/**************************************************************************** ** ** Copyright (C) 2018 The Qt Company Ltd. ** Copyright (C) 2018 Intel Corporation. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qdrawhelper_p.h" #include "qdrawhelper_x86_p.h" #include "qdrawingprimitive_sse2_p.h" #include "qrgba64_p.h" #if defined(QT_COMPILER_SUPPORTS_AVX2) QT_BEGIN_NAMESPACE enum { FixedScale = 1 << 16, HalfPoint = 1 << 15 }; // Vectorized blend functions: // See BYTE_MUL_SSE2 for details. inline static void Q_DECL_VECTORCALL BYTE_MUL_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) { __m256i pixelVectorAG = _mm256_srli_epi16(pixelVector, 8); __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask); pixelVectorAG = _mm256_mullo_epi16(pixelVectorAG, alphaChannel); pixelVectorRB = _mm256_mullo_epi16(pixelVectorRB, alphaChannel); pixelVectorRB = _mm256_add_epi16(pixelVectorRB, _mm256_srli_epi16(pixelVectorRB, 8)); pixelVectorAG = _mm256_add_epi16(pixelVectorAG, _mm256_srli_epi16(pixelVectorAG, 8)); pixelVectorRB = _mm256_add_epi16(pixelVectorRB, half); pixelVectorAG = _mm256_add_epi16(pixelVectorAG, half); pixelVectorRB = _mm256_srli_epi16(pixelVectorRB, 8); pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG); pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB); } inline static void Q_DECL_VECTORCALL BYTE_MUL_RGB64_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) { __m256i pixelVectorAG = _mm256_srli_epi32(pixelVector, 16); __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask); pixelVectorAG = _mm256_mullo_epi32(pixelVectorAG, alphaChannel); pixelVectorRB = _mm256_mullo_epi32(pixelVectorRB, alphaChannel); pixelVectorRB = _mm256_add_epi32(pixelVectorRB, _mm256_srli_epi32(pixelVectorRB, 16)); pixelVectorAG = _mm256_add_epi32(pixelVectorAG, _mm256_srli_epi32(pixelVectorAG, 16)); pixelVectorRB = _mm256_add_epi32(pixelVectorRB, half); pixelVectorAG = _mm256_add_epi32(pixelVectorAG, half); pixelVectorRB = _mm256_srli_epi32(pixelVectorRB, 16); pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG); pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB); } // See INTERPOLATE_PIXEL_255_SSE2 for details. inline static void Q_DECL_VECTORCALL INTERPOLATE_PIXEL_255_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) { const __m256i srcVectorAG = _mm256_srli_epi16(srcVector, 8); const __m256i dstVectorAG = _mm256_srli_epi16(dstVector, 8); const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask); const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask); const __m256i srcVectorAGalpha = _mm256_mullo_epi16(srcVectorAG, alphaChannel); const __m256i srcVectorRBalpha = _mm256_mullo_epi16(srcVectorRB, alphaChannel); const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); __m256i finalAG = _mm256_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlpha); __m256i finalRB = _mm256_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlpha); finalAG = _mm256_add_epi16(finalAG, _mm256_srli_epi16(finalAG, 8)); finalRB = _mm256_add_epi16(finalRB, _mm256_srli_epi16(finalRB, 8)); finalAG = _mm256_add_epi16(finalAG, half); finalRB = _mm256_add_epi16(finalRB, half); finalAG = _mm256_andnot_si256(colorMask, finalAG); finalRB = _mm256_srli_epi16(finalRB, 8); dstVector = _mm256_or_si256(finalAG, finalRB); } inline static void Q_DECL_VECTORCALL INTERPOLATE_PIXEL_RGB64_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) { const __m256i srcVectorAG = _mm256_srli_epi32(srcVector, 16); const __m256i dstVectorAG = _mm256_srli_epi32(dstVector, 16); const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask); const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask); const __m256i srcVectorAGalpha = _mm256_mullo_epi32(srcVectorAG, alphaChannel); const __m256i srcVectorRBalpha = _mm256_mullo_epi32(srcVectorRB, alphaChannel); const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi32(dstVectorAG, oneMinusAlphaChannel); const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi32(dstVectorRB, oneMinusAlphaChannel); __m256i finalAG = _mm256_add_epi32(srcVectorAGalpha, dstVectorAGoneMinusAlpha); __m256i finalRB = _mm256_add_epi32(srcVectorRBalpha, dstVectorRBoneMinusAlpha); finalAG = _mm256_add_epi32(finalAG, _mm256_srli_epi32(finalAG, 16)); finalRB = _mm256_add_epi32(finalRB, _mm256_srli_epi32(finalRB, 16)); finalAG = _mm256_add_epi32(finalAG, half); finalRB = _mm256_add_epi32(finalRB, half); finalAG = _mm256_andnot_si256(colorMask, finalAG); finalRB = _mm256_srli_epi32(finalRB, 16); dstVector = _mm256_or_si256(finalAG, finalRB); } // See BLEND_SOURCE_OVER_ARGB32_SSE2 for details. inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length) { const __m256i half = _mm256_set1_epi16(0x80); const __m256i one = _mm256_set1_epi16(0xff); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const __m256i alphaMask = _mm256_set1_epi32(0xff000000); const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3, char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3); const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast(dst) >> 2) & 0x7; int x = 0; // Prologue to handle all pixels until dst is 32-byte aligned in one step. if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) { const __m256i prologueMask = _mm256_sub_epi32(_mm256_set1_epi32(minusOffsetToAlignDstOn32Bytes - 1), offsetMask); const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x - minusOffsetToAlignDstOn32Bytes], prologueMask); const __m256i prologueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, prologueMask); if (!