/**************************************************************************** ** ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/ ** ** This file is part of the test suite of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include class tst_QQuaternion : public QObject { Q_OBJECT public: tst_QQuaternion() {} ~tst_QQuaternion() {} private slots: void create(); void length_data(); void length(); void normalized_data(); void normalized(); void normalize_data(); void normalize(); void compare(); void add_data(); void add(); void subtract_data(); void subtract(); void multiply_data(); void multiply(); void multiplyFactor_data(); void multiplyFactor(); void divide_data(); void divide(); void negate_data(); void negate(); void conjugate_data(); void conjugate(); void fromAxisAndAngle_data(); void fromAxisAndAngle(); void slerp_data(); void slerp(); void nlerp_data(); void nlerp(); void properties(); void metaTypes(); }; // QVector3D uses float internally, which can lead to some precision // issues when using it with the qreal-based QQuaternion. static bool fuzzyCompare(qreal x, qreal y) { return qFuzzyIsNull(float(x - y)); } // Test the creation of QQuaternion objects in various ways: // construct, copy, and modify. void tst_QQuaternion::create() { QQuaternion identity; QCOMPARE(identity.x(), (qreal)0.0f); QCOMPARE(identity.y(), (qreal)0.0f); QCOMPARE(identity.z(), (qreal)0.0f); QCOMPARE(identity.scalar(), (qreal)1.0f); QVERIFY(identity.isIdentity()); QQuaternion negativeZeroIdentity(qreal(1.0), qreal(-0.0), qreal(-0.0), qreal(-0.0)); QCOMPARE(negativeZeroIdentity.x(), qreal(-0.0)); QCOMPARE(negativeZeroIdentity.y(), qreal(-0.0)); QCOMPARE(negativeZeroIdentity.z(), qreal(-0.0)); QCOMPARE(negativeZeroIdentity.scalar(), qreal(1.0)); QVERIFY(negativeZeroIdentity.isIdentity()); QQuaternion v1(34.0f, 1.0f, 2.5f, -89.25f); QCOMPARE(v1.x(), (qreal)1.0f); QCOMPARE(v1.y(), (qreal)2.5f); QCOMPARE(v1.z(), (qreal)-89.25f); QCOMPARE(v1.scalar(), (qreal)34.0f); QVERIFY(!v1.isNull()); QQuaternion v1i(34, 1, 2, -89); QCOMPARE(v1i.x(), (qreal)1.0f); QCOMPARE(v1i.y(), (qreal)2.0f); QCOMPARE(v1i.z(), (qreal)-89.0f); QCOMPARE(v1i.scalar(), (qreal)34.0f); QVERIFY(!v1i.isNull()); QQuaternion v2(v1); QCOMPARE(v2.x(), (qreal)1.0f); QCOMPARE(v2.y(), (qreal)2.5f); QCOMPARE(v2.z(), (qreal)-89.25f); QCOMPARE(v2.scalar(), (qreal)34.0f); QVERIFY(!v2.isNull()); QQuaternion v4; QCOMPARE(v4.x(), (qreal)0.0f); QCOMPARE(v4.y(), (qreal)0.0f); QCOMPARE(v4.z(), (qreal)0.0f); QCOMPARE(v4.scalar(), (qreal)1.0f); QVERIFY(v4.isIdentity()); v4 = v1; QCOMPARE(v4.x(), (qreal)1.0f); QCOMPARE(v4.y(), (qreal)2.5f); QCOMPARE(v4.z(), (qreal)-89.25f); QCOMPARE(v4.scalar(), (qreal)34.0f); QVERIFY(!v4.isNull()); QQuaternion v9(34, QVector3D(1.0f, 2.5f, -89.25f)); QCOMPARE(v9.x(), (qreal)1.0f); QCOMPARE(v9.y(), (qreal)2.5f); QCOMPARE(v9.z(), (qreal)-89.25f); QCOMPARE(v9.scalar(), (qreal)34.0f); QVERIFY(!v9.isNull()); v1.setX(3.0f); QCOMPARE(v1.x(), (qreal)3.0f); QCOMPARE(v1.y(), (qreal)2.5f); QCOMPARE(v1.z(), (qreal)-89.25f); QCOMPARE(v1.scalar(), (qreal)34.0f); QVERIFY(!v1.isNull()); v1.setY(10.5f); QCOMPARE(v1.x(), (qreal)3.0f); QCOMPARE(v1.y(), (qreal)10.5f); QCOMPARE(v1.z(), (qreal)-89.25f); QCOMPARE(v1.scalar(), (qreal)34.0f); QVERIFY(!v1.isNull()); v1.setZ(15.5f); QCOMPARE(v1.x(), (qreal)3.0f); QCOMPARE(v1.y(), (qreal)10.5f); QCOMPARE(v1.z(), (qreal)15.5f); QCOMPARE(v1.scalar(), (qreal)34.0f); QVERIFY(!v1.isNull()); v1.setScalar(6.0f); QCOMPARE(v1.x(), (qreal)3.0f); QCOMPARE(v1.y(), (qreal)10.5f); QCOMPARE(v1.z(), (qreal)15.5f); QCOMPARE(v1.scalar(), (qreal)6.0f); QVERIFY(!v1.isNull()); v1.setVector(2.0f, 6.5f, -1.25f); QCOMPARE(v1.x(), (qreal)2.0f); QCOMPARE(v1.y(), (qreal)6.5f); QCOMPARE(v1.z(), (qreal)-1.25f); QCOMPARE(v1.scalar(), (qreal)6.0f); QVERIFY(!v1.isNull()); QVERIFY(v1.vector() == QVector3D(2.0f, 6.5f, -1.25f)); v1.setVector(QVector3D(-2.0f, -6.5f, 