/**************************************************************************** ** ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: http://www.qt-project.org/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qcolor.h" #include "qcolor_p.h" #include "qnamespace.h" #include "qdatastream.h" #include "qvariant.h" #include "qdebug.h" #include #include #include QT_BEGIN_NAMESPACE /*! \class QColor \brief The QColor class provides colors based on RGB, HSV or CMYK values. \ingroup painting \ingroup appearance A color is normally specified in terms of RGB (red, green, and blue) components, but it is also possible to specify it in terms of HSV (hue, saturation, and value) and CMYK (cyan, magenta, yellow and black) components. In addition a color can be specified using a color name. The color name can be any of the SVG 1.0 color names. \table \header \o RGB \o HSV \o CMYK \row \o \inlineimage qcolor-rgb.png \o \inlineimage qcolor-hsv.png \o \inlineimage qcolor-cmyk.png \endtable The QColor constructor creates the color based on RGB values. To create a QColor based on either HSV or CMYK values, use the toHsv() and toCmyk() functions respectively. These functions return a copy of the color using the desired format. In addition the static fromRgb(), fromHsv() and fromCmyk() functions create colors from the specified values. Alternatively, a color can be converted to any of the three formats using the convertTo() function (returning a copy of the color in the desired format), or any of the setRgb(), setHsv() and setCmyk() functions altering \e this color's format. The spec() function tells how the color was specified. A color can be set by passing an RGB string (such as "#112233"), or a color name (such as "blue"), to the setNamedColor() function. The color names are taken from the SVG 1.0 color names. The name() function returns the name of the color in the format "#RRGGBB". Colors can also be set using setRgb(), setHsv() and setCmyk(). To get a lighter or darker color use the lighter() and darker() functions respectively. The isValid() function indicates whether a QColor is legal at all. For example, a RGB color with RGB values out of range is illegal. For performance reasons, QColor mostly disregards illegal colors, and for that reason, the result of using an invalid color is undefined. The color components can be retrieved individually, e.g with red(), hue() and cyan(). The values of the color components can also be retrieved in one go using the getRgb(), getHsv() and getCmyk() functions. Using the RGB color model, the color components can in addition be accessed with rgb(). There are several related non-members: QRgb is a typdef for an unsigned int representing the RGB value triplet (r, g, b). Note that it also can hold a value for the alpha-channel (for more information, see the \l {QColor#Alpha-Blended Drawing}{Alpha-Blended Drawing} section). The qRed(), qBlue() and qGreen() functions return the respective component of the given QRgb value, while the qRgb() and qRgba() functions create and return the QRgb triplet based on the given component values. Finally, the qAlpha() function returns the alpha component of the provided QRgb, and the qGray() function calculates and return a gray value based on the given value. QColor is platform and device independent. The QColormap class maps the color to the hardware. For more information about painting in general, see the \l{Paint System} documentation. \tableofcontents \section1 Integer vs. Floating Point Precision QColor supports floating point precision and provides floating point versions of all the color components functions, e.g. getRgbF(), hueF() and fromCmykF(). Note that since the components are stored using 16-bit integers, there might be minor deviations between the values set using, for example, setRgbF() and the values returned by the getRgbF() function due to rounding. While the integer based functions take values in the range 0-255 (except hue() which must have values within the range 0-359), the floating point functions accept values in the range 0.0 - 1.0. \section1 Alpha-Blended Drawing QColor also support alpha-blended outlining and filling. The alpha channel of a color specifies the transparency effect, 0 represents a fully transparent color, while 255 represents a fully opaque color. For example: \snippet doc/src/snippets/code/src_gui_painting_qcolor.cpp 0 The code above produces the following output: \img alphafill.png The alpha channel of a color can be retrieved and set using the alpha() and setAlpha() functions if its value is an integer, and alphaF() and setAlphaF() if its value is qreal (double). By default, the alpha-channel is set to 255 (opaque). To retrieve and set \e all the RGB color components (including the alpha-channel) in one go, use the rgba() and setRgba() functions. \section1 Predefined Colors There are 20 predefined QColors described by the Qt::GlobalColor enum, including black, white, primary and secondary colors, darker versions of these colors and three shades of gray. QColor also recognizes a variety of color names; the static colorNames() function returns a QStringList color names that QColor knows about. \img qt-colors.png Qt Colors Additionally, the Qt::color0, Qt::color1 and Qt::transparent colors are used for special purposes. Qt::color0 (zero pixel value) and Qt::color1 (non-zero pixel value) are special colors for drawing in QBitmaps. Painting with Qt::color0 sets the bitmap bits to 0 (transparent; i.e., background), and painting with Qt::color1 sets the bits to 1 (opaque; i.e., foreground). Qt::transparent is used to indicate a transparent pixel. When painting with this value, a pixel value will be used that is appropriate for the underlying pixel format in use. \section1 The HSV Color Model The RGB model is hardware-oriented. Its representation is close to what most monitors show. In contrast, HSV represents color in a way more suited to the human perception of color. For example, the relationships "stronger than", "darker than", and "the opposite of" are easily expressed in HSV but are much harder to express in RGB. HSV, like RGB, has three components: \list \o H, for hue, is in the range 0 to 359 if the color is chromatic (not gray), or meaningless if it is gray. It represents degrees on the color wheel familiar to most people. Red is 0 (degrees), green is 120, and blue is 240. \inlineimage qcolor-hue.png \o S, for saturation, is in the range 0 to 255, and the bigger it is, the stronger the color is. Grayish colors have saturation near 0; very strong colors have saturation near 255. \inlineimage qcolor-saturation.png \o V, for value, is in the range 0 to 255 and represents lightness or brightness of the color. 