/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include #include #ifdef __ARM_NEON__ #include QT_BEGIN_NAMESPACE void qt_memfill32(quint32 *dest, quint32 value, qsizetype count) { const int epilogueSize = count % 16; #if defined(Q_CC_GHS) || defined(Q_CC_MSVC) // inline assembler free version: if (count >= 16) { quint32 *const neonEnd = dest + count - epilogueSize; const uint32x4_t valueVector1 = vdupq_n_u32(value); const uint32x4x4_t valueVector4 = { valueVector1, valueVector1, valueVector1, valueVector1 }; do { vst4q_u32(dest, valueVector4); dest += 16; } while (dest != neonEnd); } #elif !defined(Q_PROCESSOR_ARM_64) if (count >= 16) { quint32 *const neonEnd = dest + count - epilogueSize; register uint32x4_t valueVector1 asm ("q0") = vdupq_n_u32(value); register uint32x4_t valueVector2 asm ("q1") = valueVector1; while (dest != neonEnd) { asm volatile ( "vst2.32 { d0, d1, d2, d3 }, [%[DST]] !\n\t" "vst2.32 { d0, d1, d2, d3 }, [%[DST]] !\n\t" : [DST]"+r" (dest) : [VALUE1]"w"(valueVector1), [VALUE2]"w"(valueVector2) : "memory" ); } } #else if (count >= 16) { quint32 *const neonEnd = dest + count - epilogueSize; register uint32x4_t valueVector1 asm ("v0") = vdupq_n_u32(value); register uint32x4_t valueVector2 asm ("v1") = valueVector1; while (dest != neonEnd) { asm volatile ( "st2 { v0.4s, v1.4s }, [%[DST]], #32 \n\t" "st2 { v0.4s, v1.4s }, [%[DST]], #32 \n\t" : [DST]"+r" (dest) : [VALUE1]"w"(valueVector1), [VALUE2]"w"(valueVector2) : "memory" ); } } #endif switch (epilogueSize) { case 15: *dest++ = value; Q_FALLTHROUGH(); case 14: *dest++ = value; Q_FALLTHROUGH(); case 13: *dest++ = value; Q_FALLTHROUGH(); case 12: *dest++ = value; Q_FALLTHROUGH(); case 11: *dest++ = value; Q_FALLTHROUGH(); case 10: *dest++ = value; Q_FALLTHROUGH(); case 9: *dest++ = value; Q_FALLTHROUGH(); case 8: *dest++ = value; Q_FALLTHROUGH(); case 7: *dest++ = value; Q_FALLTHROUGH(); case 6: *dest++ = value; Q_FALLTHROUGH(); case 5: *dest++ = value; Q_FALLTHROUGH(); case 4: *dest++ = value; Q_FALLTHROUGH(); case 3: *dest++ = value; Q_FALLTHROUGH(); case 2: *dest++ = value; Q_FALLTHROUGH(); case 1: *dest++ = value; } } static inline uint16x8_t qvdiv_255_u16(uint16x8_t x, uint16x8_t half) { // result = (x + (x >> 8) + 0x80) >> 8 const uint16x8_t temp = vshrq_n_u16(x, 8); // x >> 8 const uint16x8_t sum_part = vaddq_u16(x, half); // x + 0x80 const uint16x8_t sum = vaddq_u16(temp, sum_part); return vshrq_n_u16(sum, 8); } static inline uint16x8_t qvbyte_mul_u16(uint16x8_t x, uint16x8_t alpha, uint16x8_t half) { // t = qRound(x * alpha / 255.0) const uint16x8_t t = vmulq_u16(x, alpha); // t return qvdiv_255_u16(t, half); } static inline uint16x8_t qvinterpolate_pixel_255(uint16x8_t x, uint16x8_t a, uint16x8_t y, uint16x8_t b, uint16x8_t half) { // t = x * a + y * b const uint16x8_t ta = vmulq_u16(x, a); const uint16x8_t tb = vmulq_u16(y, b); return qvdiv_255_u16(vaddq_u16(ta, tb), half); } static inline uint16x8_t qvsource_over_u16(uint16x8_t src16, uint16x8_t dst16, uint16x8_t half, uint16x8_t full) { const uint16x4_t alpha16_high = vdup_lane_u16(vget_high_u16(src16), 3); const uint16x4_t alpha16_low = vdup_lane_u16(vget_low_u16(src16), 3); const uint16x8_t alpha16 = vsubq_u16(full, vcombine_u16(alpha16_low, alpha16_high)); return vaddq_u16(src16, qvbyte_mul_u16(dst16, alpha16, half)); } #if defined(ENABLE_PIXMAN_DRAWHELPERS) extern "C" void pixman_composite_over_8888_0565_asm_neon (int32_t w, int32_t h, uint16_t *dst, int32_t dst_stride, uint32_t *src, int32_t src_stride); extern "C" void pixman_composite_over_8888_8888_asm_neon (int32_t w, int32_t h, uint32_t *dst, int32_t dst_stride, uint32_t *src, int32_t src_stride); extern "C" void pixman_composite_src_0565_8888_asm_neon (int32_t w, int32_t h, uint32_t *dst, int32_t dst_stride, uint16_t *src, int32_t src_stride); extern "C" void pixman_composite_over_n_8_0565_asm_neon (int32_t w, int32_t h, uint16_t *dst, int32_t dst_stride, uint32_t src, int32_t unused, uint8_t *mask, int32_t mask_stride); extern "C" void pixman_composite_scanline_over_asm_neon (int32_t w, const uint32_t *dst, const uint32_t *src); extern "C" void pixman_composite_src_0565_0565_asm_neon (int32_t w, int32_t h, uint16_t *dst, int32_t dst_stride, uint16_t *src, int32_t src_stride); // qblendfunctions.cpp void