// Copyright (C) 2016 The Qt Company Ltd. // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only #include #include #include #ifdef QT_COMPILER_SUPPORTS_SSSE3 QT_BEGIN_NAMESPACE // Convert a scanline of RGB888 (src) to RGB32 (dst) // src must be at least len * 3 bytes // dst must be at least len * 4 bytes Q_GUI_EXPORT void QT_FASTCALL qt_convert_rgb888_to_rgb32_ssse3(quint32 *dst, const uchar *src, int len) { int i = 0; // Prologue, align dst to 16 bytes. ALIGNMENT_PROLOGUE_16BYTES(dst, i, len) { dst[i] = qRgb(src[0], src[1], src[2]); src += 3; } // Mask the 4 first colors of the RGB888 vector const __m128i shuffleMask = _mm_set_epi8(char(0xff), 9, 10, 11, char(0xff), 6, 7, 8, char(0xff), 3, 4, 5, char(0xff), 0, 1, 2); // Mask the 4 last colors of a RGB888 vector with an offset of 1 (so the last 3 bytes are RGB) const __m128i shuffleMaskEnd = _mm_set_epi8(char(0xff), 13, 14, 15, char(0xff), 10, 11, 12, char(0xff), 7, 8, 9, char(0xff), 4, 5, 6); // Mask to have alpha = 0xff const __m128i alphaMask = _mm_set1_epi32(0xff000000); const __m128i *inVectorPtr = (const __m128i *)src; __m128i *dstVectorPtr = (__m128i *)(dst + i); for (; i < (len - 15); i += 16) { // one iteration in the loop converts 16 pixels /* RGB888 has 5 pixels per vector, + 1 byte from the next pixel. The idea here is to load vectors of RGB888 and use palignr to select a vector out of two vectors. After 3 loads of RGB888 and 3 stores of RGB32, we have 4 pixels left in the last vector of RGB888, we can mask it directly to get a last store or RGB32. After that, the first next byte is a R, and we can loop for the next 16 pixels. The conversion itself is done with a byte permutation (pshufb). */ __m128i firstSrcVector = _mm_lddqu_si128(inVectorPtr); __m128i outputVector = _mm_shuffle_epi8(firstSrcVector, shuffleMask); _mm_store_si128(dstVectorPtr, _mm_or_si128(outputVector, alphaMask)); ++inVectorPtr; ++dstVectorPtr; // There are 4 unused bytes left in srcVector, we need to load the next 16 bytes // and load the next input with palignr __m128i secondSrcVector = _mm_lddqu_si128(inVectorPtr); __m128i srcVector = _mm_alignr_epi8(secondSrcVector, firstSrcVector, 12); outputVector = _mm_shuffle_epi8(srcVector, shuffleMask); _mm_store_si128(dstVectorPtr, _mm_or_si128(outputVector, alphaMask)); ++inVectorPtr; ++dstVectorPtr; firstSrcVector = secondSrcVector; // We now have 8 unused bytes left in firstSrcVector secondSrcVector = _mm_lddqu_si128(inVectorPtr); srcVector = _mm_alignr_epi8(secondSrcVector, firstSrcVector, 8); outputVector = _mm_shuffle_epi8(srcVector, shuffleMask); _mm_store_si128(dstVectorPtr, _mm_or_si128(outputVector, alphaMask)); ++inVectorPtr; ++dstVectorPtr; // There are now 12 unused bytes in firstSrcVector. // We can mask them directly, almost there. outputVector = _mm_shuffle_epi8(secondSrcVector, shuffleMaskEnd); _mm_store_si128(dstVectorPtr, _mm_or_si128(outputVector, alphaMask)); ++dstVectorPtr; } src = (const uchar *)inVectorPtr; SIMD_EPILOGUE(i, len, 15) { dst[i] = qRgb(src[0], src[1], src[2]); src += 3; } } void convert_RGB888_to_RGB32_ssse3(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_RGB888 || src->format == QImage::Format_BGR888); if (src->format == QImage::Format_BGR888) Q_ASSERT(dest->format == QImage::Format_RGBX8888 || dest->format == QImage::Format_RGBA8888 || dest->format == QImage::Format_RGBA8888_Premultiplied); else Q_ASSERT(dest->format == QImage::Format_RGB32 || dest->format == QImage::Format_ARGB32 || dest->format == QImage::Format_ARGB32_Premultiplied); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); const uchar *src_data = (uchar *) src->data; quint32 *dest_data = (quint32 *) dest->data; for (int i = 0; i < src->height; ++i) { qt_convert_rgb888_to_rgb32_ssse3(dest_data, src_data, src->width); src_data += src->bytes_per_line; dest_data = (quint32 *)((uchar*)dest_data + dest->bytes_per_line); } } QT_END_NAMESPACE #endif // QT_COMPILER_SUPPORTS_SSSE3