/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qopengltextureblitter.h" #include #include #include #include #include #ifndef GL_TEXTURE_EXTERNAL_OES #define GL_TEXTURE_EXTERNAL_OES 0x8D65 #endif QT_BEGIN_NAMESPACE /*! \class QOpenGLTextureBlitter \brief The QOpenGLTextureBlitter class provides a convenient way to draw textured quads via OpenGL. \since 5.8 \ingroup painting-3D \inmodule QtGui Drawing textured quads, in order to get the contents of a texture onto the screen, is a common operation when developing 2D user interfaces. QOpenGLTextureBlitter provides a convenience class to avoid repeating vertex data, shader sources, buffer and program management and matrix calculations. For example, a QOpenGLWidget subclass can do the following to draw the contents rendered into a framebuffer at the pixel position \c{(x, y)}: \code void OpenGLWidget::initializeGL() { m_blitter.create(); m_fbo = new QOpenGLFramebufferObject(size); } void OpenGLWidget::paintGL() { m_fbo->bind(); // update offscreen content m_fbo->release(); m_blitter.bind(); const QRect targetRect(QPoint(x, y), m_fbo->size()); const QMatrix4x4 target = QOpenGLTextureBlitter::targetTransform(targetRect, QRect(QPoint(0, 0), m_fbo->size())); m_blitter.blit(m_fbo->texture(), target, QOpenGLTextureBlitter::OriginBottomLeft); m_blitter.release(); } \endcode The blitter implements GLSL shaders both for GLSL 1.00 (suitable for OpenGL (ES) 2.x and compatibility profiles of newer OpenGL versions) and version 150 (suitable for core profile contexts with OpenGL 3.2 and newer). */ static const char vertex_shader150[] = "#version 150 core\n" "in vec3 vertexCoord;" "in vec2 textureCoord;" "out vec2 uv;" "uniform mat4 vertexTransform;" "uniform mat3 textureTransform;" "void main() {" " uv = (textureTransform * vec3(textureCoord,1.0)).xy;" " gl_Position = vertexTransform * vec4(vertexCoord,1.0);" "}"; static const char fragment_shader150[] = "#version 150 core\n" "in vec2 uv;" "out vec4 fragcolor;" "uniform sampler2D textureSampler;" "uniform bool swizzle;" "uniform float opacity;" "void main() {" " vec4 tmpFragColor = texture(textureSampler, uv);" " tmpFragColor.a *= opacity;" " fragcolor = swizzle ? tmpFragColor.bgra : tmpFragColor;" "}"; static const char vertex_shader[] = "attribute highp vec3 vertexCoord;" "attribute highp vec2 textureCoord;" "varying highp vec2 uv;" "uniform highp mat4 vertexTransform;" "uniform highp mat3 textureTransform;" "void main() {" " uv = (textureTransform * vec3(textureCoord,1.0)).xy;" " gl_Position = vertexTransform * vec4(vertexCoord,1.0);" "}"; static const char fragment_shader[] = "varying highp vec2 uv;" "uniform sampler2D textureSampler;" "uniform bool swizzle;" "uniform highp float opacity;" "void main() {" " highp vec4 tmpFragColor = texture2D(textureSampler,uv);" " tmpFragColor.a *= opacity;" " gl_FragColor = swizzle ? tmpFragColor.bgra : tmpFragColor;" "}"; static const char fragment_shader_external_oes[] = "#extension GL_OES_EGL_image_external : require\n" "varying highp vec2 uv;" "uniform samplerExternalOES textureSampler;\n" "uniform bool swizzle;" "uniform highp float opacity;" "void main() {" " highp vec4 tmpFragColor = texture2D(textureSampler, uv);" " tmpFragColor.a *= opacity;" " gl_FragColor = swizzle ? tmpFragColor.bgra : tmpFragColor;" "}"; static const GLfloat vertex_buffer_data[] = { -1,-1, 0, -1, 1, 0, 1,-1, 0, -1, 1, 0, 1,-1, 0, 1, 1, 0 }; static const GLfloat texture_buffer_data[] = { 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1 }; class TextureBinder { public: TextureBinder(GLenum target, GLuint