qt_blend_argb32_on_rgb16_const_alpha(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha); void qt_blend_rgb16_on_argb32_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { dbpl /= 4; sbpl /= 2; quint32 *dst = (quint32 *) destPixels; quint16 *src = (quint16 *) srcPixels; if (const_alpha != 256) { quint8 a = (255 * const_alpha) >> 8; quint8 ia = 255 - a; while (h--) { for (int x=0; x static inline void scanLineBlit16(quint16 *dst, quint16 *src, int dstride) { if (N >= 2) { ((quint32 *)dst)[0] = ((quint32 *)src)[0]; __builtin_prefetch(dst + dstride, 1, 0); } for (int i = 1; i < N/2; ++i) ((quint32 *)dst)[i] = ((quint32 *)src)[i]; if (N & 1) dst[N-1] = src[N-1]; } template static inline void blockBlit16(quint16 *dst, quint16 *src, int dstride, int sstride, int h) { union { quintptr address; quint16 *pointer; } u; u.pointer = dst; if (u.address & 2) { while (h--) { // align dst dst[0] = src[0]; if (Width > 1) scanLineBlit16(dst + 1, src + 1, dstride); dst += dstride; src += sstride; } } else { while (h--) { scanLineBlit16(dst, src, dstride); dst += dstride; src += sstride; } } } void qt_blend_rgb16_on_rgb16_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { // testing show that the default memcpy is faster for widths 150 and up if (const_alpha != 256 || w >= 150) { qt_blend_rgb16_on_rgb16(destPixels, dbpl, srcPixels, sbpl, w, h, const_alpha); return; } int dstride = dbpl / 2; int sstride = sbpl / 2; quint16 *dst = (quint16 *) destPixels; quint16 *src = (quint16 *) srcPixels; switch (w) { #define BLOCKBLIT(n) case n: blockBlit16(dst, src, dstride, sstride, h); return; BLOCKBLIT(1); BLOCKBLIT(2); BLOCKBLIT(3); BLOCKBLIT(4); BLOCKBLIT(5); BLOCKBLIT(6); BLOCKBLIT(7); BLOCKBLIT(8); BLOCKBLIT(9); BLOCKBLIT(10); BLOCKBLIT(11); BLOCKBLIT(12); BLOCKBLIT(13); BLOCKBLIT(14); BLOCKBLIT(15); #undef BLOCKBLIT default: break; } pixman_composite_src_0565_0565_asm_neon (w, h, dst, dstride, src, sstride); } extern "C" void blend_8_pixels_argb32_on_rgb16_neon(quint16 *dst, const quint32 *src, int const_alpha); void qt_blend_argb32_on_rgb16_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { quint16 *dst = (quint16 *) destPixels; quint32 *src = (quint32 *) srcPixels; if (const_alpha != 256) { for (int y=0; y= 0xff000000) dst[x] = s; else if (s != 0) dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); } dst = (quint32 *)(((uchar *) dst) + dbpl); src = (const quint32 *)(((const uchar *) src) + sbpl); } #endif } else if (const_alpha != 0) { const_alpha = (const_alpha * 255) >> 8; uint16x8_t const_alpha16 = vdupq_n_u16(const_alpha); for (int y = 0; y < h; ++y) { int x = 0; for (; x < w-3; x += 4) { if (src[x] | src[x+1] | src[x+2] | src[x+3]) { uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]); uint32x4_t dst32 = vld1q_u32((uint32_t *)&dst[x]); const uint8x16_t src8 = vreinterpretq_u8_u32(src32); const uint8x16_t dst8 = vreinterpretq_u8_u32(dst32); const uint8x8_t src8_low = vget_low_u8(src8); const uint8x8_t dst8_low = vget_low_u8(dst8); const uint8x8_t src8_high = vget_high_u8(src8); const uint8x8_t dst8_high = vget_high_u8(dst8); const uint16x8_t src16_low = vmovl_u8(src8_low); const uint16x8_t dst16_low = vmovl_u8(dst8_low); const uint16x8_t src16_high = vmovl_u8(src8_high); const uint16x8_t dst16_high = vmovl_u8(dst8_high); const uint16x8_t srcalpha16_low = qvbyte_mul_u16(src16_low, const_alpha16, half); const uint16x8_t srcalpha16_high = qvbyte_mul_u16(src16_high, const_alpha16, half); const uint16x8_t result16_low = qvsource_over_u16(srcalpha16_low, dst16_low, half, full); const uint16x8_t result16_high = qvsource_over_u16(srcalpha16_high, dst16_high, half, full); const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low)); const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high)); vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high)); } } for (; x> 8; int one_minus_const_alpha = 255 - const_alpha; uint16x8_t const_alpha16 = vdupq_n_u16(const_alpha); uint16x8_t one_minus_const_alpha16 = vdupq_n_u16(255 - const_alpha); for (int y = 0; y < h; ++y) { int x = 0; for (; x < w-3; x += 4) { uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]); uint32x4_t dst32 = vld1q_u32((uint32_t *)&dst[x]); const uint8x16_t src8 = vreinterpretq_u8_u32(src32); const uint8x16_t dst8 = vreinterpretq_u8_u32(dst32); const uint8x8_t src8_low = vget_low_u8(src8); const uint8x8_t dst8_low = vget_low_u8(dst8); const uint8x8_t src8_high = vget_high_u8(src8); const uint8x8_t dst8_high = vget_high_u8(dst8); const uint16x8_t src16_low = vmovl_u8(src8_low); const uint16x8_t dst16_low = vmovl_u8(dst8_low); const uint16x8_t src16_high = vmovl_u8(src8_high); const uint16x8_t dst16_high = vmovl_u8(dst8_high); const uint16x8_t result16_low = qvinterpolate_pixel_255(src16_low, const_alpha16, dst16_low, one_minus_const_alpha16, half); const uint16x8_t result16_high = qvinterpolate_pixel_255(src16_high, const_alpha16, dst16_high, one_minus_const_alpha16, half); const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low)); const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high)); vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high)); } for (; x(rasterBuffer->scanLine(y)) + x; const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint16); uchar *mask = const_cast(bitmap); const uint c = color.toArgb32(); pixman_composite_over_n_8_0565_asm_neon(mapWidth, mapHeight, dest, destStride, c, 0, mask, mapStride); } extern "C" void blend_8_pixels_rgb16_on_rgb16_neon(quint16 *dst, const quint16 *src, int const_alpha); template struct Blend_on_RGB16_SourceAndConstAlpha_Neon { Blend_on_RGB16_SourceAndConstAlpha_Neon(BlendFunc blender, int const_alpha) : m_index(0) , m_blender(blender) , m_const_alpha(const_alpha) { } inline void write(quint16 *dst, quint32 src) { srcBuffer[m_index++] = src; if (m_index == 8) { m_blender(dst - 7, srcBuffer, m_const_alpha); m_index = 0; } } inline void flush(quint16 *dst) { if (m_index > 0) { quint16 dstBuffer[8]; for (int i = 0; i < m_index; ++i) dstBuffer[i] = dst[i - m_index]; m_blender(dstBuffer, srcBuffer, m_const_alpha); for (int i = 0; i < m_index; ++i) dst[i - m_index] = dstBuffer[i]; m_index = 0; } } SRC srcBuffer[8]; int m_index; BlendFunc m_blender; int m_const_alpha; }; template Blend_on_RGB16_SourceAndConstAlpha_Neon Blend_on_RGB16_SourceAndConstAlpha_Neon_create(BlendFunc blender, int const_alpha) { return Blend_on_RGB16_SourceAndConstAlpha_Neon(blender, const_alpha); } void qt_scale_image_argb32_on_rgb16_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int srch, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, int const_alpha) { if (const_alpha == 0) return; qt_scale_image_16bit(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip, Blend_on_RGB16_SourceAndConstAlpha_Neon_create(blend_8_pixels_argb32_on_rgb16_neon, const_alpha)); } void qt_scale_image_rgb16_on_rgb16(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int srch, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, int const_alpha); void qt_scale_image_rgb16_on_rgb16_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int srch, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, int const_alpha) { if (const_alpha == 0) return; if (const_alpha == 256) { qt_scale_image_rgb16_on_rgb16(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip, const_alpha); return; } qt_scale_image_16bit(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip, Blend_on_RGB16_SourceAndConstAlpha_Neon_create(blend_8_pixels_rgb16_on_rgb16_neon, const_alpha)); } extern void qt_transform_image_rgb16_on_rgb16(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, const QTransform &targetRectTransform, int const_alpha); void qt_transform_image_rgb16_on_rgb16_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, const QTransform &targetRectTransform, int const_alpha) { if (const_alpha == 0) return; if (const_alpha == 256) { qt_transform_image_rgb16_on_rgb16(destPixels, dbpl, srcPixels, sbpl, targetRect, sourceRect, clip, targetRectTransform, const_alpha); return; } qt_transform_image(reinterpret_cast(destPixels), dbpl, reinterpret_cast(srcPixels), sbpl, targetRect, sourceRect, clip, targetRectTransform, Blend_on_RGB16_SourceAndConstAlpha_Neon_create(blend_8_pixels_rgb16_on_rgb16_neon, const_alpha)); } void qt_transform_image_argb32_on_rgb16_neon(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, const QTransform &targetRectTransform, int const_alpha) { if (const_alpha == 0) return; qt_transform_image(reinterpret_cast(destPixels), dbpl, reinterpret_cast(srcPixels), sbpl, targetRect, sourceRect, clip, targetRectTransform, Blend_on_RGB16_SourceAndConstAlpha_Neon_create(blend_8_pixels_argb32_on_rgb16_neon, const_alpha)); } static inline void