_mm256_testz_si256(srcVector, prologueAlphaMask)) { if (_mm256_testc_si256(srcVector, prologueAlphaMask)) { _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, srcVector); } else { __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); alphaChannel = _mm256_sub_epi16(one, alphaChannel); __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask); BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); dstVector = _mm256_add_epi8(dstVector, srcVector); _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, dstVector); } } x += (8 - minusOffsetToAlignDstOn32Bytes); } for (; x < (length - 7); x += 8) { const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); if (!_mm256_testz_si256(srcVector, alphaMask)) { if (_mm256_testc_si256(srcVector, alphaMask)) { _mm256_store_si256((__m256i *)&dst[x], srcVector); } else { __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); alphaChannel = _mm256_sub_epi16(one, alphaChannel); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); dstVector = _mm256_add_epi8(dstVector, srcVector); _mm256_store_si256((__m256i *)&dst[x], dstVector); } } } // Epilogue to handle all remaining pixels in one step. if (x < length) { const __m256i epilogueMask = _mm256_add_epi32(offsetMask, _mm256_set1_epi32(x - length)); const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x], epilogueMask); const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { if (_mm256_testc_si256(srcVector, epilogueAlphaMask)) { _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, srcVector); } else { __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); alphaChannel = _mm256_sub_epi16(one, alphaChannel); __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x], epilogueMask); BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); dstVector = _mm256_add_epi8(dstVector, srcVector); _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, dstVector); } } } } // See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details. inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha) { int x = 0; ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) blend_pixel(dst[x], src[x], const_alpha); const __m256i half = _mm256_set1_epi16(0x80); const __m256i one = _mm256_set1_epi16(0xff); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const __m256i alphaMask = _mm256_set1_epi32(0xff000000); const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3, char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3); const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); for (; x < (length - 7); x += 8) { __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); if (!_mm256_testz_si256(srcVector, alphaMask)) { BYTE_MUL_AVX2(srcVector, constAlphaVector, colorMask, half); __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); alphaChannel = _mm256_sub_epi16(one, alphaChannel); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); dstVector = _mm256_add_epi8(dstVector, srcVector); _mm256_store_si256((__m256i *)&dst[x], dstVector); } } SIMD_EPILOGUE(x, length, 7) blend_pixel(dst[x], src[x], const_alpha); } void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { if (const_alpha == 256) { for (int y = 0; y < h; ++y) { const quint32 *src = reinterpret_cast(srcPixels); quint32 *dst = reinterpret_cast(destPixels); BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, w); destPixels += dbpl; srcPixels += sbpl; } } else if (const_alpha != 0) { const_alpha = (const_alpha * 255) >> 8; for (int y = 0; y < h; ++y) { const quint32 *src = reinterpret_cast(srcPixels); quint32 *dst = reinterpret_cast(destPixels); BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, w, const_alpha); destPixels += dbpl; srcPixels += sbpl; } } } void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { if (const_alpha == 256) { for (int y = 0; y < h; ++y) { const quint32 *src = reinterpret_cast(srcPixels); quint32 *dst = reinterpret_cast(destPixels); ::memcpy(dst, src, w * sizeof(uint)); srcPixels += sbpl; destPixels += dbpl; } return; } if (const_alpha == 0) return; const __m256i half = _mm256_set1_epi16(0x80); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const_alpha = (const_alpha * 255) >> 8; int one_minus_const_alpha = 255 - const_alpha; const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); const __m256i oneMinusConstAlpha = _mm256_set1_epi16(one_minus_const_alpha); for (int y = 0; y < h; ++y) { const quint32 *src = reinterpret_cast(srcPixels); quint32 *dst = reinterpret_cast(destPixels); int x = 0; // First, align dest to 32 bytes: ALIGNMENT_PROLOGUE_32BYTES(dst, x, w) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); // 2) interpolate