat::RGB, /*RED*/ 6, /*GREEN*/ 6, /*BLUE*/ 6, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_ARGB6666_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 6, /*GREEN*/ 6, /*BLUE*/ 6, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 6, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB555: QPixelFormat(QPixelFormat::RGB, /*RED*/ 5, /*GREEN*/ 5, /*BLUE*/ 5, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_ARGB8555_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 5, /*GREEN*/ 5, /*BLUE*/ 5, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB888: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB444: QPixelFormat(QPixelFormat::RGB, /*RED*/ 4, /*GREEN*/ 4, /*BLUE*/ 4, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_ARGB4444_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 4, /*GREEN*/ 4, /*BLUE*/ 4, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 4, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGBX8888: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGBA8888: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGBA8888_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_BGR30: QPixelFormat(QPixelFormat::BGR, /*RED*/ 10, /*GREEN*/ 10, /*BLUE*/ 10, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 2, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_A2BGR30_Premultiplied: QPixelFormat(QPixelFormat::BGR, /*RED*/ 10, /*GREEN*/ 10, /*BLUE*/ 10, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 2, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGB30: QPixelFormat(QPixelFormat::RGB, /*RED*/ 10, /*GREEN*/ 10, /*BLUE*/ 10, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 2, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_A2RGB30_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 10, /*GREEN*/ 10, /*BLUE*/ 10, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 2, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_Alpha8: QPixelFormat(QPixelFormat::Alpha, /*First*/ 0, /*SECOND*/ 0, /*THIRD*/ 0, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 8, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_Grayscale8: QPixelFormat(QPixelFormat::Grayscale, /*GRAY*/ 8, /*SECOND*/ 0, /*THIRD*/ 0, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGBX64: QPixelFormat(QPixelFormat::RGB, /*RED*/ 16, /*GREEN*/ 16, /*BLUE*/ 16, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 16, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGBA64: QPixelFormat(QPixelFormat::RGB, /*RED*/ 16, /*GREEN*/ 16, /*BLUE*/ 16, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 16, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_RGBA64_Premultiplied: QPixelFormat(QPixelFormat::RGB, /*RED*/ 16, /*GREEN*/ 16, /*BLUE*/ 16, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 16, /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, /*ALPHA POSITION*/ QPixelFormat::AtEnd, /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_Grayscale16: QPixelFormat(QPixelFormat::Grayscale, /*GRAY*/ 16, /*SECOND*/ 0, /*THIRD*/ 0, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedShort, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), //QImage::Format_BGR888: QPixelFormat(QPixelFormat::BGR, /*RED*/ 8, /*GREEN*/ 8, /*BLUE*/ 8, /*FOURTH*/ 0, /*FIFTH*/ 0, /*ALPHA*/ 0, /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, /*ALPHA POSITION*/ QPixelFormat::AtBeginning, /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, /*INTERPRETATION*/ QPixelFormat::UnsignedByte, /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), }; Q_STATIC_ASSERT(sizeof(pixelformats) / sizeof(*pixelformats) == QImage::NImageFormats); /*! Returns the QImage::Format as a QPixelFormat */ QPixelFormat QImage::pixelFormat() const noexcept { return toPixelFormat(format()); } /*! Converts \a format into a QPixelFormat */ QPixelFormat QImage::toPixelFormat(QImage::Format format) noexcept { Q_ASSERT(static_cast(format) < NImageFormats); return pixelformats[format]; } /*! Converts \a format into a QImage::Format */ QImage::Format QImage::toImageFormat(QPixelFormat format) noexcept { for (int i = 0; i < NImageFormats; i++) { if (format == pixelformats[i]) return Format(i); } return Format_Invalid; } Q_GUI_EXPORT void qt_imageTransform(QImage &src, QImageIOHandler::Transformations orient) { if (orient == QImageIOHandler::TransformationNone) return; if (orient == QImageIOHandler::TransformationRotate270) { src = rotated270(src); } else { src = std::move(src).mirrored(orient & QImageIOHandler::TransformationMirror, orient & QImageIOHandler::TransformationFlip); if (orient & QImageIOHandler::TransformationRotate90) src = rotated90(src); } } QMap qt_getImageText(const QImage &image, const QString &description) { QMap text = qt_getImageTextFromDescription(description); const auto textKeys = image.textKeys(); for (const QString &key : textKeys) { if (!key.isEmpty() && !text.contains(key)) text.insert(key, image.text(key)); } return text; } QMap qt_getImageTextFromDescription(const QString &description) { QMap text; const auto pairs = description.splitRef(QLatin1String("\n\n")); for (const QStringRef &pair : pairs) { int index = pair.indexOf(QLatin1Char(':')); if (index >= 0 && pair.indexOf(QLatin1Char(' ')) < index) { if (!pair.trimmed().isEmpty()) text.insert(QLatin1String("Description"), pair.toString().simplified()); } else { const QStringRef key = pair.left(index); if (!key.trimmed().isEmpty()) text.insert(key.toString(), pair.mid(index + 2).toString().simplified()); } } return text; } QT_END_NAMESPACE