convert_8_pixels_rgb16_to_argb32(quint32 *dst, const quint16 *src) { asm volatile ( "vld1.16 { d0, d1 }, [%[SRC]]\n\t" /* convert 8 r5g6b5 pixel data from {d0, d1} to planar 8-bit format and put data into d4 - red, d3 - green, d2 - blue */ "vshrn.u16 d4, q0, #8\n\t" "vshrn.u16 d3, q0, #3\n\t" "vsli.u16 q0, q0, #5\n\t" "vsri.u8 d4, d4, #5\n\t" "vsri.u8 d3, d3, #6\n\t" "vshrn.u16 d2, q0, #2\n\t" /* fill d5 - alpha with 0xff */ "mov r2, #255\n\t" "vdup.8 d5, r2\n\t" "vst4.8 { d2, d3, d4, d5 }, [%[DST]]" : : [DST]"r" (dst), [SRC]"r" (src) : "memory", "r2", "d0", "d1", "d2", "d3", "d4", "d5" ); } uint * QT_FASTCALL qt_destFetchRGB16_neon(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length) { const ushort *data = (const ushort *)rasterBuffer->scanLine(y) + x; int i = 0; for (; i < length - 7; i += 8) convert_8_pixels_rgb16_to_argb32(&buffer[i], &data[i]); if (i < length) { quint16 srcBuffer[8]; quint32 dstBuffer[8]; int tail = length - i; for (int j = 0; j < tail; ++j) srcBuffer[j] = data[i + j]; convert_8_pixels_rgb16_to_argb32(dstBuffer, srcBuffer); for (int j = 0; j < tail; ++j) buffer[i + j] = dstBuffer[j]; } return buffer; } static inline void convert_8_pixels_argb32_to_rgb16(quint16 *dst, const quint32 *src) { asm volatile ( "vld4.8 { d0, d1, d2, d3 }, [%[SRC]]\n\t" /* convert to r5g6b5 and store it into {d28, d29} */ "vshll.u8 q14, d2, #8\n\t" "vshll.u8 q8, d1, #8\n\t" "vshll.u8 q9, d0, #8\n\t" "vsri.u16 q14, q8, #5\n\t" "vsri.u16 q14, q9, #11\n\t" "vst1.16 { d28, d29 }, [%[DST]]" : : [DST]"r" (dst), [SRC]"r" (src) : "memory", "d0", "d1", "d2", "d3", "d16", "d17", "d18", "d19", "d28", "d29" ); } void QT_FASTCALL qt_destStoreRGB16_neon(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length) { quint16 *data = (quint16*)rasterBuffer->scanLine(y) + x; int i = 0; for (; i < length - 7; i += 8) convert_8_pixels_argb32_to_rgb16(&data[i], &buffer[i]); if (i < length) { quint32 srcBuffer[8]; quint16 dstBuffer[8]; int tail = length - i; for (int j = 0; j < tail; ++j) srcBuffer[j] = buffer[i + j]; convert_8_pixels_argb32_to_rgb16(dstBuffer, srcBuffer); for (int j = 0; j < tail; ++j) data[i + j] = dstBuffer[j]; } } #endif void QT_FASTCALL comp_func_solid_SourceOver_neon(uint *destPixels, int length, uint color, uint const_alpha) { if ((const_alpha & qAlpha(color)) == 255) { qt_memfill32(destPixels, color, length); } else { if (const_alpha != 255) color = BYTE_MUL(color, const_alpha); const quint32 minusAlphaOfColor = qAlpha(~color); int x = 0; uint32_t *dst = (uint32_t *) destPixels; const uint32x4_t colorVector = vdupq_n_u32(color); uint16x8_t half = vdupq_n_u16(0x80); const uint16x8_t minusAlphaOfColorVector = vdupq_n_u16(minusAlphaOfColor); for (; x < length-3; x += 4) { uint32x4_t dstVector = vld1q_u32(&dst[x]); const uint8x16_t dst8 = vreinterpretq_u8_u32(dstVector); const uint8x8_t dst8_low = vget_low_u8(dst8); const uint8x8_t dst8_high = vget_high_u8(dst8); const uint16x8_t dst16_low = vmovl_u8(dst8_low); const uint16x8_t dst16_high = vmovl_u8(dst8_high); const uint16x8_t result16_low = qvbyte_mul_u16(dst16_low, minusAlphaOfColorVector, half); const uint16x8_t result16_high = qvbyte_mul_u16(dst16_high, minusAlphaOfColorVector, half); const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low)); const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high)); uint32x4_t blendedPixels = vcombine_u32(result32_low, result32_high); uint32x4_t colorPlusBlendedPixels = vaddq_u32(colorVector, blendedPixels); vst1q_u32(&dst[x], colorPlusBlendedPixels); } SIMD_EPILOGUE(x, length, 3) destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); } } void QT_FASTCALL comp_func_Plus_neon(uint *dst, const uint *src, int length, uint const_alpha) { if (const_alpha == 255) { uint *const end = dst + length; uint *const neonEnd = end - 3; while (dst < neonEnd) { uint8x16_t vs = vld1q_u8((const uint8_t*)src); const uint8x16_t vd = vld1q_u8((uint8_t*)dst); vs = vqaddq_u8(vs, vd); vst1q_u8((uint8_t*)dst, vs); src += 4; dst += 4; }; while (dst != end) { *dst = comp_func_Plus_one_pixel(*dst, *src); ++dst; ++src; } } else { int x = 0; const int one_minus_const_alpha = 255 - const_alpha; const uint16x8_t constAlphaVector = vdupq_n_u16(const_alpha); const uint16x8_t oneMinusconstAlphaVector = vdupq_n_u16(one_minus_const_alpha); const uint16x8_t half = vdupq_n_u16(0x80); for (; x < length - 3; x += 4) { const uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]); const uint8x16_t src8 = vreinterpretq_u8_u32(src32); uint8x16_t dst8 = vld1q_u8((uint8_t *)&dst[x]); uint8x16_t result = vqaddq_u8(dst8, src8); uint16x8_t result_low = vmovl_u8(vget_low_u8(result)); uint16x8_t result_high = vmovl_u8(vget_high_u8(result)); uint16x8_t dst_low = vmovl_u8(vget_low_u8(dst8)); uint16x8_t dst_high = vmovl_u8(vget_high_u8(dst8)); result_low = qvinterpolate_pixel_255(result_low, constAlphaVector, dst_low, oneMinusconstAlphaVector, half); result_high = qvinterpolate_pixel_255(result_high, constAlphaVector, dst_high, oneMinusconstAlphaVector, half); const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result_low)); const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result_high)); vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high)); } SIMD_EPILOGUE(x, length, 3) dst[x] = comp_func_Plus_one_pixel_const_alpha(dst[x], src[x], const_alpha, one_minus_const_alpha); } } #if defined(ENABLE_PIXMAN_DRAWHELPERS) static const int tileSize = 32; extern "C" void qt_rotate90_16_neon(quint16 *dst, const quint16 *src, int sstride, int dstride, int count); void qt_memrotate90_16_neon(const uchar *srcPixels, int w, int h, int sstride, uchar *destPixels, int dstride) { const ushort *src = (const ushort *)srcPixels; ushort *dest = (ushort *)destPixels; sstride /= sizeof(ushort); dstride /= sizeof(ushort); const int pack = sizeof(quint32) / sizeof(ushort); const int unaligned = qMin(uint((quintptr(dest) & (sizeof(quint32)-1)) / sizeof(ushort)), uint(h)); const int restX = w % tileSize; const int restY = (h - unaligned) % tileSize; const int unoptimizedY = restY % pack; const int numTilesX = w / tileSize + (restX > 0); const int numTilesY = (h - unaligned) / tileSize + (restY >= pack); for (int tx = 0; tx < numTilesX; ++tx) { const int startx = w - tx * tileSize - 1; const int stopx = qMax(startx - tileSize, 0); if (unaligned) { for (int x = startx; x >= stopx; --x) { ushort *d = dest + (w - x - 1) * dstride; for (int y = 0; y < unaligned; ++y) { *d++ = src[y * sstride + x]; } } } for (int ty = 0; ty < numTilesY; ++ty) { const int starty = ty * tileSize + unaligned; const int stopy = qMin(starty + tileSize, h - unoptimizedY); int x = startx; // qt_rotate90_16_neon writes to eight rows, four pixels at a time for (; x >= stopx + 7; x -= 8) { ushort *d = dest + (w - x - 1) * dstride + starty; const ushort *s = &src[starty * sstride + x - 7]; qt_rotate90_16_neon(d, s, sstride * 2, dstride * 2, stopy - starty); } for (; x >= stopx; --x) { quint32 *d = reinterpret_cast(dest + (w - x - 1) * dstride + starty); for (int y = starty; y < stopy; y += pack) { quint32 c = src[y * sstride + x]; for (int i = 1; i < pack; ++i) { const int shift = (sizeof(int) * 8 / pack * i); const ushort color = src[(y + i) * sstride + x]; c |= color << shift; } *d++ = c; } } } if (unoptimizedY) { const int starty = h - unoptimizedY; for (int x = startx; x >= stopx; --x) { ushort *d = dest + (w - x - 1) * dstride + starty; for (int y = starty; y < h; ++y) { *d++ = src[y * sstride + x]; } } } } } extern "C" void qt_rotate270_16_neon(quint16 *dst, const quint16 *src, int sstride, int dstride, int count); void qt_memrotate270_16_neon(const uchar *srcPixels, int w, int h, int sstride, uchar *destPixels, int dstride) { const ushort *src = (const ushort *)srcPixels; ushort *dest = (ushort *)destPixels; sstride /= sizeof(ushort); dstride /= sizeof(ushort); const int pack = sizeof(quint32) / sizeof(ushort); const int unaligned = qMin(uint((long(dest) & (sizeof(quint32)-1)) / sizeof(ushort)), uint(h)); const int restX = w % tileSize; const int restY = (h - unaligned) % tileSize; const int unoptimizedY = restY % pack; const int numTilesX = w / tileSize + (restX > 0); const int numTilesY = (h - unaligned) / tileSize + (restY >= pack); for (int tx = 0; tx < numTilesX; ++tx) { const int startx = tx * tileSize; const int stopx = qMin(startx + tileSize, w); if (unaligned) { for (int x = startx; x < stopx; ++x) { ushort *d = dest + x * dstride; for (int y = h - 1; y >= h - unaligned; --y) { *d++ = src[y * sstride + x]; } } } for (int ty = 0; ty < numTilesY; ++ty) { const int starty = h - 1 - unaligned - ty * tileSize; const int stopy = qMax(starty - tileSize, unoptimizedY); int x = startx; // qt_rotate90_16_neon writes to eight rows, four pixels at a time for (; x < stopx - 7; x += 8) { ushort *d = dest + x * dstride + h - 1 - starty; const ushort *s = &src[starty * sstride + x]; qt_rotate90_16_neon(d + 7 * dstride, s, -sstride * 2, -dstride * 2, starty - stopy); } for (; x < stopx; ++x) { quint32 *d = reinterpret_cast(dest + x * dstride + h - 1 - starty); for (int y = starty; y > stopy; y -= pack) { quint32 c = src[y * sstride + x]; for (int i = 1; i < pack; ++i) { const int shift = (sizeof(int) * 8 / pack * i); const ushort color = src[(y - i) * sstride + x]; c |= color << shift; } *d++ = c; } } } if (unoptimizedY) { const int starty = unoptimizedY - 1; for (int x = startx; x < stopx; ++x) { ushort *d = dest + x * dstride + h - 1 - starty; for (int y = starty; y >= 0; --y) { *d++ = src[y * sstride + x]; } } } } } #endif class QSimdNeon { public: typedef int32x4_t Int32x4; typedef float32x4_t Float32x4; union Vect_buffer_i { Int32x4 v; int i[4]; }; union Vect_buffer_f { Float32x4 v; float f[4]; }; static inline Float32x4 v_dup(double x) { return vdupq_n_f32(float(x)); } static inline Float32x4 v_dup(float x) { return vdupq_n_f32(x); } static inline Int32x4 v_dup(int x) { return vdupq_n_s32(x); } static inline Int32x4 v_dup(uint x) { return vdupq_n_s32(x); } static inline Float32x4 v_add(Float32x4 a, Float32x4 b) { return vaddq_f32(a, b); } static inline Int32x4 v_add(Int32x4 a, Int32x4 b) { return vaddq_s32(a, b); } static inline Float32x4 v_max(Float32x4 a, Float32x4 b) { return vmaxq_f32(a, b); } static inline Float32x4 v_min(Float32x4 a, Float32x4 b) { return vminq_f32(a, b); } static inline Int32x4 v_min_16(Int32x4 a, Int32x4 b) { return vminq_s32(a, b); } static inline Int32x4 v_and(Int32x4 a, Int32x4 b) { return vandq_s32(a, b); } static inline Float32x4 v_sub(Float32x4 a, Float32x4 b) { return vsubq_f32(a, b); } static inline Int32x4 v_sub(Int32x4 a, Int32x4 b) { return vsubq_s32(a, b); } static inline Float32x4 v_mul(Float32x4 a, Float32x4 b) { return vmulq_f32(a, b); } static inline Float32x4 v_sqrt(Float32x4 x) { Float32x4 y = vrsqrteq_f32(x); y = vmulq_f32(y, vrsqrtsq_f32(x, vmulq_f32(y, y))); return vmulq_f32(x, y); } static inline Int32x4 v_toInt(Float32x4 x) { return vcvtq_s32_f32(x); } static inline Int32x4 v_greaterOrEqual(Float32x4 a, Float32x4 b) { return vreinterpretq_s32_u32(vcgeq_f32(a, b)); } }; const uint * QT_FASTCALL qt_fetch_radial_gradient_neon(uint *buffer, const Operator *op, const QSpanData *data, int y, int x, int length) { return qt_fetch_radial_gradient_template,uint>(buffer, op, data, y, x, length); } extern void QT_FASTCALL qt_convert_rgb888_to_rgb32_neon(quint32 *dst, const uchar *src, int len); const uint * QT_FASTCALL qt_fetchUntransformed_888_neon(uint *buffer, const Operator *, const QSpanData *data, int y, int x, int length) { const uchar *line = data->texture.scanLine(y) + x * 3; qt_convert_rgb888_to_rgb32_neon(buffer, line, length); return buffer; } #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN static inline uint32x4_t vrgba2argb(uint32x4_t srcVector) { #if defined(Q_PROCESSOR_ARM_64) const uint8x16_t rgbaMask = { 2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15}; #else const uint8x8_t rgbaMask = { 2, 1, 0, 3, 6, 5, 4, 7 }; #endif #if defined(Q_PROCESSOR_ARM_64) srcVector = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(srcVector), rgbaMask)); #else // no vqtbl1q_u8, so use two vtbl1_u8 const uint8x8_t low = vtbl1_u8(vreinterpret_u8_u32(vget_low_u32(srcVector)), rgbaMask); const uint8x8_t high = vtbl1_u8(vreinterpret_u8_u32(vget_high_u32(srcVector)), rgbaMask); srcVector = vcombine_u32(vreinterpret_u32_u8(low), vreinterpret_u32_u8(high)); #endif return srcVector; } template static inline void convertARGBToARGB32PM_neon(uint *buffer, const uint *src, int count) { int i = 0; const uint8x8_t shuffleMask = { 3, 3, 3, 3, 7, 7, 7, 7}; const uint32x4_t blendMask = vdupq_n_u32(0xff000000); for (; i < count - 3; i += 4) { uint32x4_t srcVector = vld1q_u32(src + i); uint32x4_t alphaVector = vshrq_n_u32(srcVector, 24); #if defined(Q_PROCESSOR_ARM_64) uint32_t alphaSum = vaddvq_u32(alphaVector); #else // no vaddvq_u32 uint32x2_t tmp = vpadd_u32(vget_low_u32(alphaVector), vget_high_u32(alphaVector)); uint32_t alphaSum = vget_lane_u32(vpadd_u32(tmp, tmp), 0); #endif if (alphaSum) { if (alphaSum != 255 * 4) { if (RGBA) srcVector = vrgba2argb(srcVector); const uint8x8_t s1 = vreinterpret_u8_u32(vget_low_u32(srcVector)); const uint8x8_t s2 = vreinterpret_u8_u32(vget_high_u32(srcVector)); const uint8x8_t alpha1 = vtbl1_u8(s1, shuffleMask); const uint8x8_t alpha2 = vtbl1_u8(s2, shuffleMask); uint16x8_t src1 = vmull_u8(s1, alpha1); uint16x8_t src2 = vmull_u8(s2, alpha2); src1 = vsraq_n_u16(src1, src1, 8); src2 = vsraq_n_u16(src2, src2, 8); const uint8x8_t d1 = vrshrn_n_u16(src1, 8); const uint8x8_t d2 = vrshrn_n_u16(src2, 8); const uint32x4_t d = vbslq_u32(blendMask, srcVector, vreinterpretq_u32_u8(vcombine_u8(d1, d2))); vst1q_u32(buffer + i, d); } else { if (RGBA) vst1q_u32(buffer + i, vrgba2argb(srcVector)); else if (buffer != src) vst1q_u32(buffer + i, srcVector); } } else { vst1q_u32(buffer + i, vdupq_n_u32(0)); } } SIMD_EPILOGUE(i, count, 3) { uint v = qPremultiply(src[i]); buffer[i] = RGBA ? RGBA2ARGB(v) : v; } } template static inline void convertARGB32ToRGBA64PM_neon(QRgba64 *buffer, const uint *src, int count) { if (count <= 0) return; const uint8x8_t shuffleMask = { 3, 3, 3, 3, 7, 7, 7, 7}; const uint64x2_t blendMask = vdupq_n_u64(Q_UINT64_C(0xffff000000000000)); int i = 0; for (; i < count-3; i += 4) { uint32x4_t vs32 = vld1q_u32(src + i); uint32x4_t alphaVector = vshrq_n_u32(vs32, 24); #if defined(Q_PROCESSOR_ARM_64) uint32_t alphaSum = vaddvq_u32(alphaVector); #else // no vaddvq_u32 uint32x2_t tmp = vpadd_u32(vget_low_u32(alphaVector), vget_high_u32(alphaVector)); uint32_t alphaSum = vget_lane_u32(vpadd_u32(tmp, tmp), 0); #endif if (alphaSum) { if (!RGBA) vs32 = vrgba2argb(vs32); const uint8x16_t vs8 = vreinterpretq_u8_u32(vs32); const uint8x16x2_t v = vzipq_u8(vs8, vs8); if (alphaSum != 255 * 4) { const uint8x8_t s1 = vreinterpret_u8_u32(vget_low_u32(vs32)); const uint8x8_t s2 = vreinterpret_u8_u32(vget_high_u32(vs32)); const uint8x8_t alpha1 = vtbl1_u8(s1, shuffleMask); const uint8x8_t alpha2 = vtbl1_u8(s2, shuffleMask); uint16x8_t src1 = vmull_u8(s1, alpha1); uint16x8_t src2 = vmull_u8(s2, alpha2); // convert from 0->(255x255) to 0->(255x257) src1 = vsraq_n_u16(src1, src1, 7); src2 = vsraq_n_u16(src2, src2, 7); // now restore alpha from the trivial conversion const uint64x2_t d1 = vbslq_u64(blendMask, vreinterpretq_u64_u8(v.val[0]), vreinterpretq_u64_u16(src1)); const uint64x2_t d2 = vbslq_u64(blendMask, vreinterpretq_u64_u8(v.val[1]), vreinterpretq_u64_u16(src2)); vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u64(d1)); buffer += 2; vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u64(d2)); buffer += 2; } else { vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u8(v.val[0])); buffer += 2; vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u8(v.val[1])); buffer += 2; } } else { vst1q_u16((uint16_t *)buffer, vdupq_n_u16(0)); buffer += 2; vst1q_u16((uint16_t *)buffer, vdupq_n_u16(0)); buffer += 2; } } SIMD_EPILOGUE(i, count, 3) { uint s = src[i]; if (RGBA) s = RGBA2ARGB(s); *buffer++ = QRgba64::fromArgb32(s).premultiplied(); } } static inline float32x4_t reciprocal_mul_ps(float32x4_t a, float mul) { float32x4_t ia = vrecpeq_f32(a); // estimate 1/a ia = vmulq_f32(vrecpsq_f32(a, ia), vmulq_n_f32(ia, mul)); // estimate improvement step * mul return ia; } template static inline void convertARGBFromARGB32PM_neon(uint *buffer, const uint *src, int count) { int i = 0; const uint32x4_t alphaMask = vdupq_n_u32(0xff000000); for (; i < count - 3; i += 4) { uint32x4_t srcVector = vld1q_u32(src + i); uint32x4_t alphaVector = vshrq_n_u32(srcVector, 24); #if defined(Q_PROCESSOR_ARM_64) uint32_t alphaSum = vaddvq_u32(alphaVector); #else // no vaddvq_u32 uint32x2_t tmp = vpadd_u32(vget_low_u32(alphaVector), vget_high_u32(alphaVector)); uint32_t alphaSum = vget_lane_u32(vpadd_u32(tmp, tmp), 0); #endif if (alphaSum) { if (alphaSum != 255 * 4) { if (RGBA) srcVector = vrgba2argb(srcVector); const float32x4_t a = vcvtq_f32_u32(alphaVector); const float32x4_t ia = reciprocal_mul_ps(a, 255.0f); // Convert 4x(4xU8) to 4x(4xF32) uint16x8_t tmp1 = vmovl_u8(vget_low_u8(vreinterpretq_u8_u32(srcVector))); uint16x8_t tmp3 = vmovl_u8(vget_high_u8(vreinterpretq_u8_u32(srcVector))); float32x4_t src1 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1))); float32x4_t src2 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1))); float32x4_t