pixels with AVX2 for (; x < (w - 7); x += 8) { const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); _mm256_store_si256((__m256i *)&dst[x], dstVector); } // 3) Epilogue SIMD_EPILOGUE(x, w, 7) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); srcPixels += sbpl; destPixels += dbpl; } } static Q_NEVER_INLINE void Q_DECL_VECTORCALL qt_memfillXX_avx2(uchar *dest, __m256i value256, qsizetype bytes) { __m128i value128 = _mm256_castsi256_si128(value256); // main body __m256i *dst256 = reinterpret_cast<__m256i *>(dest); uchar *end = dest + bytes; while (reinterpret_cast(dst256 + 4) <= end) { _mm256_storeu_si256(dst256 + 0, value256); _mm256_storeu_si256(dst256 + 1, value256); _mm256_storeu_si256(dst256 + 2, value256); _mm256_storeu_si256(dst256 + 3, value256); dst256 += 4; } // first epilogue: fewer than 128 bytes / 32 entries bytes = end - reinterpret_cast(dst256); switch (bytes / sizeof(value256)) { case 3: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH(); case 2: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH(); case 1: _mm256_storeu_si256(dst256++, value256); } // second epilogue: fewer than 32 bytes __m128i *dst128 = reinterpret_cast<__m128i *>(dst256); if (bytes & sizeof(value128)) _mm_storeu_si128(dst128++, value128); // third epilogue: fewer than 16 bytes if (bytes & 8) _mm_storel_epi64(reinterpret_cast<__m128i *>(end - 8), value128); } void qt_memfill64_avx2(quint64 *dest, quint64 value, qsizetype count) { #if defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL) // work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80820 __m128i value64 = _mm_set_epi64x(0, value); // _mm_cvtsi64_si128(value); # ifdef Q_PROCESSOR_X86_64 asm ("" : "+x" (value64)); # endif __m256i value256 = _mm256_broadcastq_epi64(value64); #else __m256i value256 = _mm256_set1_epi64x(value); #endif qt_memfillXX_avx2(reinterpret_cast(dest), value256, count * sizeof(quint64)); } void qt_memfill32_avx2(quint32 *dest, quint32 value, qsizetype count) { if (count % 2) { // odd number of pixels, round to even *dest++ = value; --count; } qt_memfillXX_avx2(reinterpret_cast(dest), _mm256_set1_epi32(value), count * sizeof(quint32)); } void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha) { Q_ASSERT(const_alpha < 256); const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; if (const_alpha == 255) BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length); else BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha); } #if QT_CONFIG(raster_64bit) void QT_FASTCALL comp_func_SourceOver_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) { Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] const __m256i half = _mm256_set1_epi32(0x8000); const __m256i one = _mm256_set1_epi32(0xffff); const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); __m256i alphaMask = _mm256_set1_epi32(0xff000000); alphaMask = _mm256_unpacklo_epi8(alphaMask, alphaMask); const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6, char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6); if (const_alpha == 255) { int x = 0; for (; x < length && (quintptr(dst + x) & 31); ++x) blend_pixel(dst[x], src[x]); for (; x < length - 3; x += 4) { const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); if (!_mm256_testz_si256(srcVector, alphaMask)) { // Not all transparent if (_mm256_testc_si256(srcVector, alphaMask)) { // All opaque _mm256_store_si256((__m256i *)&dst[x], srcVector); } else { __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); alphaChannel = _mm256_sub_epi32(one, alphaChannel); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half); dstVector = _mm256_add_epi16(dstVector, srcVector); _mm256_store_si256((__m256i *)&dst[x], dstVector); } } } SIMD_EPILOGUE(x, length, 3) blend_pixel(dst[x], src[x]); } else { const __m256i constAlphaVector = _mm256_set1_epi32(const_alpha | (const_alpha << 8)); int x = 0; for (; x < length && (quintptr(dst + x) & 31); ++x) blend_pixel(dst[x], src[x], const_alpha); for (; x < length - 3; x += 4) { __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); if (!_mm256_testz_si256(srcVector, alphaMask)) { // Not all transparent BYTE_MUL_RGB64_AVX2(srcVector, constAlphaVector, colorMask, half); __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); alphaChannel = _mm256_sub_epi32(one, alphaChannel); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half); dstVector = _mm256_add_epi16(dstVector, srcVector); _mm256_store_si256((__m256i *)&dst[x], dstVector); } } SIMD_EPILOGUE(x, length, 3) blend_pixel(dst[x], src[x], const_alpha); } } #endif void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha) { if (const_alpha == 255) { ::memcpy(dst, src, length * sizeof(uint)); } else { const int ialpha = 255 - const_alpha; int x = 0; // 1) prologue, align on 32 bytes ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); // 2) interpolate pixels with AVX2 const __m256i half = _mm256_set1_epi16(0x80); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); const __m256i oneMinusConstAlpha = _mm256_set1_epi16(ialpha); for (; x < length - 7; x += 