textureId) : m_target(target) { QOpenGLContext::currentContext()->functions()->glBindTexture(m_target, textureId); } ~TextureBinder() { QOpenGLContext::currentContext()->functions()->glBindTexture(m_target, 0); } private: GLenum m_target; }; class QOpenGLTextureBlitterPrivate { public: enum TextureMatrixUniform { User, Identity, IdentityFlipped }; enum ProgramIndex { TEXTURE_2D, TEXTURE_EXTERNAL_OES }; QOpenGLTextureBlitterPrivate() : swizzle(false), opacity(1.0f), vao(new QOpenGLVertexArrayObject), currentTarget(TEXTURE_2D) { } bool buildProgram(ProgramIndex idx, const char *vs, const char *fs); void blit(GLuint texture, const QMatrix4x4 &vertexTransform, const QMatrix3x3 &textureTransform); void blit(GLuint texture, const QMatrix4x4 &vertexTransform, QOpenGLTextureBlitter::Origin origin); void prepareProgram(const QMatrix4x4 &vertexTransform); QOpenGLBuffer vertexBuffer; QOpenGLBuffer textureBuffer; struct Program { Program() : vertexCoordAttribPos(0), vertexTransformUniformPos(0), textureCoordAttribPos(0), textureTransformUniformPos(0), swizzleUniformPos(0), opacityUniformPos(0), swizzle(false), opacity(0.0f), textureMatrixUniformState(User) { } QScopedPointer glProgram; GLuint vertexCoordAttribPos; GLuint vertexTransformUniformPos; GLuint textureCoordAttribPos; GLuint textureTransformUniformPos; GLuint swizzleUniformPos; GLuint opacityUniformPos; bool swizzle; float opacity; TextureMatrixUniform textureMatrixUniformState; } programs[2]; bool swizzle; float opacity; QScopedPointer vao; GLenum currentTarget; }; static inline QOpenGLTextureBlitterPrivate::ProgramIndex targetToProgramIndex(GLenum target) { switch (target) { case GL_TEXTURE_2D: return QOpenGLTextureBlitterPrivate::TEXTURE_2D; case GL_TEXTURE_EXTERNAL_OES: return QOpenGLTextureBlitterPrivate::TEXTURE_EXTERNAL_OES; default: qWarning("Unsupported texture target 0x%x", target); return QOpenGLTextureBlitterPrivate::TEXTURE_2D; } } void QOpenGLTextureBlitterPrivate::prepareProgram(const QMatrix4x4 &vertexTransform) { Program *program = &programs[targetToProgramIndex(currentTarget)]; vertexBuffer.bind(); program->glProgram->setAttributeBuffer(program->vertexCoordAttribPos, GL_FLOAT, 0, 3, 0); program->glProgram->enableAttributeArray(program->vertexCoordAttribPos); vertexBuffer.release(); program->glProgram->setUniformValue(program->vertexTransformUniformPos, vertexTransform); textureBuffer.bind(); program->glProgram->setAttributeBuffer(program->textureCoordAttribPos, GL_FLOAT, 0, 2, 0); program->glProgram->enableAttributeArray(program->textureCoordAttribPos); textureBuffer.release(); if (swizzle != program->swizzle) { program->glProgram->setUniformValue(program->swizzleUniformPos, swizzle); program->swizzle = swizzle; } if (opacity != program->opacity) { program->glProgram->setUniformValue(program->opacityUniformPos, opacity); program->opacity = opacity; } } void QOpenGLTextureBlitterPrivate::blit(GLuint texture, const QMatrix4x4 &vertexTransform, const QMatrix3x3 &textureTransform) { TextureBinder binder(currentTarget, texture); prepareProgram(vertexTransform); Program *program = &programs[targetToProgramIndex(currentTarget)]; program->glProgram->setUniformValue(program->textureTransformUniformPos, textureTransform); program->textureMatrixUniformState = User; QOpenGLContext::currentContext()->functions()->glDrawArrays(GL_TRIANGLES, 0, 6); } void QOpenGLTextureBlitterPrivate::blit(GLuint texture, const QMatrix4x4 &vertexTransform, QOpenGLTextureBlitter::Origin origin) { TextureBinder binder(currentTarget, texture); prepareProgram(vertexTransform); Program *program = &programs[targetToProgramIndex(currentTarget)]; if (origin == QOpenGLTextureBlitter::OriginTopLeft) { if (program->textureMatrixUniformState != IdentityFlipped) { QMatrix3x3 flipped; flipped(1,1) = -1; flipped(1,2) = 1; program->glProgram->setUniformValue(program->textureTransformUniformPos, flipped); program->textureMatrixUniformState = IdentityFlipped; } } else if (program->textureMatrixUniformState != Identity) { program->glProgram->setUniformValue(program->textureTransformUniformPos, QMatrix3x3()); program->textureMatrixUniformState = Identity; } QOpenGLContext::currentContext()->functions()->glDrawArrays(GL_TRIANGLES, 0, 6); } bool QOpenGLTextureBlitterPrivate::buildProgram(ProgramIndex idx, const char *vs, const char *fs) { Program *p = &programs[idx]; p->glProgram.reset(new QOpenGLShaderProgram); p->glProgram->addCacheableShaderFromSourceCode(QOpenGLShader::Vertex, vs); p->glProgram->addCacheableShaderFromSourceCode(QOpenGLShader::Fragment, fs); p->glProgram->link(); if (!p->glProgram->isLinked()) { qWarning() << "Could not link shader program:\n" << p->glProgram->log(); return false; } p->glProgram->bind(); p->vertexCoordAttribPos = p->glProgram->attributeLocation("vertexCoord"); p->vertexTransformUniformPos = p->glProgram->uniformLocation("vertexTransform"); p->textureCoordAttribPos = p->glProgram->attributeLocation("textureCoord"); p->textureTransformUniformPos = p->glProgram->uniformLocation("textureTransform"); p->swizzleUniformPos = p->glProgram->uniformLocation("swizzle"); p->opacityUniformPos = p->glProgram->uniformLocation("opacity"); p->glProgram->setUniformValue(p->swizzleUniformPos, false); // minmize state left set after a create() p->glProgram->release(); return true; } /*! Constructs a new QOpenGLTextureBlitter instance. \note no graphics resources are initialized in the constructor. This makes it safe to place plain QOpenGLTextureBlitter members into classes because the actual initialization that depends on the OpenGL context happens only in create(). */ QOpenGLTextureBlitter::QOpenGLTextureBlitter() : d_ptr(new QOpenGLTextureBlitterPrivate) { } /*! Destructs the instance. \note When the OpenGL context - or a context sharing resources with it - that was current when calling create() is not current, graphics resources will not be released. Therefore, it is recommended to call destroy() manually instead of relying on the destructor to perform OpenGL resource cleanup. */ QOpenGLTextureBlitter::~QOpenGLTextureBlitter() { destroy(); } /*! Initializes the graphics resources used by the blitter. \return \c true if successful, \c false if there was a failure. Failures can occur when there is no OpenGL context current on the current thread, or when shader compilation fails for some reason. \sa isCreated(), destroy() */ bool QOpenGLTextureBlitter::create() { QOpenGLContext *currentContext = QOpenGLContext::currentContext(); if (!currentContext) return false; Q_D(QOpenGLTextureBlitter); if (d->programs[QOpenGLTextureBlitterPrivate::TEXTURE_2D].glProgram) return true; QSurfaceFormat format = currentContext->format(); if (format.profile() == QSurfaceFormat::CoreProfile && format.version() >= qMakePair(3,2)) { if (!d->buildProgram(QOpenGLTextureBlitterPrivate::TEXTURE_2D, vertex_shader150, fragment_shader150)) return false; } else { if (!d->buildProgram(QOpenGLTextureBlitterPrivate::TEXTURE_2D, vertex_shader, fragment_shader)) return false; if (supportsExternalOESTarget()) if (!d->buildProgram(QOpenGLTextureBlitterPrivate::TEXTURE_EXTERNAL_OES, vertex_shader, fragment_shader_external_oes)) return false; } // Create and bind the VAO, if supported. QOpenGLVertexArrayObject::Binder