src3 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp3))); float32x4_t src4 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp3))); src1 = vmulq_lane_f32(src1, vget_low_f32(ia), 0); src2 = vmulq_lane_f32(src2, vget_low_f32(ia), 1); src3 = vmulq_lane_f32(src3, vget_high_f32(ia), 0); src4 = vmulq_lane_f32(src4, vget_high_f32(ia), 1); // Convert 4x(4xF32) back to 4x(4xU8) (over a 8.1 fixed point format to get rounding) tmp1 = vcombine_u16(vrshrn_n_u32(vcvtq_n_u32_f32(src1, 1), 1), vrshrn_n_u32(vcvtq_n_u32_f32(src2, 1), 1)); tmp3 = vcombine_u16(vrshrn_n_u32(vcvtq_n_u32_f32(src3, 1), 1), vrshrn_n_u32(vcvtq_n_u32_f32(src4, 1), 1)); uint32x4_t dstVector = vreinterpretq_u32_u8(vcombine_u8(vmovn_u16(tmp1), vmovn_u16(tmp3))); // Overwrite any undefined results from alpha==0 with zeros: #if defined(Q_PROCESSOR_ARM_64) uint32x4_t srcVectorAlphaMask = vceqzq_u32(alphaVector); #else uint32x4_t srcVectorAlphaMask = vceqq_u32(alphaVector, vdupq_n_u32(0)); #endif dstVector = vbicq_u32(dstVector, srcVectorAlphaMask); // Restore or mask alpha values: if (RGBx) dstVector = vorrq_u32(alphaMask, dstVector); else dstVector = vbslq_u32(alphaMask, srcVector, dstVector); vst1q_u32(&buffer[i], dstVector); } else { // 4xAlpha==255, no change except if we are doing RGBA->ARGB: if (RGBA) vst1q_u32(&buffer[i], vrgba2argb(srcVector)); else if (buffer != src) vst1q_u32(&buffer[i], srcVector); } } else { // 4xAlpha==0, always zero, except if output is RGBx: if (RGBx) vst1q_u32(&buffer[i], alphaMask); else vst1q_u32(&buffer[i], vdupq_n_u32(0)); } } SIMD_EPILOGUE(i, count, 3) { uint v = qUnpremultiply(src[i]); if (RGBx) v = 0xff000000 | v; if (RGBA) v = ARGB2RGBA(v); buffer[i] = v; } } void QT_FASTCALL convertARGB32ToARGB32PM_neon(uint *buffer, int count, const QList *) { convertARGBToARGB32PM_neon(buffer, buffer, count); } void QT_FASTCALL convertRGBA8888ToARGB32PM_neon(uint *buffer, int count, const QList *) { convertARGBToARGB32PM_neon(buffer, buffer, count); } const uint *QT_FASTCALL fetchARGB32ToARGB32PM_neon(uint *buffer, const uchar *src, int index, int count, const QList *, QDitherInfo *) { convertARGBToARGB32PM_neon(buffer, reinterpret_cast(src) + index, count); return buffer; } const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_neon(uint *buffer, const uchar *src, int index, int count, const QList *, QDitherInfo *) { convertARGBToARGB32PM_neon(buffer, reinterpret_cast(src) + index, count); return buffer; } const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_neon(QRgba64 *buffer, const uint *src, int count, const QList *, QDitherInfo *) { convertARGB32ToRGBA64PM_neon(buffer, src, count); return buffer; } const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_neon(QRgba64 *buffer, const uint *src, int count, const QList *, QDitherInfo *) { convertARGB32ToRGBA64PM_neon(buffer, src, count); return buffer; } const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_neon(QRgba64 *buffer, const uchar *src, int index, int count, const QList *, QDitherInfo *) { convertARGB32ToRGBA64PM_neon(buffer, reinterpret_cast(src) + index, count); return buffer; } const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_neon(QRgba64 *buffer, const uchar *src, int index, int count, const QList *, QDitherInfo *) { convertARGB32ToRGBA64PM_neon(buffer, reinterpret_cast(src) + index, count); return buffer; } void QT_FASTCALL storeRGB32FromARGB32PM_neon(uchar *dest, const uint *src, int index, int count, const QList *, QDitherInfo *) { uint *d = reinterpret_cast(dest) + index; convertARGBFromARGB32PM_neon(d, src, count); } void QT_FASTCALL storeARGB32FromARGB32PM_neon(uchar *dest, const uint *src, int index, int count, const QList *, QDitherInfo *) { uint *d = reinterpret_cast(dest) + index; convertARGBFromARGB32PM_neon(d, src, count); } void QT_FASTCALL storeRGBA8888FromARGB32PM_neon(uchar *dest, const uint *src, int index, int count, const QList *, QDitherInfo *) { uint *d = reinterpret_cast(dest) + index; convertARGBFromARGB32PM_neon(d, src, count); } void QT_FASTCALL storeRGBXFromARGB32PM_neon(uchar *dest, const uint *src, int index, int count, const QList *, QDitherInfo *) { uint *d = reinterpret_cast(dest) + index; convertARGBFromARGB32PM_neon(d, src, count); } #endif // Q_BYTE_ORDER == Q_LITTLE_ENDIAN QT_END_NAMESPACE #endif // __ARM_NEON__