/**************************************************************************** ** ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qbezier_p.h" #include #include #include #include #include #include #include #include QT_BEGIN_NAMESPACE //#define QDEBUG_BEZIER /*! \internal */ QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4) { QBezier b; b.x1 = p1.x(); b.y1 = p1.y(); b.x2 = p2.x(); b.y2 = p2.y(); b.x3 = p3.x(); b.y3 = p3.y(); b.x4 = p4.x(); b.y4 = p4.y(); return b; } /*! \internal */ QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const { // flattening is done by splitting the bezier until we can replace the segment by a straight // line. We split further until the control points are close enough to the line connecting the // boundary points. // // the Distance of a point p from a line given by the points (a,b) is given by: // // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length // // We can stop splitting if both control points are close enough to the line. // To make the algorithm faster we use the manhattan length of the line. QPolygonF polygon; polygon.append(QPointF(x1, y1)); addToPolygon(&polygon, bezier_flattening_threshold); return polygon; } QBezier QBezier::mapBy(const QTransform &transform) const { return QBezier::fromPoints(transform.map(pt1()), transform.map(pt2()), transform.map(pt3()), transform.map(pt4())); } QBezier QBezier::getSubRange(qreal t0, qreal t1) const { QBezier result; QBezier temp; // cut at t1 if (qFuzzyIsNull(t1 - qreal(1.))) { result = *this; } else { temp = *this; temp.parameterSplitLeft(t1, &result); } // cut at t0 if (!qFuzzyIsNull(t0)) result.parameterSplitLeft(t0 / t1, &temp); return result; } static inline int quadraticRoots(qreal a, qreal b, qreal c, qreal *x1, qreal *x2) { if (qFuzzyIsNull(a)) { if (qFuzzyIsNull(b)) return 0; *x1 = *x2 = (-c / b); return 1; } else { const qreal det = b * b - 4 * a * c; if (qFuzzyIsNull(det)) { *x1 = *x2 = -b / (2 * a); return 1; } if (det > 0) { if (qFuzzyIsNull(b)) { *x2 = qSqrt(-c / a); *x1 = -(*x2); return 2; } const qreal stableA = b / (2 * a); const qreal stableB = c / (a * stableA * stableA); const qreal stableC = -1 - qSqrt(1 - stableB); *x2 = stableA * stableC; *x1 = (stableA * stableB) / stableC; return 2; } else return 0; } } static inline bool findInflections(qreal a, qreal b, qreal c, qreal *t1 , qreal *t2, qreal *tCups) { qreal r1 = 0, r2 = 0; short rootsCount = quadraticRoots(a, b, c, &r1, &r2); if (rootsCount >= 1) { if (r1 < r2) { *t1 = r1; *t2 = r2; } else { *t1 = r2; *t2 = r1; } if (!qFuzzyIsNull(a)) *tCups = qreal(0.5) * (-b / a); else *tCups = 2; return true; } return false; } void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const { QBezier beziers[10]; int levels[10]; beziers[0] = *this; levels[0] = 9; QBezier *b = beziers; int *lvl = levels; while (b >= beziers) { // check if we can pop the top bezier curve from the stack qreal y4y1 = b->y4 - b->y1; qreal x4x1 = b->x4 - b->x1; qreal l = qAbs(x4x1) + qAbs(y4y1); qreal d; if (l > 1.) { d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); } else { d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) + qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3); l = 1.; } if (d < bezier_flattening_threshold*l || *lvl == 0) { // good enough, we pop it off and add the endpoint polygon->append(QPointF(b->x4, b->y4)); --b; --lvl; } else { // split, second half of the polygon goes lower into the stack b->split(b+1, b); lvl[1] = --lvl[0]; ++b; ++lvl; } } } void QBezier::addToPolygon(QDataBuffer &polygon, qreal bezier_flattening_threshold) const { QBezier beziers[10]; int levels[10]; beziers[0] = *this; levels[0] = 9; QBezier *b = beziers; int *lvl = levels; while (b >= beziers) { // check if we can pop the top bezier curve from the stack qreal y4y1 = b->y4 - b->y1; qreal x4x1 = b->x4 - b->x1; qreal l = qAbs(x4x1) + qAbs(y4y1); qreal d; if (l > 1.) { d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); } else { d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) + qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3); l = 1.; } if (d < bezier_flattening_threshold*l || *lvl == 0) { // good enough, we pop it off and add the endpoint polygon.add(QPointF(b->x4, b->y4)); --b; --lvl; } else { // split, second half of the polygon goes lower into the stack b->split(b+1, b); lvl[1] = --lvl[0]; ++b; ++lvl; } } } QRectF QBezier::bounds() const { qreal xmin = x1; qreal xmax = x1; if (x2 < xmin) xmin = x2; else if (x2 > xmax) xmax = x2; if (x3 < xmin) xmin = x3; else if (x3 > xmax) xmax = x3; if (x4 < xmin) xmin = x4; else if (x4 > xmax) xmax = x4; qreal ymin = y1; qreal ymax = y1; if (y2 < ymin) ymin = y2; else if (y2 > ymax) ymax = y2; if (y3 < ymin) ymin = y3; else if (y3 > ymax) ymax = y3; if (y4 < ymin) ymin = y4; else if (y4 > ymax) ymax = y4; return QRectF(xmin, ymin, xmax-xmin, ymax-ymin); } enum ShiftResult { Ok, Discard, Split, Circle }; static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold) { const qreal o2 = offset*offset; const qreal max_dist_line = threshold*offset*offset; const qreal max_dist_normal = threshold*offset; const qreal spacing = qreal(0.25); for (qreal i = spacing; i < qreal(0.99); i += spacing) { QPointF p1 = b1->pointAt(i); QPointF p2 = b2->pointAt(i); qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y()); if (qAbs(d - o2) > max_dist_line) return Split; QPointF normalPoint = b1->normalVector(i); qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y()); if (l != qreal(0.0)) { d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l; if (d > max_dist_normal) return Split; } } return Ok; } static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold) { int map[4]; bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2); bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3); bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4); QPointF points[4]; int np = 0; points[np] = QPointF(orig->x1, orig->y1); map[0] = 0; ++np; if (!p1_p2_equal) { points[np] = QPointF(orig->x2, orig->y2); ++np; } map[1] = np - 1; if (!p2_p3_equal) { points[np] = QPointF(orig->x3, orig->y3); ++np; } map[2] = np - 1; if (!p3_p4_equal) { points[np] = QPointF(orig->x4, orig->y4); ++np; } map[3] = np - 1; if (np == 1) return Discard; QRectF b = orig->bounds(); if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) { qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) + (orig->y1 - orig->y2)*(orig->y1 - orig->y2) * (orig->x3 - orig->x4)*(orig->x3 - orig->x4) + (orig->y3 - orig->y4)*(orig->y3 - orig->y4); qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) + (orig->y1 - orig->y2)*(orig->y3 - orig->y4); if (dot < 0 && dot*dot < 0.8*l) // the points are close and reverse dirction. Approximate the whole // thing by a semi circle return Circle; } QPointF points_shifted[4]; QLineF prev = QLineF(QPointF(), points[1] - points[0]); QPointF prev_normal = prev.normalVector().unitVector().p2(); points_shifted[0] = points[0] + offset * prev_normal; for (int i = 1; i < np - 1; ++i) { QLineF next = QLineF(QPointF(), points[i + 1] - points[i]); QPointF next_normal = next.normalVector().unitVector().p2(); QPointF normal_sum = prev_normal + next_normal; qreal r = qreal(1.0) + prev_normal.x() * next_normal.x() + prev_normal.y() * next_normal.y(); if (qFuzzyIsNull(r)) { points_shifted[i] = points[i] + offset * prev_normal; } else { qreal k = offset / r; points_shifted[i] = points[i] + k * normal_sum; } prev_normal = next_normal; } points_shifted[np - 1] = points[np - 1] + offset * prev_normal; *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]], points_shifted[map[2]], points_shifted[map[3]]); return good_offset(orig, shifted, offset, threshold); } // This value is used to determine the length of control point vectors // when approximating arc segments as curves. The factor is multiplied // with the radius of the circle. #define KAPPA qreal(0.5522847498) static bool addCircle(const QBezier *b, qreal offset, QBezier *o) { QPointF normals[3]; normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2); qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y()); if (qFuzzyIsNull(dist)) return false; normals[0] /= dist; normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4); dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y()); if (qFuzzyIsNull(dist)) return false; normals[2] /= dist; normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4); normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y()); qreal angles[2]; qreal sign = 1.; for (int i = 0; i < 2; ++i) { qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y(); if (cos_a > 1.) cos_a = 1.; if (cos_a < -1.) cos_a = -1; angles[i] = qAcos(cos_a)/Q_PI; } if (angles[0] + angles[1] > 1.) { // more than 180 degrees normals[1] = -normals[1]; angles[0] = 1. - angles[0]; angles[1] = 1. - angles[1]; sign = -1.; } QPointF circle[3]; circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset; circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset; circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset; for (int i = 0; i < 2; ++i) { qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i]; o->x1 = circle[i].x(); o->y1 = circle[i].y(); o->x2 = circle[i].x() - normals[i].y()*kappa; o->y2 = circle[i].y() + normals[i].x()*kappa; o->x3 = circle[i+1].x() + normals[i+1].y()*kappa; o->y3 = circle[i+1].y() - normals[i+1].x()*kappa; o->x4 = circle[i+1].x(); o->y4 = circle[i+1].y(); ++o; } return true; } int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const { Q_ASSERT(curveSegments); Q_ASSERT(maxSegments > 0); if (x1 == x2 && x1 == x3 && x1 == x4 && y1 == y2 && y1 == y3 && y1 == y4) return 0; --maxSegments; QBezier beziers[10]; redo: beziers[0] = *this; QBezier *b = beziers; QBezier *o = curveSegments; while (b >= beziers) { int stack_segments = b - beziers + 1; if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) { threshold *= qreal(1.5); if (threshold > qreal(2.0)) goto give_up; goto redo; } ShiftResult res = shift(b, o, offset, threshold); if (res == Discard) { --b; } else if (res == Ok) { ++o; --b; continue; } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) { // add semi circle if (addCircle(b, offset, o)) o += 2; --b; } else { b->split(b+1, b); ++b; } } give_up: while (b >= beziers) { ShiftResult res = shift(b, o, offset, threshold); // if res isn't Ok or Split then *o is undefined if (res == Ok || res == Split) ++o; --b; } Q_ASSERT(o - curveSegments <= maxSegments); return o - curveSegments; } #ifdef QDEBUG_BEZIER static QDebug operator<<(QDebug dbg, const QBezier &bz) { dbg << '[' << bz.x1<< ", " << bz.y1 << "], " << '[' << bz.x2 <<", " << bz.y2 << "], " << '[' << bz.x3 <<", " << bz.y3 << "], " << '[' << bz.x4 <<", " << bz.y4 << ']'; return dbg; } #endif static inline void splitBezierAt(const QBezier &bez, qreal t, QBezier *left, QBezier *right) { left->x1 = bez.x1; left->y1 = bez.y1; left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 ); left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 ); left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 ); right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 ); right->x2 = left->x3 + t * ( right->x3 - left->x3); right->y2 = left->y3 + t * ( right->y3 - left->y3); left->x3 = left->x2 + t * ( left->x3 - left->x2 ); left->y3 = left->y2 + t * ( left->y3 - left->y2 ); left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3); left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3); right->x4 = bez.x4; right->y4 = bez.y4; } qreal QBezier::length(qreal error) const { qreal length = qreal(0.0); addIfClose(&length, error); return length; } void QBezier::addIfClose(qreal *length, qreal error) const { QBezier left, right; /* bez poly splits */ qreal len = qreal(0.0); /* arc length */ qreal chord; /* chord length */ len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length(); len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length(); len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length(); chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length(); if((len-chord) > error) { split(&left, &right); /* split in two */ left.addIfClose(length, error); /* try left side */ right.addIfClose(length, error); /* try right side */ return; } *length = *length + len; return; } qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const { qreal py0 = pointAt(t0).y(); qreal py1 = pointAt(t1).y(); if (py0 > py1) { qSwap(py0, py1); qSwap(t0, t1); } Q_ASSERT(py0 <= py1); if (py0 >= y) return t0; else if (py1 <= y) return t1; Q_ASSERT(py0 < y && y < py1); qreal lt = t0; qreal dt; do { qreal t = qreal(0.5) * (t0 + t1); qreal a, b, c, d; QBezier::coefficients(t, a, b, c, d); qreal yt = a * y1 + b * y2 + c * y3 + d * y4; if (yt < y) { t0 = t; py0 = yt; } else { t1 = t; py1 = yt; } dt = lt - t; lt = t; } while (qAbs(dt) > qreal(1e-7)); return t0; } int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const { // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4 // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4) // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2)) const qreal a = -y1 + 3 * y2 - 3 * y3 + y4; const qreal b = 2 * y1 - 4 * y2 + 2 * y3; const qreal c = -y1 + y2; if (qFuzzyIsNull(a)) { if (qFuzzyIsNull(b)) return 0; t0 = -c / b; return t0 > 0 && t0 < 1; } qreal reciprocal = b * b - 4 * a * c; if (qFuzzyIsNull(reciprocal)) { t0 = -b / (2 * a); return t0 > 0 && t0 < 1; } else if (reciprocal > 0) { qreal temp = qSqrt(reciprocal); t0 = (-b - temp)/(2*a); t1 = (-b + temp)/(2*a); if (t1 < t0) qSwap(t0, t1); int count = 0; qreal t[2] = { 0, 1 }; if (t0 > 0 && t0 < 1) t[count++] = t0; if (t1 > 0 && t1 < 1) t[count++] = t1; t0 = t[0]; t1 = t[1]; return count; } return 0; } qreal QBezier::tAtLength(qreal l) const { qreal len = length(); qreal t = qreal(1.0); const qreal error = qreal(0.01); if (l > len || qFuzzyCompare(l, len)) return t; t *= qreal(0.5); //int iters = 0; //qDebug()<<"LEN is "<