vaoBinder(d->vao.data()); d->vertexBuffer.create(); d->vertexBuffer.bind(); d->vertexBuffer.allocate(vertex_buffer_data, sizeof(vertex_buffer_data)); d->vertexBuffer.release(); d->textureBuffer.create(); d->textureBuffer.bind(); d->textureBuffer.allocate(texture_buffer_data, sizeof(texture_buffer_data)); d->textureBuffer.release(); return true; } /*! \return \c true if create() was called and succeeded. \c false otherwise. \sa create(), destroy() */ bool QOpenGLTextureBlitter::isCreated() const { Q_D(const QOpenGLTextureBlitter); return d->programs[QOpenGLTextureBlitterPrivate::TEXTURE_2D].glProgram; } /*! Frees all graphics resources held by the blitter. Assumes that the OpenGL context, or another context sharing resources with it, that was current on the thread when invoking create() is current. The function has no effect when the blitter is not in created state. \sa create() */ void QOpenGLTextureBlitter::destroy() { if (!isCreated()) return; Q_D(QOpenGLTextureBlitter); d->programs[QOpenGLTextureBlitterPrivate::TEXTURE_2D].glProgram.reset(); d->programs[QOpenGLTextureBlitterPrivate::TEXTURE_EXTERNAL_OES].glProgram.reset(); d->vertexBuffer.destroy(); d->textureBuffer.destroy(); d->vao.reset(); } /*! \return \c true when bind() accepts \c GL_TEXTURE_EXTERNAL_OES as its target argument. \sa bind(), blit() */ bool QOpenGLTextureBlitter::supportsExternalOESTarget() const { QOpenGLContext *ctx = QOpenGLContext::currentContext(); return ctx && ctx->isOpenGLES() && ctx->hasExtension("GL_OES_EGL_image_external"); } /*! Binds the graphics resources used by the blitter. This must be called before calling blit(). Code modifying the OpenGL state should be avoided between the call to bind() and blit() because otherwise conflicts may arise. \a target is the texture target for the source texture and must be either \c GL_TEXTURE_2D or \c GL_OES_EGL_image_external. \sa release(), blit() */ void QOpenGLTextureBlitter::bind(GLenum target) { Q_D(QOpenGLTextureBlitter); if (d->vao->isCreated()) d->vao->bind(); d->currentTarget = target; QOpenGLTextureBlitterPrivate::Program *p = &d->programs[targetToProgramIndex(target)]; p->glProgram->bind(); d->vertexBuffer.bind(); p->glProgram->setAttributeBuffer(p->vertexCoordAttribPos, GL_FLOAT, 0, 3, 0); p->glProgram->enableAttributeArray(p->vertexCoordAttribPos); d->vertexBuffer.release(); d->textureBuffer.bind(); p->glProgram->setAttributeBuffer(p->textureCoordAttribPos, GL_FLOAT, 0, 2, 0); p->glProgram->enableAttributeArray(p->textureCoordAttribPos); d->textureBuffer.release(); } /*! Unbinds the graphics resources used by the blitter. \sa bind() */ void QOpenGLTextureBlitter::release() { Q_D(QOpenGLTextureBlitter); d->programs[targetToProgramIndex(d->currentTarget)].glProgram->release(); if (d->vao->isCreated()) d->vao->release(); } /*! Sets whether swizzling is enabled for the red and blue color channels to \a swizzle. An BGRA to RGBA conversion (occurring in the shader on the GPU, instead of a slow CPU-side transformation) can be useful when the source texture contains data from a QImage with a format like QImage::Format_ARGB32 which maps to BGRA on little endian systems. By default the red-blue swizzle is disabled since this is what a texture attached to an framebuffer object or a texture based on a byte ordered QImage format (like QImage::Format_RGBA8888) needs. */ void QOpenGLTextureBlitter::setRedBlueSwizzle(bool swizzle) { Q_D(QOpenGLTextureBlitter); d->swizzle = swizzle; } /*! Changes the opacity to \a opacity. The default opacity is 1.0. \note the blitter does not alter the blend state. It is up to the caller of blit() to ensure the correct blend settings are active. */ void QOpenGLTextureBlitter::setOpacity(float