/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qvector2d.h" #include "qvector3d.h" #include "qvector4d.h" #include #include #include #include QT_BEGIN_NAMESPACE #ifndef QT_NO_VECTOR2D Q_STATIC_ASSERT_X(std::is_standard_layout::value, "QVector2D is supposed to be standard layout"); Q_STATIC_ASSERT_X(sizeof(QVector2D) == sizeof(float) * 2, "QVector2D is not supposed to have padding at the end"); // QVector2D used to be defined as class QVector2D { float x, y; };, // now instead it is defined as classs QVector2D { float v[2]; };. // Check that binary compatibility is preserved. // ### Qt 6: remove all of these checks. namespace { struct QVector2DOld { float x, y; }; struct QVector2DNew { float v[2]; }; Q_STATIC_ASSERT_X(std::is_standard_layout::value, "Binary compatibility break in QVector2D"); Q_STATIC_ASSERT_X(std::is_standard_layout::value, "Binary compatibility break in QVector2D"); Q_STATIC_ASSERT_X(sizeof(QVector2DOld) == sizeof(QVector2DNew), "Binary compatibility break in QVector2D"); // requires a constexpr offsetof #if !defined(Q_CC_MSVC) || (_MSC_VER >= 1910) Q_STATIC_ASSERT_X(offsetof(QVector2DOld, x) == offsetof(QVector2DNew, v) + sizeof(QVector2DNew::v[0]) * 0, "Binary compatibility break in QVector2D"); Q_STATIC_ASSERT_X(offsetof(QVector2DOld, y) == offsetof(QVector2DNew, v) + sizeof(QVector2DNew::v[0]) * 1, "Binary compatibility break in QVector2D"); #endif } // anonymous namespace /*! \class QVector2D \brief The QVector2D class represents a vector or vertex in 2D space. \since 4.6 \ingroup painting \ingroup painting-3D \inmodule QtGui The QVector2D class can also be used to represent vertices in 2D space. We therefore do not need to provide a separate vertex class. \sa QVector3D, QVector4D, QQuaternion */ /*! \fn QVector2D::QVector2D() Constructs a null vector, i.e. with coordinates (0, 0). */ /*! \fn QVector2D::QVector2D(Qt::Initialization) \since 5.5 \internal Constructs a vector without initializing the contents. */ /*! \fn QVector2D::QVector2D(float xpos, float ypos) Constructs a vector with coordinates (\a xpos, \a ypos). */ /*! \fn QVector2D::QVector2D(const QPoint& point) Constructs a vector with x and y coordinates from a 2D \a point. */ /*! \fn QVector2D::QVector2D(const QPointF& point) Constructs a vector with x and y coordinates from a 2D \a point. */ #ifndef QT_NO_VECTOR3D /*! Constructs a vector with x and y coordinates from a 3D \a vector. The z coordinate of \a vector is dropped. \sa toVector3D() */ QVector2D::QVector2D(const QVector3D& vector) { v[0] = vector.v[0]; v[1] = vector.v[1]; } #endif #ifndef QT_NO_VECTOR4D /*! Constructs a vector with x and y coordinates from a 3D \a vector. The z and w coordinates of \a vector are dropped. \sa toVector4D() */ QVector2D::QVector2D(const QVector4D& vector) { v[0] = vector.v[0]; v[1] = vector.v[1]; } #endif /*! \fn bool QVector2D::isNull() const Returns \c true if the x and y coordinates are set to 0.0, otherwise returns \c false. */ /*! \fn float QVector2D::x() const Returns the x coordinate of this point. \sa setX(), y() */ /*! \fn float QVector2D::y() const Returns the y coordinate of this point. \sa setY(), x() */ /*! \fn void QVector2D::setX(float x) Sets the x coordinate of this point to the given \a x coordinate. \sa x(), setY() */ /*! \fn void QVector2D::setY(float y) Sets the y coordinate of this point to the given \a y coordinate. \sa y(), setX() */ /*! \fn float &QVector2D::operator[](int i) \since 5.2 Returns the component of the vector at index position \a i as a modifiable reference. \a i must be a valid index position in the vector (i.e., 0 <= \a i < 2). */ /*! \fn float QVector2D::operator[](int i) const \since 5.2 Returns the component of the vector at index position \a i. \a i must be a valid index position in the vector (i.e., 0 <= \a i < 2). */ /*! Returns the length of the vector from the origin. \sa lengthSquared(), normalized() */ float QVector2D::length() const { // Need some extra precision if the length is very small. double len = double(v[0]) * double(v[0]) + double(v[1]) * double(v[1]); return float(std::sqrt(len)); } /*! Returns the squared length of the vector from the origin. This is equivalent to the dot product of the vector with itself. \sa length(), dotProduct() */ float QVector2D::lengthSquared() const { return v[0] * v[0] + v[1] * v[1]; } /*! Returns the normalized unit vector form of this vector. If this vector is null, then a null vector is returned. If the length of the vector is very close to 1, then the vector will be returned as-is. Otherwise the normalized form of the vector of length 1 will be returned. \sa length(), normalize() */ QVector2D QVector2D::normalized() const { // Need some extra precision if the length is very small. double len = double(v[0]) * double(v[0]) + double(v[1]) * double(v[1]); if (qFuzzyIsNull(len - 1.0f)) { return *this; } else if (!qFuzzyIsNull(len)) { double sqrtLen = std::sqrt(len); return QVector2D(float(double(v[0]) / sqrtLen), float(double(v[1]) / sqrtLen)); } else { return QVector2D(); } } /*! Normalizes the currect vector in place. Nothing happens if this vector is a null vector or the length of the vector is very close to 1. \sa length(), normalized() */ void QVector2D::normalize() { // Need some extra precision if the length is very small. double len = double(v[0]) * double(v[0]) + double(v[1]) * double(v[1]); if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) return; len = std::sqrt(len); v[0] = float(double(v[0]) / len); v[1] = float(double(v[1]) / len); } /*! \since 5.1 Returns the distance from this vertex to a point defined by the vertex \a point. \sa distanceToLine() */ float QVector2D::distanceToPoint(const QVector2D& point) const { return (*this - point).length(); } /*! \since 5.1 Returns the distance that this vertex is from a line defined by \a point and the unit vector \a direction. If \a direction is a null vector, then it does not define a line. In that case, the distance from \a point to this vertex is returned. \sa distanceToPoint() */ float QVector2D::distanceToLine (const QVector2D& point, const QVector2D& direction) const { if (direction.isNull()) return (*this - point).length(); QVector2D p = point + dotProduct(*this - point, direction) * direction; return (*this - p).length(); } /*! \fn QVector2D &QVector2D::operator+=(const QVector2D &vector) Adds the given \a vector to this vector and returns a reference to this vector. \sa operator-=() */ /*! \fn QVector2D &QVector2D::operator-=(const QVector2D &vector) Subtracts the given \a vector from this vector and returns a reference to this vector. \sa operator+=() */ /*! \fn QVector2D &QVector2D::operator*=(float factor) Multiplies this vector's coordinates by the given \a factor, and returns a reference to this vector. \sa operator/=() */ /*! \fn QVector2D &QVector2D::operator*=(const QVector2D &vector) Multiplies the components of this vector by the corresponding components in \a vector. */ /*! \fn QVector2D &QVector2D::operator/=(float divisor) Divides this vector's coordinates by the given \a divisor, and returns a reference to this vector. \sa operator*=() */ /*! \fn QVector2D &QVector2D::operator/=(const QVector2D &vector) \since 5.5 Divides the components of this vector by the corresponding components in \a vector. \sa operator*=() */ /*! Returns the dot product of \a v1 and \a v2. */ float QVector2D::dotProduct(const QVector2D& v1, const QVector2D& v2) { return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1]; } /*! \fn bool operator==(const QVector2D &v1, const QVector2D &v2) \relates QVector2D Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false. This operator uses an exact floating-point comparison. */ /*! \fn bool operator!