0 is black; 255 is as far from black as possible. \inlineimage qcolor-value.png \endlist Here are some examples: pure red is H=0, S=255, V=255; a dark red, moving slightly towards the magenta, could be H=350 (equivalent to -10), S=255, V=180; a grayish light red could have H about 0 (say 350-359 or 0-10), S about 50-100, and S=255. Qt returns a hue value of -1 for achromatic colors. If you pass a hue value that is too large, Qt forces it into range. Hue 360 or 720 is treated as 0; hue 540 is treated as 180. In addition to the standard HSV model, Qt provides an alpha-channel to feature \l {QColor#Alpha-Blended Drawing}{alpha-blended drawing}. \section1 The HSL Color Model HSL is similar to HSV. Instead of value parameter from HSV, HSL has the lightness parameter. The lightness parameter goes from black to color and from color to white. If you go outside at the night its black or dark gray. At day its colorful but if you look in a really strong light a things they are going to white and wash out. \section1 The CMYK Color Model While the RGB and HSV color models are used for display on computer monitors, the CMYK model is used in the four-color printing process of printing presses and some hard-copy devices. CMYK has four components, all in the range 0-255: cyan (C), magenta (M), yellow (Y) and black (K). Cyan, magenta and yellow are called subtractive colors; the CMYK color model creates color by starting with a white surface and then subtracting color by applying the appropriate components. While combining cyan, magenta and yellow gives the color black, subtracting one or more will yield any other color. When combined in various percentages, these three colors can create the entire spectrum of colors. Mixing 100 percent of cyan, magenta and yellow \e does produce black, but the result is unsatisfactory since it wastes ink, increases drying time, and gives a muddy colour when printing. For that reason, black is added in professional printing to provide a solid black tone; hence the term 'four color process'. In addition to the standard CMYK model, Qt provides an alpha-channel to feature \l {QColor#Alpha-Blended Drawing}{alpha-blended drawing}. \sa QPalette, QBrush, QApplication::setColorSpec() */ #define QCOLOR_INT_RANGE_CHECK(fn, var) \ do { \ if (var < 0 || var > 255) { \ qWarning(#fn": invalid value %d", var); \ var = qMax(0, qMin(var, 255)); \ } \ } while (0) #define QCOLOR_REAL_RANGE_CHECK(fn, var) \ do { \ if (var < qreal(0.0) || var > qreal(1.0)) { \ qWarning(#fn": invalid value %g", var); \ var = qMax(qreal(0.0), qMin(var, qreal(1.0))); \ } \ } while (0) /***************************************************************************** QColor member functions *****************************************************************************/ /*! \enum QColor::Spec The type of color specified, either RGB, HSV, CMYK or HSL. \value Rgb \value Hsv \value Cmyk \value Hsl \value Invalid \sa spec(), convertTo() */ /*! \fn Spec QColor::spec() const Returns how the color was specified. \sa Spec, convertTo() */ /*! \fn QColor::QColor() Constructs an invalid color with the RGB value (0, 0, 0). An invalid color is a color that is not properly set up for the underlying window system. The alpha value of an invalid color is unspecified. \sa isValid() */ /*! \overload Constructs a new color with a color value of \a color. \sa isValid(), {QColor#Predefined Colors}{Predefined Colors} */ QColor::QColor(Qt::GlobalColor color) { #define QRGB(r, g, b) \ QRgb(((0xffu << 24) | ((r & 0xff) << 16) | ((g & 0xff) << 8) | (b & 0xff))) #define QRGBA(r, g, b, a) \ QRgb(((a & 0xff) << 24) | ((r & 0xff) << 16) | ((g & 0xff) << 8) | (b & 0xff)) static const QRgb global_colors[] = { QRGB(255, 255, 255), // Qt::color0 QRGB( 0, 0, 0), // Qt::color1 QRGB( 0, 0, 0), // black QRGB(255, 255, 255), // white /* * From the "The Palette Manager: How and Why" by Ron Gery, * March 23, 1992, archived on MSDN: * * The Windows system palette is broken up into two * sections, one with fixed colors and one with colors * that can be changed by applications. The system palette * predefines 20 entries; these colors are known as the * static or reserved colors and consist of the 16 colors * found in the Windows version 3.0 VGA driver and 4 * additional colors chosen for their visual appeal. The * DEFAULT_PALETTE stock object is, as the name implies, * the default palette selected into a device context (DC) * and consists of these static colors. Applications can * set the remaining 236 colors using the Palette Manager. * * The 20 reserved entries have indices in [0,9] and * [246,255]. We reuse 17 of them. */ QRGB(128, 128, 128), // index 248 medium gray QRGB(160, 160, 164), // index 247 light gray QRGB(192, 192, 192), // index 7 light gray QRGB(255, 0, 0), // index 249 red QRGB( 0, 255, 0), // index 250 green QRGB( 0, 0, 255), // index 252 blue QRGB( 0, 255, 255), // index 254 cyan QRGB(255, 0, 255), // index 253 magenta QRGB(255, 255, 0), // index 251 yellow QRGB(128, 0, 0), // index 1 dark red QRGB( 0, 128, 0), // index 2 dark green QRGB( 0, 0, 128), // index 4 dark blue QRGB( 0, 128, 128), // index 6 dark cyan QRGB(128, 0, 128), // index 5 dark magenta QRGB(128, 128, 0), // index 3 dark yellow QRGBA(0, 0, 0, 0) // transparent }; #undef QRGB #undef QRGBA setRgb(qRed(global_colors[color]), qGreen(global_colors[color]), qBlue(global_colors[color]), qAlpha(global_colors[color])); } /*! \fn QColor::QColor(int r, int g, int b, int a = 255) Constructs a color with the RGB value \a r, \a g, \a b, and the alpha-channel (transparency) value of \a a. The color is left invalid if any of the arguments are invalid. \sa setRgba(), isValid() */ /*! Constructs a color with the value \a color. The alpha component is ignored and set to solid. \sa fromRgb(), isValid() */ QColor::QColor(QRgb color) { cspec = Rgb; ct.argb.alpha = 0xffff; ct.argb.red = qRed(color) * 0x101; ct.argb.green = qGreen(color) * 0x101; ct.argb.blue = qBlue(color) * 0x101; ct.argb.pad = 0; } /*! \internal Constructs a color with the given \a spec. This function is primarly present to avoid that QColor::Invalid becomes a valid color by accident. */ QColor::QColor(Spec spec) { switch (spec) { case Invalid: invalidate(); break; case Rgb: setRgb(0, 0, 0); break; case Hsv: setHsv(0, 0, 0); break; case Cmyk: setCmyk(0, 0, 0, 0); break; case Hsl: setHsl(0, 0, 0, 0); break; } } /*! \fn QColor::QColor(const QString &name) Constructs a named color in the same way as setNamedColor() using the given \a name. The color is left invalid if the \a name cannot be parsed. \sa setNamedColor(), name(), isValid() */ /*! \fn QColor::QColor(const char *name) Constructs a named color in the same way as setNamedColor() using the given \a name. The color is left invalid if the \a name cannot be parsed. \sa setNamedColor(), name(), isValid() */ /*! \fn QColor::QColor(const QColor &color) Constructs a color that is a copy of \a color. \sa isValid() */ /*! \fn bool QColor::isValid() const Returns true if the color is valid; otherwise returns false. */ /*! Returns the name of the color in the format "#RRGGBB"; i.e. a "#" character followed by three two-digit hexadecimal numbers. \sa setNamedColor() */ QString QColor::name() const { QString s; s.sprintf("#%02x%02x%02x", red(), green(), blue()); return s; } /*! Sets the RGB value of this QColor to \a name, which may be in one of these formats: \list \i #RGB (each of R, G, and B is a single hex digit) \i #RRGGBB \i #RRRGGGBBB \i #RRRRGGGGBBBB \i A name from the list of colors defined in the list of \l{SVG color keyword names} provided by the World Wide Web Consortium; for example, "steelblue" or "gainsboro". These color names work on all platforms. Note that these color names are \e not the same as defined by the Qt::GlobalColor enums, e.g. "green" and Qt::green does not refer to the same color. \i \c transparent - representing the absence of a color. \endlist The color is invalid if \a name cannot be parsed. \sa QColor(), name(), isValid() */ void QColor::setNamedColor(const QString &name) { setColorFromString(name); } /*! \since 4.7 Returns true if the \a name is a valid color name and can be used to construct a valid QColor object, otherwise returns false. It uses the same algorithm used in setNamedColor(). \sa setNamedColor() */ bool QColor::isValidColor(const QString &name) { return !name.isEmpty() && QColor().setColorFromString(name); } bool QColor::setColorFromString(const QString &name) { if (name.isEmpty()) { invalidate(); return true; } if (name.startsWith(QLatin1Char('#'))) { QRgb rgb; if (qt_get_hex_rgb(name.constData(), name.length(), &rgb)) { setRgb(rgb); return true; } else { invalidate(); return false; } } #ifndef QT_NO_COLORNAMES QRgb rgb; if (qt_get_named_rgb(name.constData(), name.length(), &rgb)) { setRgba(rgb); return true; } else #endif { invalidate(); return false; } } /*! Returns a QStringList