/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Copyright (C) 2016 Intel Corporation. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #ifdef QT_COMPILER_SUPPORTS_SSE2 #include #include QT_BEGIN_NAMESPACE #ifndef QDRAWHELPER_AVX // in AVX mode, we'll use the SSSE3 code void qt_blend_argb32_on_argb32_sse2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; if (const_alpha == 256) { const __m128i alphaMask = _mm_set1_epi32(0xff000000); const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); for (int y = 0; y < h; ++y) { BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, w, nullVector, half, one, colorMask, alphaMask); dst = (quint32 *)(((uchar *) dst) + dbpl); src = (const quint32 *)(((const uchar *) src) + sbpl); } } else if (const_alpha != 0) { // dest = (s + d * sia) * ca + d * cia // = s * ca + d * (sia * ca + cia) // = s * ca + d * (1 - sa*ca) const_alpha = (const_alpha * 255) >> 8; const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); for (int y = 0; y < h; ++y) { BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, w, nullVector, half, one, colorMask, constAlphaVector) dst = (quint32 *)(((uchar *) dst) + dbpl); src = (const quint32 *)(((const uchar *) src) + sbpl); } } } #endif // qblendfunctions.cpp void qt_blend_rgb32_on_rgb32(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha); void qt_blend_rgb32_on_rgb32_sse2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; if (const_alpha != 256) { if (const_alpha != 0) { const __m128i half = _mm_set1_epi16(0x80); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const_alpha = (const_alpha * 255) >> 8; int one_minus_const_alpha = 255 - const_alpha; const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha); for (int y = 0; y < h; ++y) { int x = 0; // First, align dest to 16 bytes: ALIGNMENT_PROLOGUE_16BYTES(dst, x, w) { dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); } for (; x < w-3; x += 4) { __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]); const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); __m128i result; INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); _mm_store_si128((__m128i *)&dst[x], result); } SIMD_EPILOGUE(x, w, 3) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); dst = (quint32 *)(((uchar *) dst) + dbpl); src = (const quint32 *)(((const uchar *) src) + sbpl); } } } else { qt_blend_rgb32_on_rgb32(destPixels, dbpl, srcPixels, sbpl, w, h, const_alpha); } } void QT_FASTCALL comp_func_SourceOver_sse2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha) { Q_ASSERT(const_alpha < 256); const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); if (const_alpha == 255) { const __m128i alphaMask = _mm_set1_epi32(0xff000000); BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, length, nullVector, half, one, colorMask, alphaMask); } else { const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, length, nullVector, half, one, colorMask, constAlphaVector); } } void QT_FASTCALL comp_func_Plus_sse2(uint *dst, const uint *src, int length, uint const_alpha) { int x = 0; if (const_alpha == 255) { // 1) Prologue: align destination on 16 bytes ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) dst[x] = comp_func_Plus_one_pixel(dst[x], src[x]); // 2) composition with SSE2 for (; x < length - 3; x += 4) { const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]); const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); const __m128i result = _mm_adds_epu8(srcVector, dstVector); _mm_store_si128((__m128i *)&dst[x], result); } // 3) Epilogue: SIMD_EPILOGUE(x, length, 3) dst[x] = comp_func_Plus_one_pixel(dst[x], src[x]); } else { const int one_minus_const_alpha = 255 - const_alpha; const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha); // 1) Prologue: align destination on 16 bytes ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) dst[x] = comp_func_Plus_one_pixel_const_alpha(dst[x], src[x], const_alpha, one_minus_const_alpha); const __m128i half = _mm_set1_epi16(0x80); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); // 2) composition with SSE2 for (; x < length - 3; x += 4) { const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]); const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); __m128i result = _mm_adds_epu8(srcVector, dstVector); INTERPOLATE_PIXEL_255_SSE2(result, result, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half) _mm_store_si128((__m128i *)&dst[x], result); } // 3) Epilogue: SIMD_EPILOGUE(x, length, 3) dst[x] = comp_func_Plus_one_pixel_const_alpha(dst[x], src[x], const_alpha, one_minus_const_alpha); } } void QT_FASTCALL comp_func_Source_sse2(uint *dst, const uint *src, int length, uint const_alpha) { if (const_alpha == 255) { ::memcpy(dst, src, length * sizeof(uint)); } else { const int ialpha = 255 - const_alpha; int x = 0; // 1) prologue, align on 16 bytes ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); // 2) interpolate pixels with SSE2 const __m128i half = _mm_set1_epi16(0x80); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); const __m128i oneMinusConstAlpha = _mm_set1_epi16(ialpha); for (; x < length - 3; x += 4) { const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]); __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); INTERPOLATE_PIXEL_255_SSE2(dstVector, srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half) _mm_store_si128((__m128i *)&dst[x], dstVector); } // 3) Epilogue SIMD_EPILOGUE(x, length, 3) dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); } } #ifndef __AVX2__ static Q_NEVER_INLINE void Q_DECL_VECTORCALL qt_memfillXX_aligned(void *dest, __m128i value128, quintptr bytecount) { __m128i *dst128 = reinterpret_cast<__m128i *>(dest); __m128i *end128 = reinterpret_cast<__m128i *>(static_cast(dest) + bytecount); while (dst128 + 4 <= end128) { _mm_store_si128(dst128 + 0, value128); _mm_store_si128(dst128 + 1, value128); _mm_store_si128(dst128 + 2, value128); _mm_store_si128(dst128 + 3, value128); dst128 += 4; } bytecount %= 4 * sizeof(__m128i); switch (bytecount / sizeof(__m128i)) { case 3: _mm_store_si128(dst128++, value128); Q_FALLTHROUGH(); case 2: _mm_store_si128(dst128++, value128); Q_FALLTHROUGH(); case 1: _mm_store_si128(dst128++, value128); } } void qt_memfill64_sse2(quint64 *dest, quint64 value, qsizetype count) { quintptr misaligned = quintptr(dest) % sizeof(__m128i); if (misaligned && count) { #if defined(Q_PROCESSOR_X86_32) // Before SSE came out, the alignment of the stack used to be only 4 // bytes and some OS/ABIs (notably, code generated by MSVC) still only // align to that. In any case, we cannot count on the alignment of // quint64 to be 8 -- see QtPrivate::AlignOf_WorkaroundForI386Abi in // qglobal.h. // // If the pointer is not aligned to at least 8 bytes, then we'll never // in turn hit a multiple of 16 for the qt_memfillXX_aligned call // below. if (Q_UNLIKELY(misaligned % sizeof(quint64))) return qt_memfill_template(dest, value, count); #endif *dest++ = value; --count; } if (count % 2) { dest[count - 1] = value; --count; } qt_memfillXX_aligned(dest, _mm_set1_epi64x(value), count * sizeof(quint64)); } void