8) { const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); _mm256_store_si256((__m256i *)&dst[x], dstVector); } // 3) Epilogue SIMD_EPILOGUE(x, length, 7) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); } } #if QT_CONFIG(raster_64bit) void QT_FASTCALL comp_func_Source_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) { Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] if (const_alpha == 255) { ::memcpy(dst, src, length * sizeof(QRgba64)); } else { const uint ca = const_alpha | (const_alpha << 8); // adjust to [0-65535] const uint cia = 65535 - ca; int x = 0; // 1) prologue, align on 32 bytes for (; x < length && (quintptr(dst + x) & 31); ++x) dst[x] = interpolate65535(src[x], ca, dst[x], cia); // 2) interpolate pixels with AVX2 const __m256i half = _mm256_set1_epi32(0x8000); const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); const __m256i constAlphaVector = _mm256_set1_epi32(ca); const __m256i oneMinusConstAlpha = _mm256_set1_epi32(cia); for (; x < length - 3; x += 4) { const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); INTERPOLATE_PIXEL_RGB64_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); _mm256_store_si256((__m256i *)&dst[x], dstVector); } // 3) Epilogue SIMD_EPILOGUE(x, length, 3) dst[x] = interpolate65535(src[x], ca, dst[x], cia); } } #endif void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha) { if ((const_alpha & qAlpha(color)) == 255) { qt_memfill32(destPixels, color, length); } else { if (const_alpha != 255) color = BYTE_MUL(color, const_alpha); const quint32 minusAlphaOfColor = qAlpha(~color); int x = 0; quint32 *dst = (quint32 *) destPixels; const __m256i colorVector = _mm256_set1_epi32(color); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const __m256i half = _mm256_set1_epi16(0x80); const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(minusAlphaOfColor); ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); for (; x < length - 7; x += 8) { __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); BYTE_MUL_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half); dstVector = _mm256_add_epi8(colorVector, dstVector); _mm256_store_si256((__m256i *)&dst[x], dstVector); } SIMD_EPILOGUE(x, length, 7) destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); } } #if QT_CONFIG(raster_64bit) void QT_FASTCALL comp_func_solid_SourceOver_rgb64_avx2(QRgba64 *destPixels, int length, QRgba64 color, uint const_alpha) { Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] if (const_alpha == 255 && color.isOpaque()) { qt_memfill64((quint64*)destPixels, color, length); } else { if (const_alpha != 255) color = multiplyAlpha255(color, const_alpha); const uint minusAlphaOfColor = 65535 - color.alpha(); int x = 0; quint64 *dst = (quint64 *) destPixels; const __m256i colorVector = _mm256_set1_epi64x(color); const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); const __m256i half = _mm256_set1_epi32(0x8000); const __m256i minusAlphaOfColorVector = _mm256_set1_epi32(minusAlphaOfColor); for (; x < length && (quintptr(dst + x) & 31); ++x) destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor); for (; x < length - 3; x += 4) { __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); BYTE_MUL_RGB64_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half); dstVector = _mm256_add_epi16(colorVector, dstVector); _mm256_store_si256((__m256i *)&dst[x], dstVector); } SIMD_EPILOGUE(x, length, 3) destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor); } } #endif #define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b) \ { \ /* Correct for later unpack */ \ const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \ const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \ \ __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \ const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \ const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \ __m256i idxidy = _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \ __m256i dxidy = _mm256_sub_epi16(distx_, dxdy); \ __m256i idxdy = _mm256_sub_epi16(disty_, dxdy); \ \ __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \ __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \ __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \ __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \ __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \ __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \ __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \ __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \ \ __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \ __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \ tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \ tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \ tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \ tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \ __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \ __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \ blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \ blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \ blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \ blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \ \ /* Add the values, and shift to only keep 8 significant bits per colors */ \ __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \ __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \ __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \ __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \ __m256i rAG = _mm256_add_epi16(topAG, botAG); \ __m256i rRB = _mm256_add_epi16(topRB, botRB); \ rRB = _mm256_srli_epi16(rRB, 8); \ /* Correct for hadd */ \ rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \ rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \ _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \ } inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2) { if (v1 < l1) v2 = v1 = l1; else if (v1 >= l2) v2 = v1 = l2; else v2 = v1 + 1; Q_ASSERT(v1 >= l1 && v1 <= l2); Q_ASSERT(v2 >= l1 && v2 <= l2); } void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx); void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_scale_helper_avx2(uint *b, uint *end, const QTextureData &image, int &fx, int &fy, int fdx, int /*fdy*/) { int y1 = (fy >> 16); int y2; fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); const uint *s1 = (const uint *)image.scanLine(y1); const uint *s2 = (const uint *)image.scanLine(y2); const int disty = (fy & 0x0000ffff) >> 8; const int idisty = 256 - disty; const int length = end - b; // The intermediate buffer is generated in the positive direction const int adjust = (fdx < 0) ? fdx * length : 0; const int offset = (fx + adjust) >> 16; int x = offset; IntermediateBuffer intermediate; // count is the size used in the intermediate_buffer. int count = (qint64(length) * qAbs(fdx) + FixedScale - 1) / FixedScale + 2; // length is supposed to be <= BufferSize either because data->m11 < 1 or // data->m11 < 2, and any larger buffers split Q_ASSERT(count <= BufferSize + 2); int f = 0; int lim = qMin(count, image.x2 - x); if (x < image.x1) { Q_ASSERT(x < image.x2); uint t = s1[image.x1]; uint b = s2[image.x1]; quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; do { intermediate.buffer_rb[f] = rb; intermediate.buffer_ag[f] = ag; f++; x++; } while (x < image.x1 && f < lim); } const __m256i disty_ = _mm256_set1_epi16(disty); const __m256i idisty_ = _mm256_set1_epi16(idisty); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); lim -= 7; for (; f < lim; x += 8, f += 8) { // Load 8 pixels from s1, and split the alpha-green and red-blue component __m256i top = _mm256_loadu_si256((const __m256i*)((const uint *)(s1)+x)); __m256i topAG = _mm256_srli_epi16(top, 8); __m256i topRB = _mm256_and_si256(top, colorMask); // Multiplies each color component by idisty topAG = _mm256_mullo_epi16 (topAG, idisty_); topRB = _mm256_mullo_epi16 (topRB, idisty_); // Same for the s2 vector __m256i bottom = _mm256_loadu_si256((const __m256i*)((const uint *)(s2)+x)); __m256i bottomAG = _mm256_srli_epi16(bottom, 8); __m256i bottomRB = _mm256_and_si256(bottom, colorMask); bottomAG = _mm256_mullo_epi16 (bottomAG, disty_); bottomRB = _mm256_mullo_epi16 (bottomRB, disty_); // Add the values, and shift to only keep 8 significant bits per colors __m256i rAG =_mm256_add_epi16(topAG, bottomAG); rAG = _mm256_srli_epi16(rAG, 8); _mm256_storeu_si256((__m256i*)(&intermediate.buffer_ag[f]), rAG); __m256i rRB =_mm256_add_epi16(topRB, bottomRB); rRB = _mm256_srli_epi16(rRB, 8); _mm256_storeu_si256((__m256i*)(&intermediate.buffer_rb[f]), rRB); } for (; f < count; f++) { // Same as above but without simd x = qMin(x, image.x2 - 1); uint t = s1[x]; uint b = s2[x]; intermediate.buffer_rb[f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; intermediate.buffer_ag[f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; x++; } // Now interpolate the values from the intermediate_buffer to get the final result. intermediate_adder_avx2(b, end, intermediate, offset, fx, fdx); } void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx) { fx -= offset * FixedScale; const __m128i v_fdx = _mm_set1_epi32(fdx * 4); const __m128i v_blend = _mm_set1_epi32(0x00800080); const __m128i vdx_shuffle = _mm_set_epi8(char(0x80), 13, char(0x80), 13, char(0x80), 9, char(0x80), 9, char(0x80), 5, char(0x80), 5, char(0x80), 1, char(0x80), 1); __m128i v_fx = _mm_setr_epi32(fx, fx + fdx, fx + fdx + fdx, fx + fdx + fdx + fdx); while (b < end - 3) { const __m128i offset = _mm_srli_epi32(v_fx, 16); __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate.buffer_rb, offset, 4); __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate.buffer_ag, offset, 4); __m128i vdx = _mm_shuffle_epi8(v_fx, vdx_shuffle); __m128i vidx = _mm_sub_epi16(_mm_set1_epi16(256), vdx); __m256i vmulx = _mm256_castsi128_si256(_mm_unpacklo_epi32(vidx, vdx)); vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1); vrb = _mm256_mullo_epi16(vrb, vmulx); vag = _mm256_mullo_epi16(vag, vmulx); __m256i vrbag = _mm256_hadd_epi32(vrb, vag); vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0)); __m128i rb = _mm256_castsi256_si128(vrbag); __m128i ag = _mm256_extracti128_si256(vrbag, 1); rb = _mm_srli_epi16(rb, 8); _mm_storeu_si128((__m128i*)b, _mm_blendv_epi8(ag, rb, v_blend)); b += 4; v_fx = _mm_add_epi32(v_fx, v_fdx); } fx = _mm_cvtsi128_si32(v_fx); while (b < end) { const int x = (fx >> 16); const uint distx = (fx & 0x0000ffff) >> 8; const uint idistx = 256 - distx; const uint rb = (intermediate.buffer_rb[x] * idistx + intermediate.buffer_rb[x + 1] * distx) & 0xff00ff00; const uint ag = (intermediate.buffer_ag[x] * idistx + intermediate.buffer_ag[x + 1] * distx) & 0xff00ff00; *b = (rb >> 8) | ag; b++; fx += fdx; } fx += offset * FixedScale; } void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image, int &fx, int &fy, int fdx, int /*fdy*/) { int y1 = (fy >> 16); int y2; fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); const uint *s1 = (const uint *)image.scanLine(y1); const uint *s2 = (const uint *)image.scanLine(y2); const int disty8 = (fy & 0x0000ffff) >> 8; const int disty4 = (disty8 + 0x08) >> 4; const qint64 min_fx = qint64(image.x1) * FixedScale; const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; while (b < end) { int x1 = (fx >> 16); int x2; fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); if (x1 != x2) break; uint top = s1[x1]; uint bot = s2[x1]; *b = INTERPOLATE_PIXEL_256(top, 256 - disty8, bot, disty8); fx += fdx; ++b; } uint *boundedEnd = end; if (fdx > 0) boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx); else if (fdx < 0) boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx); // A fast middle part without boundary checks const __m256i vdistShuffle = _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80), 0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80)); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const __m256i v_256 = _mm256_set1_epi16(256); const __m256i v_disty = _mm256_set1_epi16(disty4); const __m256i v_fdx = _mm256_set1_epi32(fdx * 8); const __m256i v_fx_r = _mm256_set1_epi32(0x08); const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); __m256i v_fx = _mm256_set1_epi32(fx); v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index)); while (b < boundedEnd - 7) { const __m256i offset = _mm256_srli_epi32(v_fx, 16); const __m128i offsetLo = _mm256_castsi256_si128(offset); const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4); const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4); const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4); const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4); __m256i v_distx = _mm256_srli_epi16(v_fx, 8); v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fx_r), 4); v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle); interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); b += 8; v_fx = _mm256_add_epi32(v_fx, v_fdx); } fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); while (b < boundedEnd) { int x = (fx >> 16); int distx8 = (fx & 0x0000ffff) >> 8; *b = interpolate_4_pixels(s1 + x, s2 + x, distx8, disty8); fx += fdx; ++b; } while (b < end) { int x1 = (fx >> 16); int x2; fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); uint tl = s1[x1]; uint tr = s1[x2]; uint bl = s2[x1]; uint br = s2[x2]; int distx8 = (fx & 0x0000ffff) >> 8; *b = interpolate_4_pixels(tl, tr, bl, br, distx8, disty8); fx += fdx; ++b; } } void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image, int &fx, int &fy, int fdx, int fdy) { const qint64 min_fx = qint64(image.x1) * FixedScale; const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; const qint64 min_fy = qint64(image.y1) * FixedScale; const qint64 max_fy = qint64(image.y2 - 1) * FixedScale; // first handle the possibly bounded part in the beginning while (b < end) { int x1 = (fx >> 16); int x2; int y1 = (fy >> 16); int y2; fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); if (x1 != x2 && y1 != y2) break; const uint *s1 = (const uint *)image.scanLine(y1); const uint *s2 = (const uint *)image.scanLine(y2); uint tl = s1[x1]; uint tr = s1[x2]; uint bl = s2[x1]; uint br = s2[x2]; int distx = (fx & 0x0000ffff) >> 8; int disty = (fy & 0x0000ffff) >> 8; *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); fx += fdx; fy += fdy; ++b; } uint *boundedEnd = end; if (fdx > 0) boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx); else if (fdx < 0) boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx); if (fdy > 0) boundedEnd = qMin(boundedEnd, b + (max_fy - fy) / fdy); else if (fdy < 0) boundedEnd = qMin(boundedEnd, b + (min_fy - fy) / fdy); // until boundedEnd we can now have a fast middle part without boundary checks const __m256i vdistShuffle = _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80), 0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80)); const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); const __m256i v_256 = _mm256_set1_epi16(256); const __m256i v_fdx = _mm256_set1_epi32(fdx * 8); const __m256i v_fdy = _mm256_set1_epi32(fdy * 8); const __m256i v_fxy_r = _mm256_set1_epi32(0x08); const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); __m256i