containing the color names Qt knows about. \sa {QColor#Predefined Colors}{Predefined Colors} */ QStringList QColor::colorNames() { #ifndef QT_NO_COLORNAMES return qt_get_colornames(); #else return QStringList(); #endif } /*! Sets the contents pointed to by \a h, \a s, \a v, and \a a, to the hue, saturation, value, and alpha-channel (transparency) components of the color's HSV value. These components can be retrieved individually using the hueF(), saturationF(), valueF() and alphaF() functions. \sa setHsv() {QColor#The HSV Color Model}{The HSV Color Model} */ void QColor::getHsvF(qreal *h, qreal *s, qreal *v, qreal *a) const { if (!h || !s || !v) return; if (cspec != Invalid && cspec != Hsv) { toHsv().getHsvF(h, s, v, a); return; } *h = ct.ahsv.hue == USHRT_MAX ? qreal(-1.0) : ct.ahsv.hue / qreal(36000.0); *s = ct.ahsv.saturation / qreal(USHRT_MAX); *v = ct.ahsv.value / qreal(USHRT_MAX); if (a) *a = ct.ahsv.alpha / qreal(USHRT_MAX); } /*! Sets the contents pointed to by \a h, \a s, \a v, and \a a, to the hue, saturation, value, and alpha-channel (transparency) components of the color's HSV value. These components can be retrieved individually using the hue(), saturation(), value() and alpha() functions. \sa setHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ void QColor::getHsv(int *h, int *s, int *v, int *a) const { if (!h || !s || !v) return; if (cspec != Invalid && cspec != Hsv) { toHsv().getHsv(h, s, v, a); return; } *h = ct.ahsv.hue == USHRT_MAX ? -1 : ct.ahsv.hue / 100; *s = ct.ahsv.saturation >> 8; *v = ct.ahsv.value >> 8; if (a) *a = ct.ahsv.alpha >> 8; } /*! Sets a HSV color value; \a h is the hue, \a s is the saturation, \a v is the value and \a a is the alpha component of the HSV color. All the values must be in the range 0.0-1.0. \sa getHsvF(), setHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ void QColor::setHsvF(qreal h, qreal s, qreal v, qreal a) { if (((h < qreal(0.0) || h > qreal(1.0)) && h != qreal(-1.0)) || (s < qreal(0.0) || s > qreal(1.0)) || (v < qreal(0.0) || v > qreal(1.0)) || (a < qreal(0.0) || a > qreal(1.0))) { qWarning("QColor::setHsvF: HSV parameters out of range"); return; } cspec = Hsv; ct.ahsv.alpha = qRound(a * USHRT_MAX); ct.ahsv.hue = h == qreal(-1.0) ? USHRT_MAX : qRound(h * 36000); ct.ahsv.saturation = qRound(s * USHRT_MAX); ct.ahsv.value = qRound(v * USHRT_MAX); ct.ahsv.pad = 0; } /*! Sets a HSV color value; \a h is the hue, \a s is the saturation, \a v is the value and \a a is the alpha component of the HSV color. The saturation, value and alpha-channel values must be in the range 0-255, and the hue value must be greater than -1. \sa getHsv(), setHsvF(), {QColor#The HSV Color Model}{The HSV Color Model} */ void QColor::setHsv(int h, int s, int v, int a) { if (h < -1 || (uint)s > 255 || (uint)v > 255 || (uint)a > 255) { qWarning("QColor::setHsv: HSV parameters out of range"); invalidate(); return; } cspec = Hsv; ct.ahsv.alpha = a * 0x101; ct.ahsv.hue = h == -1 ? USHRT_MAX : (h % 360) * 100; ct.ahsv.saturation = s * 0x101; ct.ahsv.value = v * 0x101; ct.ahsv.pad = 0; } /*! \since 4.6 Sets the contents pointed to by \a h, \a s, \a l, and \a a, to the hue, saturation, lightness, and alpha-channel (transparency) components of the color's HSL value. These components can be retrieved individually using the hueHslF(), saturationHslF(), lightnessF() and alphaF() functions. \sa setHsl() */ void QColor::getHslF(qreal *h, qreal *s, qreal *l, qreal *a) const { if (!h || !s || !l) return; if (cspec != Invalid && cspec != Hsl) { toHsl().getHslF(h, s, l, a); return; } *h = ct.ahsl.hue == USHRT_MAX ? qreal(-1.0) : ct.ahsl.hue / qreal(36000.0); *s = ct.ahsl.saturation / qreal(USHRT_MAX); *l = ct.ahsl.lightness / qreal(USHRT_MAX); if (a) *a = ct.ahsl.alpha / qreal(USHRT_MAX); } /*! \since 4.6 Sets the contents pointed to by \a h, \a s, \a l, and \a a, to the hue, saturation, lightness, and alpha-channel (transparency) components of the color's HSL value. These components can be retrieved individually using the hueHsl(), saturationHsl(), lightness() and alpha() functions. \sa setHsl() */ void QColor::getHsl(int *h, int *s, int *l, int *a) const { if (!h || !s || !l) return; if (cspec != Invalid && cspec != Hsl) { toHsl().getHsl(h, s, l, a); return; } *h = ct.ahsl.hue == USHRT_MAX ? -1 : ct.ahsl.hue / 100; *s = ct.ahsl.saturation >> 8; *l = ct.ahsl.lightness >> 8; if (a) *a = ct.ahsl.alpha >> 8; } /*! \since 4.6 Sets a HSL color lightness; \a h is the hue, \a s is the saturation, \a l is the lightness and \a a is the alpha component of the HSL color. All the values must be in the range 0.0-1.0. \sa getHslF(), setHsl() */ void QColor::setHslF(qreal h, qreal s, qreal l, qreal a) { if (((h < qreal(0.0) || h > qreal(1.0)) && h != qreal(-1.0)) || (s < qreal(0.0) || s > qreal(1.0)) || (l < qreal(0.0) || l > qreal(1.0)) || (a < qreal(0.0) || a > qreal(1.0))) { qWarning("QColor::setHsvF: HSV parameters out of range"); return; } cspec = Hsl; ct.ahsl.alpha = qRound(a * USHRT_MAX); ct.ahsl.hue = h == qreal(-1.0) ? USHRT_MAX : qRound(h * 36000); ct.ahsl.saturation = qRound(s * USHRT_MAX); ct.ahsl.lightness = qRound(l * USHRT_MAX); ct.ahsl.pad = 0; } /*! \since 4.6 Sets a HSL color value; \a h is the hue, \a s is the saturation, \a l is the lightness and \a a is the alpha component of the HSL color. The saturation, value and alpha-channel values must be in the range 0-255, and the hue value must be greater than -1. \sa getHsl(), setHslF() */ void QColor::setHsl(int h, int s, int l, int a) { if (h < -1 || (uint)s > 255 || (uint)l > 255 || (uint)a > 255) { qWarning("QColor::setHsv: HSV parameters out of range"); invalidate(); return; } cspec = Hsl; ct.ahsl.alpha = a * 0x101; ct.ahsl.hue = h == -1 ? USHRT_MAX : (h % 360) * 100; ct.ahsl.saturation = s * 0x101; ct.ahsl.lightness = l * 0x101; ct.ahsl.pad = 0; } /*! Sets the contents pointed to by \a r, \a g, \a b, and \a a, to the red, green, blue, and alpha-channel (transparency) components of the color's RGB value. These components can be retrieved individually using the redF(), greenF(), blueF() and alphaF() functions. \sa rgb(), setRgb() */ void QColor::getRgbF(qreal *r, qreal *g, qreal *b, qreal *a) const { if (!r || !g || !b) return; if (cspec != Invalid && cspec != Rgb) { toRgb().getRgbF(r, g, b, a); return; } *r = ct.argb.red / qreal(USHRT_MAX); *g = ct.argb.green / qreal(USHRT_MAX); *b = ct.argb.blue / qreal(USHRT_MAX); if (a) *a = ct.argb.alpha / qreal(USHRT_MAX); } /*! Sets the contents pointed to by \a r, \a g, \a b, and \a a, to the red, green, blue, and alpha-channel (transparency) components of the color's RGB value. These components can be retrieved individually using the red(), green(), blue() and alpha() functions. \sa rgb(), setRgb() */ void QColor::getRgb(int *r, int *g, int *b, int *a) const { if (!r || !g || !b) return; if (cspec != Invalid && cspec != Rgb) { toRgb().getRgb(r, g, b, a); return; } *r = ct.argb.red >> 8; *g = ct.argb.green >> 8; *b = ct.argb.blue >> 8; if (a) *a = ct.argb.alpha >> 8; } /*! \fn void QColor::setRgbF(qreal r, qreal g, qreal b, qreal a) Sets the color channels of this color to \a r (red), \a g (green), \a b (blue) and \a a (alpha, transparency). All values must be in the range 0.0-1.0. \sa rgb(), getRgbF(), setRgb() */ void QColor::setRgbF(qreal r, qreal g, qreal b, qreal a) { if (r < qreal(0.0) || r > qreal(1.0) || g < qreal(0.0) || g > qreal(1.0) || b < qreal(0.0) || b > qreal(1.0) || a < qreal(0.0) || a > qreal(1.0)) { qWarning("QColor::setRgbF: RGB parameters out of range"); invalidate(); return; } cspec = Rgb; ct.argb.alpha = qRound(a * USHRT_MAX); ct.argb.red = qRound(r * USHRT_MAX); ct.argb.green = qRound(g * USHRT_MAX); ct.argb.blue = qRound(b * USHRT_MAX); ct.argb.pad = 0; } /*! Sets the RGB value to \a r, \a g, \a b and the alpha value to \a a. All the