1.25f)); QCOMPARE(v1.x(), (qreal)-2.0f); QCOMPARE(v1.y(), (qreal)-6.5f); QCOMPARE(v1.z(), (qreal)1.25f); QCOMPARE(v1.scalar(), (qreal)6.0f); QVERIFY(!v1.isNull()); QVERIFY(v1.vector() == QVector3D(-2.0f, -6.5f, 1.25f)); v1.setX(0.0f); v1.setY(0.0f); v1.setZ(0.0f); v1.setScalar(0.0f); QCOMPARE(v1.x(), (qreal)0.0f); QCOMPARE(v1.y(), (qreal)0.0f); QCOMPARE(v1.z(), (qreal)0.0f); QCOMPARE(v1.scalar(), (qreal)0.0f); QVERIFY(v1.isNull()); QVector4D v10 = v9.toVector4D(); QCOMPARE(v10.x(), (qreal)1.0f); QCOMPARE(v10.y(), (qreal)2.5f); QCOMPARE(v10.z(), (qreal)-89.25f); QCOMPARE(v10.w(), (qreal)34.0f); } // Test length computation for quaternions. void tst_QQuaternion::length_data() { QTest::addColumn("x"); QTest::addColumn("y"); QTest::addColumn("z"); QTest::addColumn("w"); QTest::addColumn("len"); QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("1x") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("1y") << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("1z") << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("1w") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)1.0f; QTest::newRow("-1x") << (qreal)-1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("-1y") << (qreal)0.0f << (qreal)-1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("-1z") << (qreal)0.0f << (qreal)0.0f << (qreal)-1.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("-1w") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)-1.0f << (qreal)1.0f; QTest::newRow("two") << (qreal)2.0f << (qreal)-2.0f << (qreal)2.0f << (qreal)2.0f << (qreal)qSqrt(16.0f); } void tst_QQuaternion::length() { QFETCH(qreal, x); QFETCH(qreal, y); QFETCH(qreal, z); QFETCH(qreal, w); QFETCH(qreal, len); QQuaternion v(w, x, y, z); QCOMPARE(v.length(), len); QCOMPARE(v.lengthSquared(), x * x + y * y + z * z + w * w); } // Test the unit vector conversion for quaternions. void tst_QQuaternion::normalized_data() { // Use the same test data as the length test. length_data(); } void tst_QQuaternion::normalized() { QFETCH(qreal, x); QFETCH(qreal, y); QFETCH(qreal, z); QFETCH(qreal, w); QFETCH(qreal, len); QQuaternion v(w, x, y, z); QQuaternion u = v.normalized(); if (v.isNull()) QVERIFY(u.isNull()); else QCOMPARE(u.length(), qreal(1.0f)); QCOMPARE(u.x() * len, v.x()); QCOMPARE(u.y() * len, v.y()); QCOMPARE(u.z() * len, v.z()); QCOMPARE(u.scalar() * len, v.scalar()); } // Test the unit vector conversion for quaternions. void tst_QQuaternion::normalize_data() { // Use the same test data as the length test. length_data(); } void tst_QQuaternion::normalize() { QFETCH(qreal, x); QFETCH(qreal, y); QFETCH(qreal, z); QFETCH(qreal, w); QQuaternion v(w, x, y, z); bool isNull = v.isNull(); v.normalize(); if (isNull) QVERIFY(v.isNull()); else QCOMPARE(v.length(), qreal(1.0f)); } // Test the comparison operators for quaternions. void tst_QQuaternion::compare() { QQuaternion v1(8, 1, 2, 4); QQuaternion v2(8, 1, 2, 4); QQuaternion v3(8, 3, 2, 4); QQuaternion v4(8, 1, 3, 4); QQuaternion v5(8, 1, 2, 3); QQuaternion v6(3, 1, 2, 4); QVERIFY(v1 == v2); QVERIFY(v1 != v3); QVERIFY(v1 != v4); QVERIFY(v1 != v5); QVERIFY(v1 != v6); } // Test addition for quaternions. void tst_QQuaternion::add_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("w1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("w2"); QTest::addColumn("x3"); QTest::addColumn("y3"); QTest::addColumn("z3"); QTest::addColumn("w3"); QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("xonly") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("yonly") << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("zonly") << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f << (qreal)0.0f; QTest::newRow("wonly") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f; QTest::newRow("all") << (qreal)1.0f << (qreal)2.0f << (qreal)3.0f << (qreal)8.0f << (qreal)4.0f << (qreal)5.0f << (qreal)-6.0f << (qreal)9.0f << (qreal)5.0f << (qreal)7.0f << (qreal)-3.0f << (qreal)17.0f; } void tst_QQuaternion::add() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, w2); QFETCH(qreal, x3); QFETCH(qreal, y3); QFETCH(qreal, z3); QFETCH(qreal, w3); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); QQuaternion v3(w3, x3, y3, z3); QVERIFY((v1 + v2) == v3); QQuaternion v4(v1); v4 += v2; QVERIFY(v4 == v3); QCOMPARE(v4.x(), v1.x() + v2.x()); QCOMPARE(v4.y(), v1.y() + v2.y()); QCOMPARE(v4.z(), v1.z() + v2.z()); QCOMPARE(v4.scalar(), v1.scalar() + v2.scalar()); } // Test subtraction for quaternions. void tst_QQuaternion::subtract_data() { // Use the same test data as the add test. add_data(); } void tst_QQuaternion::subtract() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, w2); QFETCH(qreal, x3); QFETCH(qreal, y3); QFETCH(qreal, z3); QFETCH(qreal, w3); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); QQuaternion v3(w3, x3, y3, z3); QVERIFY((v3 - v1) == v2); QVERIFY((v3 - v2) == v1); QQuaternion v4(v3); v4 -= v1; QVERIFY(v4 == v2); QCOMPARE(v4.x(), v3.x() - v1.x()); QCOMPARE(v4.y(), v3.y() - v1.y()); QCOMPARE(v4.z(), v3.z() - v1.z()); QCOMPARE(v4.scalar(), v3.scalar() - v1.scalar()); QQuaternion v5(v3); v5 -= v2; QVERIFY(v5 == v1); QCOMPARE(v5.x(), v3.x() - v2.x()); QCOMPARE(v5.y(), v3.y() - v2.y()); QCOMPARE(v5.z(), v3.z() - v2.z()); QCOMPARE(v5.scalar(), v3.scalar() - v2.scalar()); } // Test quaternion multiplication. void tst_QQuaternion::multiply_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("w1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("w2"); QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("unitvec") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f; QTest::newRow("complex") << (qreal)1.0f << (qreal)2.0f << (qreal)3.0f << (qreal)7.0f << (qreal)4.0f << (qreal)5.0f << (qreal)6.0f << (qreal)8.0f; for (qreal w = -1.0f; w <= 1.0f; w += 0.5f) for (qreal x = -1.0f; x <= 1.0f; x += 0.5f) for (qreal y = -1.0f; y <= 1.0f; y += 0.5f) for (qreal z = -1.0f; z <= 1.0f; z += 0.5f) { QTest::newRow("exhaustive") << x << y << z << w << z << w << y << x; } } void tst_QQuaternion::multiply() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, w2); QQuaternion q1(w1, x1, y1, z1); QQuaternion q2(w2, x2, y2, z2); // Use the simple algorithm at: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q53 // to calculate the answer we expect to get. QVector3D v1(x1, y1, z1); QVector3D v2(x2, y2, z2); qreal scalar = w1 * w2 - QVector3D::dotProduct(v1, v2); QVector3D vector = w1 * v2 + w2 * v1 + QVector3D::crossProduct(v1, v2); QQuaternion result(scalar, vector); QVERIFY((q1 * q2) == result); } // Test multiplication by a factor for quaternions. void tst_QQuaternion::multiplyFactor_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("w1"); QTest::addColumn("factor"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("w2"); QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)100.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("xonly") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("yonly") << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("zonly") << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f; QTest::newRow("wonly") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f; QTest::newRow("all") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)4.0f << (qreal)2.0f << (qreal)2.0f << (qreal)4.0f << (qreal)-6.0f << (qreal)8.0f; QTest::newRow("allzero") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)4.