/**************************************************************************** ** ** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/legal ** ** This file is part of the test suite of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and Digia. For licensing terms and ** conditions see http://qt.digia.com/licensing. For further information ** use the contact form at http://qt.digia.com/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Digia gives you certain additional ** rights. These rights are described in the Digia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include class tst_QGraphicsTransform : public QObject { Q_OBJECT public slots: void initTestCase(); void cleanupTestCase(); void init(); void cleanup(); private slots: void scale(); void rotation(); void rotation3d_data(); void rotation3d(); void rotation3dArbitraryAxis_data(); void rotation3dArbitraryAxis(); private: QString toString(QTransform const&); }; // This will be called before the first test function is executed. // It is only called once. void tst_QGraphicsTransform::initTestCase() { } // This will be called after the last test function is executed. // It is only called once. void tst_QGraphicsTransform::cleanupTestCase() { } // This will be called before each test function is executed. void tst_QGraphicsTransform::init() { } // This will be called after every test function. void tst_QGraphicsTransform::cleanup() { } static QTransform transform2D(const QGraphicsTransform& t) { QMatrix4x4 m; t.applyTo(&m); return m.toTransform(); } void tst_QGraphicsTransform::scale() { QGraphicsScale scale; // check initial conditions QCOMPARE(scale.xScale(), qreal(1)); QCOMPARE(scale.yScale(), qreal(1)); QCOMPARE(scale.zScale(), qreal(1)); QCOMPARE(scale.origin(), QVector3D(0, 0, 0)); scale.setOrigin(QVector3D(10, 10, 0)); QCOMPARE(scale.xScale(), qreal(1)); QCOMPARE(scale.yScale(), qreal(1)); QCOMPARE(scale.zScale(), qreal(1)); QCOMPARE(scale.origin(), QVector3D(10, 10, 0)); QMatrix4x4 t; scale.applyTo(&t); QCOMPARE(t, QMatrix4x4()); QCOMPARE(transform2D(scale), QTransform()); scale.setXScale(10); scale.setOrigin(QVector3D(0, 0, 0)); QCOMPARE(scale.xScale(), qreal(10)); QCOMPARE(scale.yScale(), qreal(1)); QCOMPARE(scale.zScale(), qreal(1)); QCOMPARE(scale.origin(), QVector3D(0, 0, 0)); QTransform res; res.scale(10, 1); QCOMPARE(transform2D(scale), res); QCOMPARE(transform2D(scale).map(QPointF(10, 10)), QPointF(100, 10)); scale.setOrigin(QVector3D(10, 10, 0)); QCOMPARE(transform2D(scale).map(QPointF(10, 10)), QPointF(10, 10)); QCOMPARE(transform2D(scale).map(QPointF(11, 10)), QPointF(20, 10)); scale.setYScale(2); scale.setZScale(4.5); scale.setOrigin(QVector3D(1, 2, 3)); QCOMPARE(scale.xScale(), qreal(10)); QCOMPARE(scale.yScale(), qreal(2)); QCOMPARE(scale.zScale(), qreal(4.5)); QCOMPARE(scale.origin(), QVector3D(1, 2, 3)); QMatrix4x4 t2; scale.applyTo(&t2); QCOMPARE(t2.map(QVector3D(4, 5, 6)), QVector3D(31, 8, 16.5)); // Because the origin has a non-zero z, mapping (4, 5) in 2D // will introduce a projective component into the result. QTransform t3 = t2.toTransform(); QCOMPARE(t3.map(QPointF(4, 5)), QPointF(31 / t3.m33(), 8 / t3.m33())); } // fuzzyCompareNonZero is a very slightly looser version of qFuzzyCompare // for use with values that are not very close to zero Q_DECL_CONSTEXPR