values must be in the range 0-255. \sa rgb(), getRgb(), setRgbF() */ void QColor::setRgb(int r, int g, int b, int a) { if ((uint)r > 255 || (uint)g > 255 || (uint)b > 255 || (uint)a > 255) { qWarning("QColor::setRgb: RGB parameters out of range"); invalidate(); return; } cspec = Rgb; ct.argb.alpha = a * 0x101; ct.argb.red = r * 0x101; ct.argb.green = g * 0x101; ct.argb.blue = b * 0x101; ct.argb.pad = 0; } /*! \fn QRgb QColor::rgba() const Returns the RGB value of the color, including its alpha. For an invalid color, the alpha value of the returned color is unspecified. \sa setRgba(), rgb() */ QRgb QColor::rgba() const { if (cspec != Invalid && cspec != Rgb) return toRgb().rgba(); return qRgba(ct.argb.red >> 8, ct.argb.green >> 8, ct.argb.blue >> 8, ct.argb.alpha >> 8); } /*! Sets the RGB value to \a rgba, including its alpha. \sa rgba(), rgb() */ void QColor::setRgba(QRgb rgba) { cspec = Rgb; ct.argb.alpha = qAlpha(rgba) * 0x101; ct.argb.red = qRed(rgba) * 0x101; ct.argb.green = qGreen(rgba) * 0x101; ct.argb.blue = qBlue(rgba) * 0x101; ct.argb.pad = 0; } /*! \fn QRgb QColor::rgb() const Returns the RGB value of the color. The alpha value is opaque. \sa getRgb(), rgba() */ QRgb QColor::rgb() const { if (cspec != Invalid && cspec != Rgb) return toRgb().rgb(); return qRgb(ct.argb.red >> 8, ct.argb.green >> 8, ct.argb.blue >> 8); } /*! \overload Sets the RGB value to \a rgb. The alpha value is set to opaque. */ void QColor::setRgb(QRgb rgb) { cspec = Rgb; ct.argb.alpha = 0xffff; ct.argb.red = qRed(rgb) * 0x101; ct.argb.green = qGreen(rgb) * 0x101; ct.argb.blue = qBlue(rgb) * 0x101; ct.argb.pad = 0; } /*! Returns the alpha color component of this color. \sa setAlpha(), alphaF(), {QColor#Alpha-Blended Drawing}{Alpha-Blended Drawing} */ int QColor::alpha() const { return ct.argb.alpha >> 8; } /*! Sets the alpha of this color to \a alpha. Integer alpha is specified in the range 0-255. \sa alpha(), alphaF(), {QColor#Alpha-Blended Drawing}{Alpha-Blended Drawing} */ void QColor::setAlpha(int alpha) { QCOLOR_INT_RANGE_CHECK("QColor::setAlpha", alpha); ct.argb.alpha = alpha * 0x101; } /*! Returns the alpha color component of this color. \sa setAlphaF(), alpha(), {QColor#Alpha-Blended Drawing}{Alpha-Blended Drawing} */ qreal QColor::alphaF() const { return ct.argb.alpha / qreal(USHRT_MAX); } /*! Sets the alpha of this color to \a alpha. qreal alpha is specified in the range 0.0-1.0. \sa alphaF(), alpha(), {QColor#Alpha-Blended Drawing}{Alpha-Blended Drawing} */ void QColor::setAlphaF(qreal alpha) { QCOLOR_REAL_RANGE_CHECK("QColor::setAlphaF", alpha); qreal tmp = alpha * USHRT_MAX; ct.argb.alpha = qRound(tmp); } /*! Returns the red color component of this color. \sa setRed(), redF(), getRgb() */ int QColor::red() const { if (cspec != Invalid && cspec != Rgb) return toRgb().red(); return ct.argb.red >> 8; } /*! Sets the red color component of this color to \a red. Integer components are specified in the range 0-255. \sa red(), redF(), setRgb() */ void QColor::setRed(int red) { QCOLOR_INT_RANGE_CHECK("QColor::setRed", red); if (cspec != Rgb) setRgb(red, green(), blue(), alpha()); else ct.argb.red = red * 0x101; } /*! Returns the green color component of this color. \sa setGreen(), greenF(), getRgb() */ int QColor::green() const { if (cspec != Invalid && cspec != Rgb) return toRgb().green(); return ct.argb.green >> 8; } /*! Sets the green color component of this color to \a green. Integer components are specified in the range 0-255. \sa green(), greenF(), setRgb() */ void QColor::setGreen(int green) { QCOLOR_INT_RANGE_CHECK("QColor::setGreen", green); if (cspec != Rgb) setRgb(red(), green, blue(), alpha()); else ct.argb.green = green * 0x101; } /*! Returns the blue color component of this color. \sa setBlue(), blueF(), getRgb() */ int QColor::blue() const { if (cspec != Invalid && cspec != Rgb) return toRgb().blue(); return ct.argb.blue >> 8; } /*! Sets the blue color component of this color to \a blue. Integer components are specified in the range 0-255. \sa blue(), blueF(), setRgb() */ void QColor::setBlue(int blue) { QCOLOR_INT_RANGE_CHECK("QColor::setBlue", blue); if (cspec != Rgb) setRgb(red(), green(), blue, alpha()); else ct.argb.blue = blue * 0x101; } /*! Returns the red color component of this color. \sa setRedF(), red(), getRgbF() */ qreal QColor::redF() const { if (cspec != Invalid && cspec != Rgb) return toRgb().redF(); return ct.argb.red / qreal(USHRT_MAX); } /*! Sets the red color component of this color to \a red. Float components are specified in the range 0.0-1.0. \sa redF(), red(), setRgbF() */ void QColor::setRedF(qreal red) { QCOLOR_REAL_RANGE_CHECK("QColor::setRedF", red); if (cspec != Rgb) setRgbF(red, greenF(), blueF(), alphaF()); else ct.argb.red = qRound(red * USHRT_MAX); } /*! Returns the green color component of this color. \sa setGreenF(), green(), getRgbF() */ qreal QColor::greenF() const { if (cspec != Invalid && cspec != Rgb) return toRgb().greenF(); return ct.argb.green / qreal(USHRT_MAX); } /*! Sets the green color component of this color to \a green. Float components are specified in the range 0.0-1.0. \sa greenF(), green(), setRgbF() */ void QColor::setGreenF(qreal green) { QCOLOR_REAL_RANGE_CHECK("QColor::setGreenF", green); if (cspec != Rgb) setRgbF(redF(), green, blueF(), alphaF()); else ct.argb.green = qRound(green * USHRT_MAX); } /*! Returns the blue color component of this color. \sa setBlueF(), blue(), getRgbF() */ qreal QColor::blueF() const { if (cspec != Invalid && cspec != Rgb) return toRgb().blueF(); return ct.argb.blue / qreal(USHRT_MAX); } /*! Sets the blue color component of this color to \a blue. Float components are specified in the range 0.0-1.0. \sa blueF(), blue(), setRgbF() */ void QColor::setBlueF(qreal blue) { QCOLOR_REAL_RANGE_CHECK("QColor::setBlueF", blue); if (cspec != Rgb) setRgbF(redF(), greenF(), blue, alphaF()); else ct.argb.blue = qRound(blue * USHRT_MAX); } /*! Returns the hue color component of this color. The color is implicitly converted to HSV. \sa hsvHue(), hueF(), getHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ int QColor::hue() const { return hsvHue(); } /*! Returns the hue color component of this color. \sa hueF(), getHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ int QColor::hsvHue() const { if (cspec != Invalid && cspec != Hsv) return toHsv().hue(); return ct.ahsv.hue == USHRT_MAX ? -1 : ct.ahsv.hue / 100; } /*! Returns the saturation color component of this color. The color is implicitly converted to HSV. \sa hsvSaturation(), saturationF(), getHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ int QColor::saturation() const { return hsvSaturation(); } /*! Returns the saturation color component of this color. \sa saturationF(), getHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ int QColor::hsvSaturation() const { if (cspec != Invalid && cspec != Hsv) return toHsv().saturation(); return ct.ahsv.saturation >> 8; } /*! Returns the value color component of this color. \sa valueF(), getHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ int QColor::value() const { if (cspec != Invalid && cspec != Hsv) return toHsv().value(); return ct.ahsv.value >> 8; } /*! Returns the hue color component of this color. The color is implicitly converted to HSV. \sa hsvHueF(), hue(), getHsvF(), {QColor#The HSV Color Model}{The HSV Color Model} */ qreal QColor::hueF() const { return hsvHueF(); } /*! Returns the hue color component of this color. \sa hue(), getHsvF(), {QColor#The HSV Color Model}{The HSV Color Model} */ qreal QColor::hsvHueF() const { if (cspec != Invalid && cspec != Hsv) return toHsv().hueF(); return ct.ahsv.hue == USHRT_MAX ? qreal(-1.0) : ct.ahsv.hue / qreal(36000.0); } /*! Returns the saturation color component of this color. The color is implicitly converted to HSV. \sa