v_fx = _mm256_set1_epi32(fx); __m256i v_fy = _mm256_set1_epi32(fy); v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index)); v_fy = _mm256_add_epi32(v_fy, _mm256_mullo_epi32(_mm256_set1_epi32(fdy), v_index)); const uchar *textureData = image.imageData; const qsizetype bytesPerLine = image.bytesPerLine; const __m256i vbpl = _mm256_set1_epi16(bytesPerLine/4); while (b < boundedEnd - 7) { const __m256i vy = _mm256_packs_epi32(_mm256_srli_epi32(v_fy, 16), _mm256_setzero_si256()); // 8x16bit * 8x16bit -> 8x32bit __m256i offset = _mm256_unpacklo_epi16(_mm256_mullo_epi16(vy, vbpl), _mm256_mulhi_epi16(vy, vbpl)); offset = _mm256_add_epi32(offset, _mm256_srli_epi32(v_fx, 16)); const __m128i offsetLo = _mm256_castsi256_si128(offset); const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); const uint *topData = (const uint *)(textureData); const uint *botData = (const uint *)(textureData + bytesPerLine); const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4); const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4); const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4); const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4); __m256i v_distx = _mm256_srli_epi16(v_fx, 8); __m256i v_disty = _mm256_srli_epi16(v_fy, 8); v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fxy_r), 4); v_disty = _mm256_srli_epi16(_mm256_add_epi32(v_disty, v_fxy_r), 4); v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle); v_disty = _mm256_shuffle_epi8(v_disty, vdistShuffle); interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); b += 8; v_fx = _mm256_add_epi32(v_fx, v_fdx); v_fy = _mm256_add_epi32(v_fy, v_fdy); } fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0); while (b < boundedEnd) { int x = (fx >> 16); int y = (fy >> 16); const uint *s1 = (const uint *)image.scanLine(y); const uint *s2 = (const uint *)image.scanLine(y + 1); int distx = (fx & 0x0000ffff) >> 8; int disty = (fy & 0x0000ffff) >> 8; *b = interpolate_4_pixels(s1 + x, s2 + x, distx, disty); fx += fdx; fy += fdy; ++b; } while (b < end) { int x1 = (fx >> 16); int x2; int y1 = (fy >> 16); int y2; fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); const uint *s1 = (const uint *)image.scanLine(y1); const uint *s2 = (const uint *)image.scanLine(y2); uint tl = s1[x1]; uint tr = s1[x2]; uint bl = s2[x1]; uint br = s2[x2]; int distx = (fx & 0x0000ffff) >> 8; int disty = (fy & 0x0000ffff) >> 8; *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); fx += fdx; fy += fdy; ++b; } } static inline __m256i epilogueMaskFromCount(qsizetype count) { Q_ASSERT(count > 0); static const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); return _mm256_add_epi32(offsetMask, _mm256_set1_epi32(-count)); } template static void convertARGBToARGB32PM_avx2(uint *buffer, const uint *src, qsizetype count) { qsizetype i = 0; const __m256i alphaMask = _mm256_set1_epi32(0xff000000); const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15)); const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15)); const __m256i half = _mm256_set1_epi16(0x0080); const __m256i zero = _mm256_setzero_si256(); for (; i < count - 7; i += 8) { __m256i srcVector = _mm256_loadu_si256(reinterpret_cast(src + i)); if (!_mm256_testz_si256(srcVector, alphaMask)) { // keep the two _mm_test[zc]_siXXX next to each other bool cf = _mm256_testc_si256(srcVector, alphaMask); if (RGBA) srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); if (!cf) { __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero); __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero); __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); src1 = _mm256_mullo_epi16(src1, alpha1); src2 = _mm256_mullo_epi16(src2, alpha2); src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8)); src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8)); src1 = _mm256_add_epi16(src1, half); src2 = _mm256_add_epi16(src2, half); src1 = _mm256_srli_epi16(src1, 8); src2 = _mm256_srli_epi16(src2, 8); src1 = _mm256_blend_epi16(src1, alpha1, 0x88); src2 = _mm256_blend_epi16(src2, alpha2, 0x88); srcVector = _mm256_packus_epi16(src1, src2); _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector); } else { if (buffer != src || RGBA) _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector); } } else { _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), zero); } } if (i < count) { const __m256i epilogueMask = epilogueMaskFromCount(count - i); __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast(src + i), epilogueMask); const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { // keep the two _mm_test[zc]_siXXX next to each other bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask); if (RGBA) srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); if (!cf) { __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero); __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero); __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); src1 = _mm256_mullo_epi16(src1, alpha1); src2 = _mm256_mullo_epi16(src2, alpha2); src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8)); src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8)); src1 = _mm256_add_epi16(src1, half); src2 = _mm256_add_epi16(src2, half); src1 = _mm256_srli_epi16(src1, 8); src2 = _mm256_srli_epi16(src2, 8); src1 = _mm256_blend_epi16(src1, alpha1, 0x88); src2 = _mm256_blend_epi16(src2, alpha2, 0x88); srcVector = _mm256_packus_epi16(src1, src2); _mm256_maskstore_epi32(reinterpret_cast(buffer + i), epilogueMask, srcVector); } else { if (buffer != src || RGBA) _mm256_maskstore_epi32(reinterpret_cast(buffer + i), epilogueMask, srcVector); } } else { _mm256_maskstore_epi32(reinterpret_cast(buffer + i), epilogueMask, zero); } } } void QT_FASTCALL convertARGB32ToARGB32PM_avx2(uint *buffer, int count, const QVector *) { convertARGBToARGB32PM_avx2(buffer, buffer, count); } void QT_FASTCALL convertRGBA8888ToARGB32PM_avx2(uint *buffer, int count, const QVector *) { convertARGBToARGB32PM_avx2(buffer, buffer, count); } const uint *QT_FASTCALL fetchARGB32ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, const QVector *, QDitherInfo *) { convertARGBToARGB32PM_avx2(buffer, reinterpret_cast(src) + index, count); return buffer; } const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, const QVector *, QDitherInfo *) { convertARGBToARGB32PM_avx2(buffer, reinterpret_cast(src) + index, count); return buffer; } template static void convertARGBToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, qsizetype count) { qsizetype i = 0; const __m256i alphaMask = _mm256_set1_epi32(0xff000000); const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15)); const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15)); const __m256i zero = _mm256_setzero_si256(); for (; i < count - 7; i += 8) { __m256i dst1, dst2; __m256i srcVector = _mm256_loadu_si256(reinterpret_cast(src + i)); if (!_mm256_testz_si256(srcVector, alphaMask)) { // keep the two _mm_test[zc]_siXXX next to each other bool cf = _mm256_testc_si256(srcVector, alphaMask); if (!RGBA) srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); // The two unpack instructions unpack the low and upper halves of // each 128-bit half of the 256-bit register. Here's the tracking // of what's where: (p is 32-bit, P is 64-bit) // as loaded: [ p1, p2, p3, p4; p5, p6, p7, p8 ] // after permute4x64 [ p1, p2, p5, p6; p3, p4, p7, p8 ] // after unpacklo/hi [ P1, P2; P3, P4 ] [ P5, P6; P7, P8 ] srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector); const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector); if (!cf) { const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); dst1 = _mm256_mulhi_epu16(src1, alpha1); dst2 = _mm256_mulhi_epu16(src2, alpha2); dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15)); dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15)); dst1 = _mm256_blend_epi16(dst1, src1, 0x88); dst2 = _mm256_blend_epi16(dst2, src2, 0x88); } else { dst1 = src1; dst2 = src2; } } else { dst1 = dst2 = zero; } _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), dst1); _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i) + 1, dst2); } if (i < count) { __m256i epilogueMask = epilogueMaskFromCount(count - i); const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); __m256i dst1, dst2; __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast(src + i), epilogueMask); if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { // keep the two _mm_test[zc]_siXXX next to each other bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask); if (!RGBA) srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector); const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector); if (!cf) { const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); dst1 = _mm256_mulhi_epu16(src1, alpha1); dst2 = _mm256_mulhi_epu16(src2, alpha2); dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15)); dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15)); dst1 = _mm256_blend_epi16(dst1, src1, 0x88); dst2 = _mm256_blend_epi16(dst2, src2, 0x88); } else { dst1 = src1; dst2 = src2; } } else { dst1 = dst2 = zero; } epilogueMask = _mm256_permute4x64_epi64(epilogueMask, _MM_SHUFFLE(3, 1, 2, 0)); _mm256_maskstore_epi64(reinterpret_cast(buffer + i), _mm256_unpacklo_epi32(epilogueMask, epilogueMask), dst1); _mm256_maskstore_epi64(reinterpret_cast(buffer + i + 4), _mm256_unpackhi_epi32(epilogueMask, epilogueMask), dst2); } } const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, const QVector *, QDitherInfo *) { convertARGBToRGBA64PM_avx2(buffer, src, count); return buffer; } const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, const QVector *, QDitherInfo *) { convertARGBToRGBA64PM_avx2(buffer, src, count); return buffer; } const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, const QVector *, QDitherInfo *) { convertARGBToRGBA64PM_avx2(buffer, reinterpret_cast(src) + index, count); return buffer; } const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, const QVector *, QDitherInfo *) { convertARGBToRGBA64PM_avx2(buffer, reinterpret_cast(src) + index, count); return buffer; } QT_END_NAMESPACE #endif