qt_memfill32_sse2(quint32 *dest, quint32 value, qsizetype count) { if (count < 4) { // this simplifies the code below: the first switch can fall through // without checking the value of count switch (count) { case 3: *dest++ = value; Q_FALLTHROUGH(); case 2: *dest++ = value; Q_FALLTHROUGH(); case 1: *dest = value; } return; } const int align = (quintptr)(dest) & 0xf; switch (align) { case 4: *dest++ = value; --count; Q_FALLTHROUGH(); case 8: *dest++ = value; --count; Q_FALLTHROUGH(); case 12: *dest++ = value; --count; } const int rest = count & 0x3; if (rest) { switch (rest) { case 3: dest[count - 3] = value; Q_FALLTHROUGH(); case 2: dest[count - 2] = value; Q_FALLTHROUGH(); case 1: dest[count - 1] = value; } } qt_memfillXX_aligned(dest, _mm_set1_epi32(value), count * sizeof(quint32)); } #endif // !__AVX2__ void QT_FASTCALL comp_func_solid_Source_sse2(uint *destPixels, int length, uint color, uint const_alpha) { if (const_alpha == 255) { qt_memfill32(destPixels, color, length); } else { const quint32 ialpha = 255 - const_alpha; color = BYTE_MUL(color, const_alpha); int x = 0; quint32 *dst = (quint32 *) destPixels; const __m128i colorVector = _mm_set1_epi32(color); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i half = _mm_set1_epi16(0x80); const __m128i iAlphaVector = _mm_set1_epi16(ialpha); ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) destPixels[x] = color + BYTE_MUL(destPixels[x], ialpha); for (; x < length-3; x += 4) { __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); BYTE_MUL_SSE2(dstVector, dstVector, iAlphaVector, colorMask, half); dstVector = _mm_add_epi8(colorVector, dstVector); _mm_store_si128((__m128i *)&dst[x], dstVector); } SIMD_EPILOGUE(x, length, 3) destPixels[x] = color + BYTE_MUL(destPixels[x], ialpha); } } void QT_FASTCALL comp_func_solid_SourceOver_sse2(uint *destPixels, int length, uint color, uint const_alpha) { if ((const_alpha & qAlpha(color)) == 255) { qt_memfill32(destPixels, color, length); } else { if (const_alpha != 255) color = BYTE_MUL(color, const_alpha); const quint32 minusAlphaOfColor = qAlpha(~color); int x = 0; quint32 *dst = (quint32 *) destPixels; const __m128i colorVector = _mm_set1_epi32(color); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i half = _mm_set1_epi16(0x80); const __m128i minusAlphaOfColorVector = _mm_set1_epi16(minusAlphaOfColor); ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); for (; x < length-3; x += 4) { __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); BYTE_MUL_SSE2(dstVector, dstVector, minusAlphaOfColorVector, colorMask, half); dstVector = _mm_add_epi8(colorVector, dstVector); _mm_store_si128((__m128i *)&dst[x], dstVector); } SIMD_EPILOGUE(x, length, 3) destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); } } void qt_bitmapblit32_sse2_base(QRasterBuffer *rasterBuffer, int x, int y, quint32 color, const uchar *src, int width, int height, int stride) { quint32 *dest = reinterpret_cast(rasterBuffer->scanLine(y)) + x; const int destStride = rasterBuffer->stride(); const __m128i c128 = _mm_set1_epi32(color); const __m128i maskmask1 = _mm_set_epi32(0x10101010, 0x20202020, 0x40404040, 0x80808080); const __m128i maskadd1 = _mm_set_epi32(0x70707070, 0x60606060, 0x40404040, 0x00000000); if (width > 4) { const __m128i maskmask2 = _mm_set_epi32(0x01010101, 0x02020202, 0x04040404, 0x08080808); const __m128i maskadd2 = _mm_set_epi32(0x7f7f7f7f, 0x7e7e7e7e, 0x7c7c7c7c, 0x78787878); while (height--) { for (int x = 0; x < width; x += 8) { const quint8 s = src[x >> 3]; if (!s) continue; __m128i mask1 = _mm_set1_epi8(s); __m128i mask2 = mask1; mask1 = _mm_and_si128(mask1, maskmask1); mask1 = _mm_add_epi8(mask1, maskadd1); _mm_maskmoveu_si128(c128, mask1, (char*)(dest + x)); mask2 = _mm_and_si128(mask2, maskmask2); mask2 = _mm_add_epi8(mask2, maskadd2); _mm_maskmoveu_si128(c128, mask2, (char*)(dest + x + 4)); } dest += destStride; src += stride; } } else { while (height--) { const quint8 s = *src; if (s) { __m128i mask1 = _mm_set1_epi8(s); mask1 = _mm_and_si128(mask1, maskmask1); mask1 = _mm_add_epi8(mask1, maskadd1); _mm_maskmoveu_si128(c128, mask1, (char*)(dest)); } dest += destStride; src += stride; } } } void qt_bitmapblit32_sse2(QRasterBuffer *rasterBuffer, int x, int y, const QRgba64 &color, const uchar *src, int width, int height, int stride) { qt_bitmapblit32_sse2_base(rasterBuffer, x, y, color.toArgb32(), src, width, height, stride); } void qt_bitmapblit8888_sse2(QRasterBuffer *rasterBuffer, int x, int y, const QRgba64 &color, const uchar *src, int width, int height, int stride) { qt_bitmapblit32_sse2_base(rasterBuffer, x, y, ARGB2RGBA(color.toArgb32()), src, width, height, stride); } void qt_bitmapblit16_sse2(QRasterBuffer *rasterBuffer, int x, int y, const QRgba64 &color, const uchar *src, int width, int height, int stride) { const quint16 c = qConvertRgb32To16(color.toArgb32()); quint16 *dest = reinterpret_cast(rasterBuffer->scanLine(y)) + x; const int destStride = rasterBuffer->stride(); const __m128i c128 = _mm_set1_epi16(c); QT_WARNING_DISABLE_MSVC(4309) // truncation of constant value const __m128i maskmask = _mm_set_epi16(0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080); const __m128i maskadd = _mm_set_epi16(0x7f7f, 0x7e7e, 0x7c7c, 0x7878, 0x7070, 0x6060, 0x4040, 0x0000); while (height--) { for (int x = 0; x < width; x += 8) { const quint8 s = src[x >> 3]; if (!s) continue; __m128i mask = _mm_set1_epi8(s); mask = _mm_and_si128(mask, maskmask); mask = _mm_add_epi8(mask, maskadd); _mm_maskmoveu_si128(c128, mask, (char*)(dest + x)); } dest += destStride; src += stride; } } class QSimdSse2 { public: typedef __m128i Int32x4; typedef __m128 Float32x4; union Vect_buffer_i { Int32x4 v; int i[4]; }; union Vect_buffer_f { Float32x4 v; float f[4]; }; static inline Float32x4 Q_DECL_VECTORCALL v_dup(float x) { return _mm_set1_ps(x); } static inline Float32x4 Q_DECL_VECTORCALL v_dup(double x) { return _mm_set1_ps(x); } static inline Int32x4 Q_DECL_VECTORCALL v_dup(int x) { return _mm_set1_epi32(x); } static inline Int32x4 Q_DECL_VECTORCALL v_dup(uint x) { return _mm_set1_epi32(x); } static inline Float32x4 Q_DECL_VECTORCALL v_add(Float32x4 a, Float32x4 b) { return _mm_add_ps(a, b); } static inline Int32x4 Q_DECL_VECTORCALL v_add(Int32x4 a, Int32x4 b) { return _mm_add_epi32(a, b); } static inline Float32x4 Q_DECL_VECTORCALL v_max(Float32x4 a, Float32x4 b) { return _mm_max_ps(a, b); } static inline Float32x4 Q_DECL_VECTORCALL v_min(Float32x4 a, Float32x4 b) { return _mm_min_ps(a, b); } static inline Int32x4 Q_DECL_VECTORCALL v_min_16(Int32x4 a, Int32x4 b) { return _mm_min_epi16(a, b); } static inline Int32x4 Q_DECL_VECTORCALL v_and(Int32x4 a, Int32x4 b) { return _mm_and_si128(a, b); } static inline Float32x4 Q_DECL_VECTORCALL v_sub(Float32x4 a, Float32x4 b) { return _mm_sub_ps(a, b); } static inline Int32x4 Q_DECL_VECTORCALL v_sub(Int32x4 a, Int32x4 b) { return _mm_sub_epi32(a, b); } static inline Float32x4 Q_DECL_VECTORCALL v_mul(Float32x4 a, Float32x4 b) { return _mm_mul_ps(a, b); } static inline Float32x4 Q_DECL_VECTORCALL v_sqrt(Float32x4 