hsvSaturationF(), saturation() getHsvF(), {QColor#The HSV Color Model}{The HSV Color Model} */ qreal QColor::saturationF() const { return hsvSaturationF(); } /*! Returns the saturation color component of this color. \sa saturation() getHsvF(), {QColor#The HSV Color Model}{The HSV Color Model} */ qreal QColor::hsvSaturationF() const { if (cspec != Invalid && cspec != Hsv) return toHsv().saturationF(); return ct.ahsv.saturation / qreal(USHRT_MAX); } /*! Returns the value color component of this color. \sa value() getHsvF(), {QColor#The HSV Color Model}{The HSV Color Model} */ qreal QColor::valueF() const { if (cspec != Invalid && cspec != Hsv) return toHsv().valueF(); return ct.ahsv.value / qreal(USHRT_MAX); } /*! \since 4.6 Returns the hue color component of this color. \sa getHslF(), getHsl() */ int QColor::hslHue() const { if (cspec != Invalid && cspec != Hsl) return toHsl().hslHue(); return ct.ahsl.hue == USHRT_MAX ? -1 : ct.ahsl.hue / 100; } /*! \since 4.6 Returns the saturation color component of this color. \sa saturationF(), getHsv(), {QColor#The HSV Color Model}{The HSV Color Model} */ int QColor::hslSaturation() const { if (cspec != Invalid && cspec != Hsl) return toHsl().hslSaturation(); return ct.ahsl.saturation >> 8; } /*! \since 4.6 Returns the lightness color component of this color. \sa lightnessF(), getHsl() */ int QColor::lightness() const { if (cspec != Invalid && cspec != Hsl) return toHsl().lightness(); return ct.ahsl.lightness >> 8; } /*! \since 4.6 Returns the hue color component of this color. \sa hue(), getHslF() */ qreal QColor::hslHueF() const { if (cspec != Invalid && cspec != Hsl) return toHsl().hslHueF(); return ct.ahsl.hue == USHRT_MAX ? qreal(-1.0) : ct.ahsl.hue / qreal(36000.0); } /*! \since 4.6 Returns the saturation color component of this color. \sa saturationF() getHslF() */ qreal QColor::hslSaturationF() const { if (cspec != Invalid && cspec != Hsl) return toHsl().hslSaturationF(); return ct.ahsl.saturation / qreal(USHRT_MAX); } /*! \since 4.6 Returns the lightness color component of this color. \sa value() getHslF() */ qreal QColor::lightnessF() const { if (cspec != Invalid && cspec != Hsl) return toHsl().lightnessF(); return ct.ahsl.lightness / qreal(USHRT_MAX); } /*! Returns the cyan color component of this color. \sa cyanF(), getCmyk(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ int QColor::cyan() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().cyan(); return ct.acmyk.cyan >> 8; } /*! Returns the magenta color component of this color. \sa magentaF(), getCmyk(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ int QColor::magenta() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().magenta(); return ct.acmyk.magenta >> 8; } /*! Returns the yellow color component of this color. \sa yellowF(), getCmyk(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ int QColor::yellow() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().yellow(); return ct.acmyk.yellow >> 8; } /*! Returns the black color component of this color. \sa blackF(), getCmyk(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ int QColor::black() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().black(); return ct.acmyk.black >> 8; } /*! Returns the cyan color component of this color. \sa cyan(), getCmykF(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ qreal QColor::cyanF() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().cyanF(); return ct.acmyk.cyan / qreal(USHRT_MAX); } /*! Returns the magenta color component of this color. \sa magenta(), getCmykF(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ qreal QColor::magentaF() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().magentaF(); return ct.acmyk.magenta / qreal(USHRT_MAX); } /*! Returns the yellow color component of this color. \sa yellow(), getCmykF(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ qreal QColor::yellowF() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().yellowF(); return ct.acmyk.yellow / qreal(USHRT_MAX); } /*! Returns the black color component of this color. \sa black(), getCmykF(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ qreal QColor::blackF() const { if (cspec != Invalid && cspec != Cmyk) return toCmyk().blackF(); return ct.acmyk.black / qreal(USHRT_MAX); } /*! Create and returns an RGB QColor based on this color. \sa fromRgb(), convertTo(), isValid() */ QColor QColor::toRgb() const { if (!isValid() || cspec == Rgb) return *this; QColor color; color.cspec = Rgb; color.ct.argb.alpha = ct.argb.alpha; color.ct.argb.pad = 0; switch (cspec) { case Hsv: { if (ct.ahsv.saturation == 0 || ct.ahsv.hue == USHRT_MAX) { // achromatic case color.ct.argb.red = color.ct.argb.green = color.ct.argb.blue = ct.ahsv.value; break; } // chromatic case const qreal h = ct.ahsv.hue == 36000 ? 0 : ct.ahsv.hue / 6000.; const qreal s = ct.ahsv.saturation / qreal(USHRT_MAX); const qreal v = ct.ahsv.value / qreal(USHRT_MAX); const int i = int(h); const qreal f = h - i; const qreal p = v * (qreal(1.0) - s); if (i & 1) { const qreal q = v * (qreal(1.0) - (s * f)); switch (i) { case 1: color.ct.argb.red = qRound(q * USHRT_MAX); color.ct.argb.green = qRound(v * USHRT_MAX); color.ct.argb.blue = qRound(p * USHRT_MAX); break; case 3: color.ct.argb.red = qRound(p * USHRT_MAX); color.ct.argb.green = qRound(q * USHRT_MAX); color.ct.argb.blue = qRound(v * USHRT_MAX); break; case 5: color.ct.argb.red = qRound(v * USHRT_MAX); color.ct.argb.green = qRound(p * USHRT_MAX); color.ct.argb.blue = qRound(q * USHRT_MAX); break; } } else { const qreal t = v * (qreal(1.0) - (s * (qreal(1.0) - f))); switch (i) { case 0: color.ct.argb.red = qRound(v * USHRT_MAX); color.ct.argb.green = qRound(t * USHRT_MAX); color.ct.argb.blue = qRound(p * USHRT_MAX); break; case 2: color.ct.argb.red = qRound(p * USHRT_MAX); color.ct.argb.green = qRound(v * USHRT_MAX); color.ct.argb.blue = qRound(t * USHRT_MAX); break; case 4: color.ct.argb.red = qRound(t * USHRT_MAX); color.ct.argb.green = qRound(p * USHRT_MAX); color.ct.argb.blue = qRound(v * USHRT_MAX); break; } } break; } case Hsl: { if (ct.ahsl.saturation == 0 || ct.ahsl.hue == USHRT_MAX) { // achromatic case color.ct.argb.red = color.ct.argb.green = color.ct.argb.blue = ct.ahsl.lightness; } else if (ct.ahsl.lightness == 0) { // lightness 0 color.ct.argb.red = color.ct.argb.green = color.ct.argb.blue = 0; } else { // chromatic case const qreal h = ct.ahsl.hue == 36000 ? 0 : ct.ahsl.hue / 36000.; const qreal s = ct.ahsl.saturation / qreal(USHRT_MAX); const qreal l = ct.ahsl.lightness / qreal(USHRT_MAX); qreal temp2; if (l < qreal(0.5)) temp2 = l * (qreal(1.0) + s); else temp2 = l + s - (l * s); const qreal temp1 = (qreal(2.0) * l) - temp2; qreal temp3[3] = { h + (qreal(1.0) / qreal(3.0)), h, h - (qreal(1.0) / qreal(3.0)) }; for (int i = 0; i != 3; ++i) { if (temp3[i] < qreal(0.0)) temp3[i] += qreal(1.0); else if (temp3[i] > qreal(1.0)) temp3[i] -= qreal(1.0); const qreal sixtemp3 = temp3[i] * qreal(6.0); if (sixtemp3 < qreal(1.0)) color.ct.array[i+1] = qRound((temp1 + (temp2 - temp1) * sixtemp3) * USHRT_MAX); else if ((temp3[i] * qreal(2.0)) < qreal(1.0)) color.ct.array[i+1] = qRound(temp2 * USHRT_MAX); else if ((temp3[i] * qreal(3.0)) < qreal(2.0)) color.ct.array[i+1] = qRound((temp1 + (temp2 -temp1) * (qreal(2.0) /qreal(3.0) - temp3[i]) * qreal(6.0)) * USHRT_MAX); else color.ct.array[i+1] = qRound(temp1 * USHRT_MAX); } color.ct.argb.red = color.ct.argb.red == 1 ? 0 : color.ct.argb.red; color.ct.argb.green = color.ct.argb.green == 1 ? 0 : color.ct.argb.green; color.ct.argb.blue = color.ct.argb.blue == 1 ? 