=(const QVector2D &v1, const QVector2D &v2) \relates QVector2D Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false. This operator uses an exact floating-point comparison. */ /*! \fn const QVector2D operator+(const QVector2D &v1, const QVector2D &v2) \relates QVector2D Returns a QVector2D object that is the sum of the given vectors, \a v1 and \a v2; each component is added separately. \sa QVector2D::operator+=() */ /*! \fn const QVector2D operator-(const QVector2D &v1, const QVector2D &v2) \relates QVector2D Returns a QVector2D object that is formed by subtracting \a v2 from \a v1; each component is subtracted separately. \sa QVector2D::operator-=() */ /*! \fn const QVector2D operator*(float factor, const QVector2D &vector) \relates QVector2D Returns a copy of the given \a vector, multiplied by the given \a factor. \sa QVector2D::operator*=() */ /*! \fn const QVector2D operator*(const QVector2D &vector, float factor) \relates QVector2D Returns a copy of the given \a vector, multiplied by the given \a factor. \sa QVector2D::operator*=() */ /*! \fn const QVector2D operator*(const QVector2D &v1, const QVector2D &v2) \relates QVector2D Multiplies the components of \a v1 by the corresponding components in \a v2. */ /*! \fn const QVector2D operator-(const QVector2D &vector) \relates QVector2D \overload Returns a QVector2D object that is formed by changing the sign of the components of the given \a vector. Equivalent to \c {QVector2D(0,0) - vector}. */ /*! \fn const QVector2D operator/(const QVector2D &vector, float divisor) \relates QVector2D Returns the QVector2D object formed by dividing all three components of the given \a vector by the given \a divisor. \sa QVector2D::operator/=() */ /*! \fn const QVector2D operator/(const QVector2D &vector, const QVector2D &divisor) \relates QVector2D \since 5.5 Returns the QVector2D object formed by dividing components of the given \a vector by a respective components of the given \a divisor. \sa QVector2D::operator/=() */ /*! \fn bool qFuzzyCompare(const QVector2D& v1, const QVector2D& v2) \relates QVector2D Returns \c true if \a v1 and \a v2 are equal, allowing for a small fuzziness factor for floating-point comparisons; false otherwise. */ #ifndef QT_NO_VECTOR3D /*! Returns the 3D form of this 2D vector, with the z coordinate set to zero. \sa toVector4D(), toPoint() */ QVector3D QVector2D::toVector3D() const { return QVector3D(v[0], v[1], 0.0f); } #endif #ifndef QT_NO_VECTOR4D /*! Returns the 4D form of this 2D vector, with the z and w coordinates set to zero. \sa toVector3D(), toPoint() */ QVector4D QVector2D::toVector4D() const { return QVector4D(v[0], v[1], 0.0f, 0.0f); } #endif /*! \fn QPoint QVector2D::toPoint() const Returns the QPoint form of this 2D vector. \sa toPointF(), toVector3D() */ /*! \fn QPointF QVector2D::toPointF() const Returns the QPointF form of this 2D vector. \sa toPoint(), toVector3D() */ /*! Returns the 2D vector as a QVariant. */ QVector2D::operator QVariant() const { return QVariant(QMetaType::QVector2D, this); } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QVector2D &vector) { QDebugStateSaver saver(dbg); dbg.nospace() << "QVector2D(" << vector.x() << ", " << vector.y() << ')'; return dbg; } #endif #ifndef QT_NO_DATASTREAM /*! \fn QDataStream &operator<<(QDataStream &stream, const QVector2D &vector) \relates QVector2D Writes the given \a vector to the given \a stream and returns a reference to the stream. \sa {Serializing Qt Data Types} */ QDataStream &operator<<(QDataStream &stream, const QVector2D &vector) { stream << vector.x() << vector.y(); return stream; } /*! \fn QDataStream &operator>>(QDataStream &stream, QVector2D &vector) \relates QVector2D Reads a 2D vector from the given \a stream into the given \a vector and returns a reference to the stream. \sa {Serializing Qt Data Types} */ QDataStream &operator>>(QDataStream &stream, QVector2D &vector) { float x, y; stream >> x; stream >> y; vector.setX(x); vector.setY(y); return stream; } #endif // QT_NO_DATASTREAM #endif // QT_NO_VECTOR2D QT_END_NAMESPACE