x) { return _mm_sqrt_ps(x); } static inline Int32x4 Q_DECL_VECTORCALL v_toInt(Float32x4 x) { return _mm_cvttps_epi32(x); } static inline Int32x4 Q_DECL_VECTORCALL v_greaterOrEqual(Float32x4 a, Float32x4 b) { return _mm_castps_si128(_mm_cmpgt_ps(a, b)); } }; const uint * QT_FASTCALL qt_fetch_radial_gradient_sse2(uint *buffer, const Operator *op, const QSpanData *data, int y, int x, int length) { return qt_fetch_radial_gradient_template,uint>(buffer, op, data, y, x, length); } void qt_scale_image_argb32_on_argb32_sse2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int srch, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, int const_alpha) { if (const_alpha != 256) { // from qblendfunctions.cpp extern void qt_scale_image_argb32_on_argb32(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int srch, const QRectF &targetRect, const QRectF &sourceRect, const QRect &clip, int const_alpha); return qt_scale_image_argb32_on_argb32(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip, const_alpha); } qreal sx = targetRect.width() / (qreal) sourceRect.width(); qreal sy = targetRect.height() / (qreal) sourceRect.height(); int ix = 0x00010000 / sx; int iy = 0x00010000 / sy; int cx1 = clip.x(); int cx2 = clip.x() + clip.width(); int cy1 = clip.top(); int cy2 = clip.y() + clip.height(); int tx1 = qRound(targetRect.left()); int tx2 = qRound(targetRect.right()); int ty1 = qRound(targetRect.top()); int ty2 = qRound(targetRect.bottom()); if (tx2 < tx1) qSwap(tx2, tx1); if (ty2 < ty1) qSwap(ty2, ty1); if (tx1 < cx1) tx1 = cx1; if (tx2 >= cx2) tx2 = cx2; if (tx1 >= tx2) return; if (ty1 < cy1) ty1 = cy1; if (ty2 >= cy2) ty2 = cy2; if (ty1 >= ty2) return; int h = ty2 - ty1; int w = tx2 - tx1; quint32 basex; quint32 srcy; if (sx < 0) { int dstx = qFloor((tx1 + qreal(0.5) - targetRect.right()) * ix) + 1; basex = quint32(sourceRect.right() * 65536) + dstx; } else { int dstx = qCeil((tx1 + qreal(0.5) - targetRect.left()) * ix) - 1; basex = quint32(sourceRect.left() * 65536) + dstx; } if (sy < 0) { int dsty = qFloor((ty1 + qreal(0.5) - targetRect.bottom()) * iy) + 1; srcy = quint32(sourceRect.bottom() * 65536) + dsty; } else { int dsty = qCeil((ty1 + qreal(0.5) - targetRect.top()) * iy) - 1; srcy = quint32(sourceRect.top() * 65536) + dsty; } quint32 *dst = ((quint32 *) (destPixels + ty1 * dbpl)) + tx1; const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i alphaMask = _mm_set1_epi32(0xff000000); const __m128i ixVector = _mm_set1_epi32(4*ix); // this bounds check here is required as floating point rounding above might in some cases lead to // w/h values that are one pixel too large, falling outside of the valid image area. const int ystart = srcy >> 16; if (ystart >= srch && iy < 0) { srcy += iy; --h; } const int xstart = basex >> 16; if (xstart >= (int)(sbpl/sizeof(quint32)) && ix < 0) { basex += ix; --w; } int yend = (srcy + iy * (h - 1)) >> 16; if (yend < 0 || yend >= srch) --h; int xend = (basex + ix * (w - 1)) >> 16; if (xend < 0 || xend >= (int)(sbpl/sizeof(quint32))) --w; while (h--) { const uint *src = (const quint32 *) (srcPixels + (srcy >> 16) * sbpl); int srcx = basex; int x = 0; ALIGNMENT_PROLOGUE_16BYTES(dst, x, w) { uint s = src[srcx >> 16]; dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); srcx += ix; } __m128i srcxVector = _mm_set_epi32(srcx, srcx + ix, srcx + ix + ix, srcx + ix + ix + ix); for (; x> 16]; dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); } dst = (quint32 *)(((uchar *) dst) + dbpl); srcy += iy; } } QT_END_NAMESPACE #endif // QT_COMPILER_SUPPORTS_SSE2