0 : color.ct.argb.blue; } break; } case Cmyk: { const qreal c = ct.acmyk.cyan / qreal(USHRT_MAX); const qreal m = ct.acmyk.magenta / qreal(USHRT_MAX); const qreal y = ct.acmyk.yellow / qreal(USHRT_MAX); const qreal k = ct.acmyk.black / qreal(USHRT_MAX); color.ct.argb.red = qRound((qreal(1.0) - (c * (qreal(1.0) - k) + k)) * USHRT_MAX); color.ct.argb.green = qRound((qreal(1.0) - (m * (qreal(1.0) - k) + k)) * USHRT_MAX); color.ct.argb.blue = qRound((qreal(1.0) - (y * (qreal(1.0) - k) + k)) * USHRT_MAX); break; } default: break; } return color; } #define Q_MAX_3(a, b, c) ( ( a > b && a > c) ? a : (b > c ? b : c) ) #define Q_MIN_3(a, b, c) ( ( a < b && a < c) ? a : (b < c ? b : c) ) /*! Creates and returns an HSV QColor based on this color. \sa fromHsv(), convertTo(), isValid(), {QColor#The HSV Color Model}{The HSV Color Model} */ QColor QColor::toHsv() const { if (!isValid() || cspec == Hsv) return *this; if (cspec != Rgb) return toRgb().toHsv(); QColor color; color.cspec = Hsv; color.ct.ahsv.alpha = ct.argb.alpha; color.ct.ahsv.pad = 0; const qreal r = ct.argb.red / qreal(USHRT_MAX); const qreal g = ct.argb.green / qreal(USHRT_MAX); const qreal b = ct.argb.blue / qreal(USHRT_MAX); const qreal max = Q_MAX_3(r, g, b); const qreal min = Q_MIN_3(r, g, b); const qreal delta = max - min; color.ct.ahsv.value = qRound(max * USHRT_MAX); if (qFuzzyIsNull(delta)) { // achromatic case, hue is undefined color.ct.ahsv.hue = USHRT_MAX; color.ct.ahsv.saturation = 0; } else { // chromatic case qreal hue = 0; color.ct.ahsv.saturation = qRound((delta / max) * USHRT_MAX); if (qFuzzyCompare(r, max)) { hue = ((g - b) /delta); } else if (qFuzzyCompare(g, max)) { hue = (qreal(2.0) + (b - r) / delta); } else if (qFuzzyCompare(b, max)) { hue = (qreal(4.0) + (r - g) / delta); } else { Q_ASSERT_X(false, "QColor::toHsv", "internal error"); } hue *= qreal(60.0); if (hue < qreal(0.0)) hue += qreal(360.0); color.ct.ahsv.hue = qRound(hue * 100); } return color; } /*! Creates and returns an HSL QColor based on this color. \sa fromHsl(), convertTo(), isValid() */ QColor QColor::toHsl() const { if (!isValid() || cspec == Hsl) return *this; if (cspec != Rgb) return toRgb().toHsl(); QColor color; color.cspec = Hsl; color.ct.ahsl.alpha = ct.argb.alpha; color.ct.ahsl.pad = 0; const qreal r = ct.argb.red / qreal(USHRT_MAX); const qreal g = ct.argb.green / qreal(USHRT_MAX); const qreal b = ct.argb.blue / qreal(USHRT_MAX); const qreal max = Q_MAX_3(r, g, b); const qreal min = Q_MIN_3(r, g, b); const qreal delta = max - min; const qreal delta2 = max + min; const qreal lightness = qreal(0.5) * delta2; color.ct.ahsl.lightness = qRound(lightness * USHRT_MAX); if (qFuzzyIsNull(delta)) { // achromatic case, hue is undefined color.ct.ahsl.hue = USHRT_MAX; color.ct.ahsl.saturation = 0; } else { // chromatic case qreal hue = 0; if (lightness < qreal(0.5)) color.ct.ahsl.saturation = qRound((delta / delta2) * USHRT_MAX); else color.ct.ahsl.saturation = qRound((delta / (qreal(2.0) - delta2)) * USHRT_MAX); if (qFuzzyCompare(r, max)) { hue = ((g - b) /delta); } else if (qFuzzyCompare(g, max)) { hue = (qreal(2.0) + (b - r) / delta); } else if (qFuzzyCompare(b, max)) { hue = (qreal(4.0) + (r - g) / delta); } else { Q_ASSERT_X(false, "QColor::toHsv", "internal error"); } hue *= qreal(60.0); if (hue < qreal(0.0)) hue += qreal(360.0); color.ct.ahsl.hue = qRound(hue * 100); } return color; } /*! Creates and returns a CMYK QColor based on this color. \sa fromCmyk(), convertTo(), isValid(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ QColor QColor::toCmyk() const { if (!isValid() || cspec == Cmyk) return *this; if (cspec != Rgb) return toRgb().toCmyk(); QColor color; color.cspec = Cmyk; color.ct.acmyk.alpha = ct.argb.alpha; // rgb -> cmy const qreal r = ct.argb.red / qreal(USHRT_MAX); const qreal g = ct.argb.green / qreal(USHRT_MAX); const qreal b = ct.argb.blue / qreal(USHRT_MAX); qreal c = qreal(1.0) - r; qreal m = qreal(1.0) - g; qreal y = qreal(1.0) - b; // cmy -> cmyk const qreal k = qMin(c, qMin(m, y)); if (!qFuzzyIsNull(k - 1)) { c = (c - k) / (qreal(1.0) - k); m = (m - k) / (qreal(1.0) - k); y = (y - k) / (qreal(1.0) - k); } color.ct.acmyk.cyan = qRound(c * USHRT_MAX); color.ct.acmyk.magenta = qRound(m * USHRT_MAX); color.ct.acmyk.yellow = qRound(y * USHRT_MAX); color.ct.acmyk.black = qRound(k * USHRT_MAX); return color; } QColor QColor::convertTo(QColor::Spec colorSpec) const { if (colorSpec == cspec) return *this; switch (colorSpec) { case Rgb: return toRgb(); case Hsv: return toHsv(); case Cmyk: return toCmyk(); case Hsl: return toHsl(); case Invalid: break; } return QColor(); // must be invalid } /*! Static convenience function that returns a QColor constructed from the given QRgb value \a rgb. The alpha component of \a rgb is ignored (i.e. it is automatically set to 255), use the fromRgba() function to include the alpha-channel specified by the given QRgb value. \sa fromRgba(), fromRgbF(), toRgb(), isValid() */ QColor QColor::fromRgb(QRgb rgb) { return fromRgb(qRed(rgb), qGreen(rgb), qBlue(rgb)); } /*! Static convenience function that returns a QColor constructed from the given QRgb value \a rgba. Unlike the fromRgb() function, the alpha-channel specified by the given QRgb value is included. \sa fromRgb(), isValid() */ QColor QColor::fromRgba(QRgb rgba) { return fromRgb(qRed(rgba), qGreen(rgba), qBlue(rgba), qAlpha(rgba)); } /*! Static convenience function that returns a QColor constructed from the RGB color values, \a r (red), \a g (green), \a b (blue), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0-255. \sa toRgb(), fromRgbF(), isValid() */ QColor QColor::fromRgb(int r, int g, int b, int a) { if (r < 0 || r > 255 || g < 0 || g > 255 || b < 0 || b > 255 || a < 0 || a > 255) { qWarning("QColor::fromRgb: RGB parameters out of range"); return QColor(); } QColor color; color.cspec = Rgb; color.ct.argb.alpha = a * 0x101; color.ct.argb.red = r * 0x101; color.ct.argb.green = g * 0x101; color.ct.argb.blue = b * 0x101; color.ct.argb.pad = 0; return color; } /*! Static convenience function that returns a QColor constructed from the RGB color values, \a r (red), \a g (green), \a b (blue), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0.0-1.0. \sa fromRgb(), toRgb(), isValid() */ QColor QColor::fromRgbF(qreal r, qreal g, qreal b, qreal a) { if (r < qreal(0.0) || r > qreal(1.0) || g < qreal(0.0) || g > qreal(1.0) || b < qreal(0.0) || b > qreal(1.0) || a < qreal(0.0) || a > qreal(1.0)) { qWarning("QColor::fromRgbF: RGB parameters out of range"); return QColor(); } QColor color; color.cspec = Rgb; color.ct.argb.alpha = qRound(a * USHRT_MAX); color.ct.argb.red = qRound(r * USHRT_MAX); color.ct.argb.green = qRound(g * USHRT_MAX); color.ct.argb.blue = qRound(b * USHRT_MAX); color.ct.argb.pad = 0; return color; } /*! Static convenience function that returns a QColor constructed from the HSV color values, \a h (hue), \a s (saturation), \a v (value), and \a a (alpha-channel, i.e. transparency). The value of \a s, \a v, and \a a must all be in the range 0-255; the value of \a h must be in the range 0-359. \sa toHsv(), fromHsvF(), isValid(), {QColor#The HSV Color Model}{The HSV Color Model} */ QColor QColor::fromHsv(int h, int s, int v, int a) { if (((h < 0 || h >= 360) && h != -1) || s < 0 || s > 255 || v < 0 || v > 255 || a < 0 || a > 255) { qWarning("QColor::fromHsv: HSV parameters out of range"); return QColor(); } QColor color; color.cspec = Hsv; color.ct.ahsv.alpha = a * 0x101; color.ct.ahsv.hue = h == -1 ? USHRT_MAX : (h % 360) * 100; color.ct.ahsv.saturation = s * 0x101; color.ct.ahsv.value = v * 0x101; color.ct.ahsv.pad = 0; return color; } /*! \overload Static convenience function that returns a QColor constructed from the HSV color values, \a h (hue), \a s (saturation), \a v (value), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0.0-1.0. \sa toHsv(), fromHsv(), isValid(), {QColor#The HSV Color Model}{The HSV Color Model} */ QColor QColor::fromHsvF(qreal h, qreal s, qreal v, qreal a) { if (((h < qreal(0.0) || h > qreal(1.0)) && h != qreal(-1.0)) || (s < qreal(0.0) || s > qreal(1.0)) || (v < qreal(0.0) || v > qreal(1.0)) || (a < qreal(0.0) || a > qreal(1.0))) { qWarning("QColor::fromHsvF: HSV parameters out of range"); return QColor(); } QColor color; color.cspec = Hsv; color.ct.ahsv.alpha = qRound(a * USHRT_MAX); color.ct.ahsv.hue = h == qreal(-1.0) ? USHRT_MAX : qRound(h * 36000); color.ct.ahsv.saturation = qRound(s * USHRT_MAX); color.ct.ahsv.value = qRound(v * USHRT_MAX); color.ct.ahsv.pad = 0; return color; } /*! \since 4.6 Static convenience function that returns a QColor constructed from the HSV color values, \a h (hue), \a s (saturation), \a l (lightness), and \a a (alpha-channel, i.e. transparency). The value of \a s, \a l, and \a a must all be in the range 0-255; the value of \a h must be in the range 0-359. \sa toHsl(), fromHslF(), isValid() */ QColor QColor::fromHsl(int h, int s, int l, int a) { if (((h < 0 || h >= 360) && h != -1) || s < 0 || s > 255 || l < 0 || l > 255 || a < 0 || a > 255) { qWarning("QColor::fromHsv: HSV parameters out of range"); return QColor(); } QColor color; color.cspec = Hsl; color.ct.ahsl.alpha = a * 0x101; color.ct.ahsl.hue = h == -1 ? USHRT_MAX : (h % 360) * 100; color.ct.ahsl.saturation = s * 0x101; color.ct.ahsl.lightness = l * 0x101; color.ct.ahsl.pad = 0; return color; } /*! \overload \since 4.6 Static convenience function that returns a QColor constructed from the HSV color values, \a h (hue), \a s (saturation), \a l (lightness), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0.0-1.0. \sa toHsl(), fromHsl(), isValid() */ QColor QColor::fromHslF(qreal h, qreal s, qreal l, qreal a) { if (((h < qreal(0.0) || h > qreal(1.0)) && h != qreal(-1.0)) || (s < qreal(0.0) || s > qreal(1.0)) || (l < qreal(0.0) || l > qreal(1.0)) || (a < qreal(0.0) || a > qreal(1.0))) { qWarning("QColor::fromHsvF: HSV parameters out of range"); return QColor(); } QColor color; color.cspec = Hsl; color.ct.ahsl.alpha = qRound(a * USHRT_MAX); color.ct.ahsl.hue = (h == qreal(-1.0)) ? USHRT_MAX : qRound(h * 36000); if (color.ct.ahsl.hue == 36000) color.ct.ahsl.hue = 0; color.ct.ahsl.saturation = qRound(s * USHRT_MAX); color.ct.ahsl.lightness = qRound(l * USHRT_MAX); color.ct.ahsl.pad = 0; return color; } /*! Sets the contents pointed to by \a c, \a m, \a y, \a k, and \a a, to the cyan, magenta, yellow, black, and alpha-channel (transparency) components of the color's CMYK value. These components can be retrieved individually using the cyan(), magenta(), yellow(), black() and alpha() functions. \sa setCmyk(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ void QColor::getCmyk(int *c, int *m, int *y, int *k, int *a) { if (!c || !m || !y || !k) return; if (cspec != Invalid && cspec != Cmyk) { toCmyk().getCmyk(c, m, y, k, a); return; } *c = ct.acmyk.cyan >> 8; *m = ct.acmyk.magenta >> 8; *y = ct.acmyk.yellow >> 8; *k = ct.acmyk.black >> 8; if (a) *a = ct.acmyk.alpha >> 8; } /*! Sets the contents pointed to by \a c, \a m, \a y, \a k, and \a a, to the cyan, magenta, yellow, black, and alpha-channel (transparency) components of the color's CMYK value. These components can be retrieved individually using the cyanF(), magentaF(), yellowF(), blackF() and alphaF() functions. \sa setCmykF(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ void QColor::getCmykF(qreal *c, qreal *m, qreal *y, qreal *k, qreal *a) { if (!c || !m || !y || !k) return; if (cspec != Invalid && cspec != Cmyk) { toCmyk().getCmykF(c, m, y, k, a); return; } *c = ct.acmyk.cyan / qreal(USHRT_MAX); *m = ct.acmyk.magenta / qreal(USHRT_MAX); *y = ct.acmyk.yellow / qreal(USHRT_MAX); *k = ct.acmyk.black / qreal(USHRT_MAX); if (a) *a = ct.acmyk.alpha / qreal(USHRT_MAX); } /*! Sets the color to CMYK values, \a c (cyan), \a m (magenta), \a y (yellow), \a k (black), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0-255. \sa getCmyk(), setCmykF(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ void QColor::setCmyk(int c, int m, int y, int k, int a) { if (c < 0 || c > 255 || m < 0 || m > 255 || y < 0 || y > 255 || k < 0 || k > 255 || a < 0 || a > 255) { qWarning("QColor::setCmyk: CMYK parameters out of range"); return; } cspec = Cmyk; ct.acmyk.alpha = a * 0x101; ct.acmyk.cyan = c * 0x101; ct.acmyk.magenta = m * 0x101; ct.acmyk.yellow = y * 0x101; ct.acmyk.black = k * 0x101; } /*! \overload Sets the color to CMYK values, \a c (cyan), \a m (magenta), \a y (yellow), \a k (black), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0.0-1.0. \sa getCmykF() setCmyk(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ void QColor::setCmykF(qreal c, qreal m, qreal y, qreal k, qreal a) { if (c < qreal(0.0) || c > qreal(1.0) || m < qreal(0.0) || m > qreal(1.0) || y < qreal(0.0) || y > qreal(1.0) || k < qreal(0.0) || k > qreal(1.0) || a < qreal(0.0) || a > qreal(1.0)) { qWarning("QColor::setCmykF: CMYK parameters out of range"); return; } cspec = Cmyk; ct.acmyk.alpha = qRound(a * USHRT_MAX); ct.acmyk.cyan = qRound(c * USHRT_MAX); ct.acmyk.magenta = qRound(m * USHRT_MAX); ct.acmyk.yellow = qRound(y * USHRT_MAX); ct.acmyk.black = qRound(k * USHRT_MAX); } /*! Static convenience function that returns a QColor constructed from the given CMYK color values: \a c (cyan), \a m (magenta), \a y (yellow), \a k (black), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0-255. \sa toCmyk(), fromCmykF(), isValid(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ QColor QColor::fromCmyk(int c, int m, int y, int k, int a) { if (c < 0 || c > 255 || m < 0 || m > 255 || y < 0 || y > 255 || k < 0 || k > 255 || a < 0 || a > 255) { qWarning("QColor::fromCmyk: CMYK parameters out of range"); return QColor(); } QColor color; color.cspec = Cmyk; color.ct.acmyk.alpha = a * 0x101; color.ct.acmyk.cyan = c * 0x101; color.ct.acmyk.magenta = m * 0x101; color.ct.acmyk.yellow = y * 0x101; color.ct.acmyk.black = k * 0x101; return color; } /*! \overload Static convenience function that returns a QColor constructed from the given CMYK color values: \a c (cyan), \a m (magenta), \a y (yellow), \a k (black), and \a a (alpha-channel, i.e. transparency). All the values must be in the range 0.0-1.0. \sa toCmyk(), fromCmyk(), isValid(), {QColor#The CMYK Color Model}{The CMYK Color Model} */ QColor QColor::fromCmykF(qreal c, qreal m, qreal y, qreal k, qreal a) { if (c < qreal(0.0) || c > qreal(1.0) || m < qreal(0.0) || m > qreal(1.0) || y < qreal(0.0) || y > qreal(1.0) || k < qreal(0.0) || k > qreal(1.0) || a < qreal(0.0) || a > qreal(1.0)) { qWarning("QColor::fromCmykF: CMYK parameters out of range"); return QColor(); } QColor color; color.cspec = Cmyk; color.ct.acmyk.alpha = qRound(a * USHRT_MAX); color.ct.acmyk.cyan = qRound(c * USHRT_MAX); color.ct.acmyk.magenta = qRound(m * USHRT_MAX); color.ct.acmyk.yellow = qRound(y * USHRT_MAX); color.ct.acmyk.black = qRound(k * USHRT_MAX); return color; } /*! \fn QColor QColor::lighter(int factor) const \since 4.3 Returns a lighter (or darker) color, but does not change this object. If the \a factor is greater than 100, this functions returns a lighter color. Setting \a factor to 150 returns a color that is 50% brighter. If the \a factor is less than 100, the return color is darker, but we recommend using the darker() function for this purpose. If the \a factor is 0 or negative, the return value is unspecified. The function converts the current RGB color to HSV, multiplies the value (V) component by \a factor and converts the color back to RGB. \sa darker(), isValid() */ /*! \obsolete Use lighter(\a factor) instead. */ QColor QColor::light(int factor) const { if (factor <= 0) // invalid lightness factor return *this; else if (factor < 100) // makes color darker return darker(10000 / factor); QColor hsv = toHsv(); int s = hsv.ct.ahsv.saturation; int v = hsv.ct.ahsv.value; v = (factor*v)/100; if (v > USHRT_MAX) { // overflow... adjust saturation s -= v - USHRT_MAX; if (s < 0) s = 0; v = USHRT_MAX; } hsv.ct.ahsv.saturation = s; hsv.ct.ahsv.value = v; // convert back to same color spec as original color return hsv.convertTo(cspec); } /*! \fn QColor QColor::darker(int factor) const \since 4.3 Returns a darker (or lighter) color, but does not change this object. If the \a factor is greater than 100, this functions returns a darker color. Setting \a factor to 300 returns a color that has one-third the brightness. If the \a factor is less than 100, the return color is lighter, but we recommend using the lighter() function for this purpose. If the \a factor is 0 or negative, the return value is unspecified. The function converts the current RGB color to HSV, divides the value (V) component by \a factor and converts the color back to RGB. \sa lighter(), isValid() */ /*! \obsolete Use darker(\a factor) instead. */ QColor QColor::dark(int factor) const { if (factor <= 0) // invalid darkness factor return *this; else if (factor < 100) // makes color lighter return lighter(10000 / factor); QColor hsv = toHsv(); hsv.ct.ahsv.value = (hsv.ct.ahsv.value * 100) / factor; // convert back to same color spec as original color return hsv.convertTo(cspec); } /*! Assigns a copy of \a color to this color, and returns a reference to it. */ QColor &QColor::operator=(const QColor &color) { cspec = color.cspec; ct.argb = color.ct.argb; return *this; } /*! \overload Assigns a copy of \a color and returns a reference to this color. */ QColor &QColor::operator=(Qt::GlobalColor color) { return operator=(QColor(color)); } /*! Returns true if this color has the same RGB and alpha values as \a color; otherwise returns false. */ bool QColor::operator==(const QColor &color) const { if (cspec == Hsl && cspec == color.cspec) { return (ct.argb.alpha == color.ct.argb.alpha && ((((ct.ahsl.hue % 36000) == (color.ct.ahsl.hue % 36000))) || (ct.ahsl.hue == color.ct.ahsl.hue)) && (qAbs(ct.ahsl.saturation - color.ct.ahsl.saturation) < 50 || ct.ahsl.lightness == 0 || color.ct.ahsl.lightness == 0 || ct.ahsl.lightness == USHRT_MAX || color.ct.ahsl.lightness == USHRT_MAX) && (qAbs(ct.ahsl.lightness - color.ct.ahsl.lightness)) < 50); } else { return (cspec == color.cspec && ct.argb.alpha == color.ct.argb.alpha && (((cspec == QColor::Hsv) && ((ct.ahsv.hue % 36000) == (color.ct.ahsv.hue % 36000))) || (ct.ahsv.hue == color.ct.ahsv.hue)) && ct.argb.green == color.ct.argb.green && ct.argb.blue == color.ct.argb.blue && ct.argb.pad == color.ct.argb.pad); } } /*! Returns true if this color has a different RGB and alpha values from \a color; otherwise returns false. */ bool QColor::operator!=(const QColor &color) const { return !operator==(color); } /*! Returns the color as a QVariant */ QColor::operator QVariant() const { return QVariant(QVariant::Color, this); } /*! \internal Marks the color as invalid and sets all components to zero (alpha is set to fully opaque for compatibility with Qt 3). */ void QColor::invalidate() { cspec = Invalid; ct.argb.alpha = USHRT_MAX; ct.argb.red = 0; ct.argb.green = 0; ct.argb.blue = 0; ct.argb.pad = 0; } /***************************************************************************** QColor stream functions *****************************************************************************/ #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QColor &c) { #ifndef Q_BROKEN_DEBUG_STREAM if (!c.isValid()) dbg.nospace() << "QColor(Invalid)"; else if (c.spec() == QColor::Rgb) dbg.nospace() << "QColor(ARGB " << c.alphaF() << ", " << c.redF() << ", " << c.greenF() << ", " << c.blueF() << ')'; else if (c.spec() == QColor::Hsv) dbg.nospace() << "QColor(AHSV " << c.alphaF() << ", " << c.hueF() << ", " << c.saturationF() << ", " << c.valueF() << ')'; else if (c.spec() == QColor::Cmyk) dbg.nospace() << "QColor(ACMYK " << c.alphaF() << ", " << c.cyanF() << ", " << c.magentaF() << ", " << c.yellowF() << ", " << c.blackF()<< ')'; else if (c.spec() == QColor::Hsl) dbg.nospace() << "QColor(AHSL " << c.alphaF() << ", " << c.hslHueF() << ", " << c.hslSaturationF() << ", " << c.lightnessF() << ')'; return dbg.space(); #else qWarning("This compiler doesn't support streaming QColor to QDebug"); return dbg; Q_UNUSED(c); #endif } #endif #ifndef QT_NO_DATASTREAM /*! \fn QDataStream &operator<<(QDataStream &stream, const QColor &color) \relates QColor Writes the \a color to the \a stream. \sa {Serializing Qt Data Types} */ QDataStream &operator<<(QDataStream &stream, const QColor &color) { if (stream.version() < 7) { if (!color.isValid()) return stream << quint32(0x49000000); quint32 p = (quint32)color.rgb(); if (stream.version() == 1) // Swap red and blue p = ((p << 16) & 0xff0000) | ((p >> 16) & 0xff) | (p & 0xff00ff00); return stream << p; } qint8 s = color.cspec; quint16 a = color.ct.argb.alpha; quint16 r = color.ct.argb.red; quint16 g = color.ct.argb.green; quint16 b = color.ct.argb.blue; quint16 p = color.ct.argb.pad; stream << s; stream << a; stream << r; stream << g; stream << b; stream << p; return stream; } /*! \fn QDataStream &operator>>(QDataStream &stream, QColor &color) \relates QColor Reads the \a color from the \a stream. \sa {Serializing Qt Data Types} */ QDataStream &operator>>(QDataStream &stream, QColor &color) { if (stream.version() < 7) { quint32 p; stream >> p; if (p == 0x49000000) { color.invalidate(); return stream; } if (stream.version() == 1) // Swap red and blue p = ((p << 16) & 0xff0000) | ((p >> 16) & 0xff) | (p & 0xff00ff00); color.setRgb(p); return stream; } qint8 s; quint16 a, r, g, b, p; stream >> s; stream >> a; stream >> r; stream >> g; stream >> b; stream >> p; color.cspec = QColor::Spec(s); color.ct.argb.alpha = a; color.ct.argb.red = r; color.ct.argb.green = g; color.ct.argb.blue = b; color.ct.argb.pad = p; return stream; } #endif // QT_NO_DATASTREAM /***************************************************************************** QColor global functions (documentation only) *****************************************************************************/ /*! \fn int qRed(QRgb rgb) \relates QColor Returns the red component of the ARGB quadruplet \a rgb. \sa qRgb(), QColor::red() */ /*! \fn int qGreen(QRgb rgb) \relates QColor Returns the green component of the ARGB quadruplet \a rgb. \sa qRgb(), QColor::green() */ /*! \fn int qBlue(QRgb rgb) \relates QColor Returns the blue component of the ARGB quadruplet \a rgb. \sa qRgb(), QColor::blue() */ /*! \fn int qAlpha(QRgb rgba) \relates QColor Returns the alpha component of the ARGB quadruplet \a rgba. \sa qRgb(), QColor::alpha() */ /*! \fn QRgb qRgb(int r, int g, int b) \relates QColor Returns the ARGB quadruplet (255, \a{r}, \a{g}, \a{b}). \sa qRgba(), qRed(), qGreen(), qBlue() */ /*! \fn QRgb qRgba(int r, int g, int b, int a) \relates QColor Returns the ARGB quadruplet (\a{a}, \a{r}, \a{g}, \a{b}). \sa qRgb(), qRed(), qGreen(), qBlue() */ /*! \fn int qGray(int r, int g, int b) \relates QColor Returns a gray value (0 to 255) from the (\a r, \a g, \a b) triplet. The gray value is calculated using the formula (\a r * 11 + \a g * 16 + \a b * 5)/32. */ /*! \fn int qGray(QRgb rgb) \overload \relates QColor Returns a gray value (0 to 255) from the given ARGB quadruplet \a rgb. The gray value is calculated using the formula (R * 11 + G * 16 + B * 5)/32; the alpha-channel is ignored. */ /*! \fn QColor QColor::convertTo(Spec colorSpec) const Creates a copy of \e this color in the format specified by \a colorSpec. \sa spec(), toCmyk(), toHsv(), toRgb(), isValid() */ /*! \typedef QRgb \relates QColor An ARGB quadruplet on the format #AARRGGBB, equivalent to an unsigned int. The type also holds a value for the alpha-channel. The default alpha channel is \c ff, i.e opaque. For more information, see the \l{QColor#Alpha-Blended Drawing}{Alpha-Blended Drawing} section. \sa QColor::rgb(), QColor::rgba() */ QT_END_NAMESPACE