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; } void tst_QQuaternion::multiplyFactor() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QFETCH(qreal, factor); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, w2); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); QVERIFY((v1 * factor) == v2); QVERIFY((factor * v1) == v2); QQuaternion v3(v1); v3 *= factor; QVERIFY(v3 == v2); QCOMPARE(v3.x(), v1.x() * factor); QCOMPARE(v3.y(), v1.y() * factor); QCOMPARE(v3.z(), v1.z() * factor); QCOMPARE(v3.scalar(), v1.scalar() * factor); } // Test division by a factor for quaternions. void tst_QQuaternion::divide_data() { // Use the same test data as the multiply test. multiplyFactor_data(); } void tst_QQuaternion::divide() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QFETCH(qreal, factor); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, w2); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); if (factor == (qreal)0.0f) return; QVERIFY((v2 / factor) == v1); QQuaternion v3(v2); v3 /= factor; QVERIFY(v3 == v1); QCOMPARE(v3.x(), v2.x() / factor); QCOMPARE(v3.y(), v2.y() / factor); QCOMPARE(v3.z(), v2.z() / factor); QCOMPARE(v3.scalar(), v2.scalar() / factor); } // Test negation for quaternions. void tst_QQuaternion::negate_data() { // Use the same test data as the add test. add_data(); } void tst_QQuaternion::negate() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(-w1, -x1, -y1, -z1); QVERIFY(-v1 == v2); } // Test quaternion conjugate calculations. void tst_QQuaternion::conjugate_data() { // Use the same test data as the add test. add_data(); } void tst_QQuaternion::conjugate() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, w1); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w1, -x1, -y1, -z1); QVERIFY(v1.conjugate() == v2); } // Test quaternion creation from an axis and an angle. void tst_QQuaternion::fromAxisAndAngle_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("angle"); QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f; QTest::newRow("xonly") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)90.0f; QTest::newRow("yonly") << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)180.0f; QTest::newRow("zonly") << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)270.0f; QTest::newRow("complex") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)45.0f; } void tst_QQuaternion::fromAxisAndAngle() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, angle); // Use a straight-forward implementation of the algorithm at: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 // to calculate the answer we expect to get. QVector3D vector = QVector3D(x1, y1, z1).normalized(); qreal sin_a = qSin((angle * M_PI / 180.0) / 2.0); qreal cos_a = qCos((angle * M_PI / 180.0) / 2.0); QQuaternion result((qreal)cos_a, (qreal)(vector.x() * sin_a), (qreal)(vector.y() * sin_a), (qreal)(vector.z() * sin_a)); result = result.normalized(); QQuaternion answer = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle); QVERIFY(fuzzyCompare(answer.x(), result.x())); QVERIFY(fuzzyCompare(answer.y(), result.y())); QVERIFY(fuzzyCompare(answer.z(), result.z())); QVERIFY(fuzzyCompare(answer.scalar(), result.scalar())); answer = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle); QVERIFY(fuzzyCompare(answer.x(), result.x())); QVERIFY(fuzzyCompare(answer.y(), result.y())); QVERIFY(fuzzyCompare(answer.z(), result.z())); QVERIFY(fuzzyCompare(answer.scalar(), result.scalar())); } // Test spherical interpolation of quaternions. void tst_QQuaternion::slerp_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("angle1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("angle2"); QTest::addColumn("t"); QTest::addColumn("x3"); QTest::addColumn("y3"); QTest::addColumn("z3"); QTest::addColumn("angle3"); QTest::newRow("first") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f << (qreal)0.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f; QTest::newRow("first2") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f << (qreal)-0.5f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f; QTest::newRow("second") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f << (qreal)1.