static inline bool fuzzyCompareNonZero(float p1, float p2) { return (qAbs(p1 - p2) <= 0.00003f * qMin(qAbs(p1), qAbs(p2))); } // This is a more tolerant version of qFuzzyCompare that also handles the case // where one or more of the values being compare are close to zero static inline bool fuzzyCompare(float p1, float p2) { if (qFuzzyIsNull(p1)) return qFuzzyIsNull(p2); else if (qFuzzyIsNull(p2)) return false; else return fuzzyCompareNonZero(p1, p2); } // This compares two QTransforms by casting the elements to float. This is // necessary here because in this test one of the transforms is created from // a QMatrix4x4 which uses float storage. static bool fuzzyCompareAsFloat(const QTransform& t1, const QTransform& t2) { return fuzzyCompare(float(t1.m11()), float(t2.m11())) && fuzzyCompare(float(t1.m12()), float(t2.m12())) && fuzzyCompare(float(t1.m13()), float(t2.m13())) && fuzzyCompare(float(t1.m21()), float(t2.m21())) && fuzzyCompare(float(t1.m22()), float(t2.m22())) && fuzzyCompare(float(t1.m23()), float(t2.m23())) && fuzzyCompare(float(t1.m31()), float(t2.m31())) && fuzzyCompare(float(t1.m32()), float(t2.m32())) && fuzzyCompare(float(t1.m33()), float(t2.m33())); } static inline bool fuzzyCompare(const QMatrix4x4& m1, const QMatrix4x4& m2) { bool ok = true; for (int y = 0; y < 4; ++y) for (int x = 0; x < 4; ++x) ok &= fuzzyCompare(m1(y, x), m2(y, x)); return ok; } void tst_QGraphicsTransform::rotation() { QGraphicsRotation rotation; QCOMPARE(rotation.axis(), QVector3D(0, 0, 1)); QCOMPARE(rotation.origin(), QVector3D(0, 0, 0)); QCOMPARE(rotation.angle(), (qreal)0); rotation.setOrigin(QVector3D(10, 10, 0)); QCOMPARE(rotation.axis(), QVector3D(0, 0, 1)); QCOMPARE(rotation.origin(), QVector3D(10, 10, 0)); QCOMPARE(rotation.angle(), (qreal)0); QMatrix4x4 t; rotation.applyTo(&t); QCOMPARE(t, QMatrix4x4()); QCOMPARE(transform2D(rotation), QTransform()); rotation.setAngle(40); rotation.setOrigin(QVector3D(0, 0, 0)); QCOMPARE(rotation.axis(), QVector3D(0, 0, 1)); QCOMPARE(rotation.origin(), QVector3D(0, 0, 0)); QCOMPARE(rotation.angle(), (qreal)40); QTransform res; res.rotate(40); QVERIFY(fuzzyCompareAsFloat(transform2D(rotation), res)); rotation.setOrigin(QVector3D(10, 10, 0)); rotation.setAngle(90); QCOMPARE(transform2D(rotation).map(QPointF(10, 10)), QPointF(10, 10)); QCOMPARE(transform2D(rotation).map(QPointF(20, 10)), QPointF(10, 20)); rotation.setOrigin(QVector3D(0, 0, 0)); rotation.setAngle(qQNaN()); QCOMPARE(transform2D(rotation).map(QPointF(20, 10)), QPointF(20, 10)); } Q_DECLARE_METATYPE(Qt::Axis); void tst_QGraphicsTransform::rotation3d_data() { QTest::addColumn("axis"); QTest::addColumn("angle"); for (int angle = 0; angle <= 360; angle++) { QTest::newRow("test rotation on X") << Qt::XAxis << qreal(angle); QTest::newRow("test rotation on Y") << Qt::YAxis << qreal(angle); QTest::newRow("test rotation on Z") << Qt::ZAxis << qreal(angle); } } void tst_QGraphicsTransform::rotation3d() { QFETCH(Qt::Axis, axis); QFETCH(qreal, angle); QGraphicsRotation rotation; rotation.setAxis(axis); QMatrix4x4 t; rotation.applyTo(&t); QVERIFY(t.isIdentity()); QVERIFY(transform2D(rotation).isIdentity()); rotation.setAngle(angle); // QGraphicsRotation uses a correct mathematical rotation in 3D. // QTransform's Qt::YAxis rotation is inverted from the mathematical // version of rotation. We correct for that here. QTransform expected; if (axis == Qt::YAxis && angle != 180.) expected.rotate(-angle, axis); else expected.rotate(angle, axis); QVERIFY(fuzzyCompareAsFloat(transform2D(rotation), expected)); // Check that "rotation" produces the 4x4 form of the 3x3 matrix. // i.e. third row and column are 0 0 1 0. t.setToIdentity(); rotation.applyTo(&t); QMatrix4x4 r(expected); QVERIFY(fuzzyCompare(t, r)); //now let's check that a null vector will not change the transform rotation.setAxis(QVector3D(0, 0, 0)); rotation.setOrigin(QVector3D(10, 10, 0)); t.setToIdentity(); rotation.applyTo(&t); QVERIFY(t.isIdentity()); QVERIFY(transform2D(rotation).isIdentity()); rotation.setAngle(angle); QVERIFY(t.isIdentity()); QVERIFY(transform2D(rotation).isIdentity()); rotation.setOrigin(QVector3D(0, 0, 0)); QVERIFY(t.isIdentity()); QVERIFY(transform2D(rotation).isIdentity()); } QByteArray labelForTest(QVector3D const& axis, int angle) { return QString("rotation of %1 on (%2, %3, %4)") .arg(angle) .arg(axis.x()) .arg(axis.y()) .arg(axis.z()) .toLatin1(); } void tst_QGraphicsTransform::rotation3dArbitraryAxis_data() { QTest::addColumn("axis"); QTest::addColumn("angle"); QVector3D axis1 = QVector3D(1.0f, 1.0f, 1.0f); QVector3D axis2 = QVector3D(2.0f, -3.0f, 0.5f); QVector3D axis3 = QVector3D(-2.0f, 0.0f, -0.5f); QVector3D axis4 = QVector3D(0.0001f, 0.0001f, 0.0001f); QVector3D axis5 = QVector3D(0.01f, 0.01f, 0.01f); for (int angle = 0; angle <= 360; angle++) { QTest::newRow(labelForTest(axis1, angle).constData()) << axis1 << qreal(angle); QTest::newRow(labelForTest(axis2, angle).constData()) << axis2 << qreal(angle); QTest::newRow(labelForTest(axis3, angle).constData()) << axis3 << qreal(angle); QTest::newRow(labelForTest(axis4, angle).constData()) << axis4 << qreal(angle); QTest::newRow(labelForTest(axis5, angle).constData()) << axis5 << qreal(angle); } } void tst_QGraphicsTransform::rotation3dArbitraryAxis() { QFETCH(QVector3D, axis); QFETCH(qreal, angle); QGraphicsRotation rotation; rotation.setAxis(axis); QMatrix4x4 t; rotation.applyTo(&t); QVERIFY(t.isIdentity()); QVERIFY(transform2D(rotation).isIdentity()); rotation.setAngle(angle); // Compute the expected answer using QMatrix4x4 and a projection. // These two steps are performed in one hit by QGraphicsRotation. QMatrix4x4 exp; exp.rotate(angle, axis); QTransform expected = exp.toTransform(1024.0f); QTransform actual = transform2D(rotation); QVERIFY2(fuzzyCompareAsFloat(actual, expected), qPrintable( QString("\nactual: %1\n" "expected: %2") .arg(toString(actual)) .arg(toString(expected)) )); // Check that "rotation" produces the 4x4 form of the 3x3 matrix. // i.e. third row and column are 0 0 1 0. t.setToIdentity(); rotation.applyTo(&t); QMatrix4x4 r(expected); for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { float a = t(row, col); float b = r(row, col); QVERIFY2(fuzzyCompare(a, b), QString("%1 is not equal to %2").arg(a).arg(b).toLatin1()); } } } QString tst_QGraphicsTransform::toString(QTransform const& t) { return QString("[ [ %1 %2 %3 ]; [ %4 %5 %6 ]; [ %7 %8 %9 ] ]") .arg(t.m11()) .arg(t.m12()) .arg(t.m13()) .arg(t.m21()) .arg(t.m22()) .arg(t.m23()) .arg(t.m31()) .arg(t.m32()) .arg(t.m33()) ; } QTEST_MAIN(tst_QGraphicsTransform) #include "tst_qgraphicstransform.moc"