opacity) { Q_D(QOpenGLTextureBlitter); d->opacity = opacity; } /*! \enum QOpenGLTextureBlitter::Origin \value OriginBottomLeft Indicates that the data in the texture follows the OpenGL convention of coordinate systems, meaning Y is running from bottom to top. \value OriginTopLeft Indicates that the data in the texture has Y running from top to bottom, which is typical with regular, unflipped image data. \sa blit() */ /*! Performs the blit with the source texture \a texture. \a targetTransform specifies the transformation applied. This is usually generated by the targetTransform() helper function. \a sourceOrigin specifies if the image data needs flipping. When \a texture corresponds to a texture attached to an FBO pass OriginBottomLeft. On the other hand, when \a texture is based on unflipped image data, pass OriginTopLeft. This is more efficient than using QImage::mirrored(). \sa targetTransform(), Origin, bind() */ void QOpenGLTextureBlitter::blit(GLuint texture, const QMatrix4x4 &targetTransform, Origin sourceOrigin) { Q_D(QOpenGLTextureBlitter); d->blit(texture,targetTransform, sourceOrigin); } /*! Performs the blit with the source texture \a texture. \a targetTransform specifies the transformation applied. This is usually generated by the targetTransform() helper function. \a sourceTransform specifies the transformation applied to the source. This allows using only a sub-rect of the source texture. This is usually generated by the sourceTransform() helper function. \sa sourceTransform(), targetTransform(), Origin, bind() */ void QOpenGLTextureBlitter::blit(GLuint texture, const QMatrix4x4 &targetTransform, const QMatrix3x3 &sourceTransform) { Q_D(QOpenGLTextureBlitter); d->blit(texture, targetTransform, sourceTransform); } /*! Calculates a target transform suitable for blit(). \a target is the target rectangle in pixels. \a viewport describes the source dimensions and will in most cases be set to (0, 0, image width, image height). For unscaled output the size of \a target and \a viewport should match. \sa blit() */ QMatrix4x4 QOpenGLTextureBlitter::targetTransform(const QRectF &target, const QRect &viewport) { qreal x_scale = target.width() / viewport.width(); qreal y_scale = target.height() / viewport.height(); const QPointF relative_to_viewport = target.topLeft() - viewport.topLeft(); qreal x_translate = x_scale - 1 + ((relative_to_viewport.x() / viewport.width()) * 2); qreal y_translate = -y_scale + 1 - ((relative_to_viewport.y() / viewport.height()) * 2); QMatrix4x4 matrix; matrix(0,3) = x_translate; matrix(1,3) = y_translate; matrix(0,0) = x_scale; matrix(1,1) = y_scale; return matrix; } /*! Calculates a 3x3 matrix suitable as the input to blit(). This is used when only a part of the texture is to be used in the blit. \a subTexture is the desired source rectangle in pixels, \a textureSize is the full width and height of the texture data. \a origin specifies the orientation of the image data when it comes to the Y axis. \sa blit(), Origin */ QMatrix3x3 QOpenGLTextureBlitter::sourceTransform(const QRectF &subTexture, const QSize &textureSize, Origin origin) { qreal x_scale = subTexture.width() / textureSize.width(); qreal y_scale = subTexture.height() / textureSize.height(); const QPointF topLeft = subTexture.topLeft(); qreal x_translate = topLeft.x() / textureSize.width(); qreal y_translate = topLeft.y() / textureSize.height(); if (origin == OriginTopLeft) { y_scale = -y_scale; y_translate = 1 - y_translate; } QMatrix3x3 matrix; matrix(0,2) = x_translate; matrix(1,2) = y_translate; matrix(0,0) = x_scale; matrix(1,1) = y_scale; return matrix; } QT_END_NAMESPACE