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f; QTest::newRow("second2") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f << (qreal)1.5f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f; QTest::newRow("middle") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f << (qreal)0.5f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)135.0f; QTest::newRow("wide angle") << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)0.0f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)270.0f << (qreal)0.5f << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)-45.0f; } void tst_QQuaternion::slerp() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, angle1); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, angle2); QFETCH(qreal, t); QFETCH(qreal, x3); QFETCH(qreal, y3); QFETCH(qreal, z3); QFETCH(qreal, angle3); QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1); QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2); QQuaternion q3 = QQuaternion::fromAxisAndAngle(x3, y3, z3, angle3); QQuaternion result = QQuaternion::slerp(q1, q2, t); QVERIFY(fuzzyCompare(result.x(), q3.x())); QVERIFY(fuzzyCompare(result.y(), q3.y())); QVERIFY(fuzzyCompare(result.z(), q3.z())); QVERIFY(fuzzyCompare(result.scalar(), q3.scalar())); } // Test normalized linear interpolation of quaternions. void tst_QQuaternion::nlerp_data() { slerp_data(); } void tst_QQuaternion::nlerp() { QFETCH(qreal, x1); QFETCH(qreal, y1); QFETCH(qreal, z1); QFETCH(qreal, angle1); QFETCH(qreal, x2); QFETCH(qreal, y2); QFETCH(qreal, z2); QFETCH(qreal, angle2); QFETCH(qreal, t); QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1); QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2); QQuaternion result = QQuaternion::nlerp(q1, q2, t); qreal resultx, resulty, resultz, resultscalar; if (t <= 0.0f) { resultx = q1.x(); resulty = q1.y(); resultz = q1.z(); resultscalar = q1.scalar(); } else if (t >= 1.0f) { resultx = q2.x(); resulty = q2.y(); resultz = q2.z(); resultscalar = q2.scalar(); } else if (qAbs(angle1 - angle2) <= 180.f) { resultx = q1.x() * (1 - t) + q2.x() * t; resulty = q1.y() * (1 - t) + q2.y() * t; resultz = q1.z() * (1 - t) + q2.z() * t; resultscalar = q1.scalar() * (1 - t) + q2.scalar() * t; } else { // Angle greater than 180 degrees: negate q2. resultx = q1.x() * (1 - t) - q2.x() * t; resulty = q1.y() * (1 - t) - q2.y() * t; resultz = q1.z() * (1 - t) - q2.z() * t; resultscalar = q1.scalar() * (1 - t) - q2.scalar() * t; } QQuaternion q3 = QQuaternion(resultscalar, resultx, resulty, resultz).normalized(); QVERIFY(fuzzyCompare(result.x(), q3.x())); QVERIFY(fuzzyCompare(result.y(), q3.y())); QVERIFY(fuzzyCompare(result.z(), q3.z())); QVERIFY(fuzzyCompare(result.scalar(), q3.scalar())); } class tst_QQuaternionProperties : public QObject { Q_OBJECT Q_PROPERTY(QQuaternion quaternion READ quaternion WRITE setQuaternion) public: tst_QQuaternionProperties(QObject *parent = 0) : QObject(parent) {} QQuaternion quaternion() const { return q; } void setQuaternion(const QQuaternion& value) { q = value; } private: QQuaternion q; }; // Test getting and setting quaternion properties via the metaobject system. void tst_QQuaternion::properties() { tst_QQuaternionProperties obj; obj.setQuaternion(QQuaternion(6.0f, 7.0f, 8.0f, 9.0f)); QQuaternion q = qvariant_cast(obj.property("quaternion")); QCOMPARE(q.scalar(), (qreal)6.0f); QCOMPARE(q.x(), (qreal)7.0f); QCOMPARE(q.y(), (qreal)8.0f); QCOMPARE(q.z(), (qreal)9.0f); obj.setProperty("quaternion", QVariant::fromValue(QQuaternion(-6.0f, -7.0f, -8.0f, -9.0f))); q = qvariant_cast(obj.property("quaternion")); QCOMPARE(q.scalar(), (qreal)-6.0f); QCOMPARE(q.x(), (qreal)-7.0f); QCOMPARE(q.y(), (qreal)-8.0f); QCOMPARE(q.z(), (qreal)-9.0f); } void tst_QQuaternion::metaTypes() { QVERIFY(QMetaType::type("QQuaternion") == QMetaType::QQuaternion); QCOMPARE(QByteArray(QMetaType::typeName(QMetaType::QQuaternion)), QByteArray("QQuaternion")); QVERIFY(QMetaType::isRegistered(QMetaType::QQuaternion)); QVERIFY(qMetaTypeId() == QMetaType::QQuaternion); } QTEST_APPLESS_MAIN(tst_QQuaternion) #include "tst_qquaternion.moc"