summaryrefslogtreecommitdiffstats
path: root/examples/vulkan/hellovulkantexture/hellovulkantexture.cpp
blob: 5e52d5e006fffed86de0c51dc40562a7b645dad8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/****************************************************************************
**
** Copyright (C) 2017 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the examples of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:BSD$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** BSD License Usage
** Alternatively, you may use this file under the terms of the BSD license
** as follows:
**
** "Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are
** met:
**   * Redistributions of source code must retain the above copyright
**     notice, this list of conditions and the following disclaimer.
**   * Redistributions in binary form must reproduce the above copyright
**     notice, this list of conditions and the following disclaimer in
**     the documentation and/or other materials provided with the
**     distribution.
**   * Neither the name of The Qt Company Ltd nor the names of its
**     contributors may be used to endorse or promote products derived
**     from this software without specific prior written permission.
**
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "hellovulkantexture.h"
#include <QVulkanFunctions>
#include <QCoreApplication>
#include <QFile>

// Use a triangle strip to get a quad.
//
// Note that the vertex data and the projection matrix assume OpenGL. With
// Vulkan Y is negated in clip space and the near/far plane is at 0/1 instead
// of -1/1. These will be corrected for by an extra transformation when
// calculating the modelview-projection matrix.
static float vertexData[] = {
    // x, y, z, u, v
    -1, -1, 0, 0, 1,
    -1,  1, 0, 0, 0,
     1, -1, 0, 1, 1,
     1,  1, 0, 1, 0
};

static const int UNIFORM_DATA_SIZE = 16 * sizeof(float);

static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
{
    return (v + byteAlign - 1) & ~(byteAlign - 1);
}

QVulkanWindowRenderer *VulkanWindow::createRenderer()
{
    return new VulkanRenderer(this);
}

VulkanRenderer::VulkanRenderer(QVulkanWindow *w)
    : m_window(w)
{
}

VkShaderModule VulkanRenderer::createShader(const QString &name)
{
    QFile file(name);
    if (!file.open(QIODevice::ReadOnly)) {
        qWarning("Failed to read shader %s", qPrintable(name));
        return VK_NULL_HANDLE;
    }
    QByteArray blob = file.readAll();
    file.close();

    VkShaderModuleCreateInfo shaderInfo;
    memset(&shaderInfo, 0, sizeof(shaderInfo));
    shaderInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    shaderInfo.codeSize = blob.size();
    shaderInfo.pCode = reinterpret_cast<const uint32_t *>(blob.constData());
    VkShaderModule shaderModule;
    VkResult err = m_devFuncs->vkCreateShaderModule(m_window->device(), &shaderInfo, nullptr, &shaderModule);
    if (err != VK_SUCCESS) {
        qWarning("Failed to create shader module: %d", err);
        return VK_NULL_HANDLE;
    }

    return shaderModule;
}

bool VulkanRenderer::createTexture(const QString &name)
{
    QImage img(name);
    if (img.isNull()) {
        qWarning("Failed to load image %s", qPrintable(name));
        return false;
    }

    // Convert to byte ordered RGBA8. Use premultiplied alpha, see pColorBlendState in the pipeline.
    img = img.convertToFormat(QImage::Format_RGBA8888_Premultiplied);

    QVulkanFunctions *f = m_window->vulkanInstance()->functions();
    VkDevice dev = m_window->device();

    const bool srgb = QCoreApplication::arguments().contains(QStringLiteral("--srgb"));
    if (srgb)
        qDebug("sRGB swapchain was requested, making texture sRGB too");

    m_texFormat = srgb ? VK_FORMAT_R8G8B8A8_SRGB : VK_FORMAT_R8G8B8A8_UNORM;

    // Now we can either map and copy the image data directly, or have to go
    // through a staging buffer to copy and convert into the internal optimal
    // tiling format.
    VkFormatProperties props;
    f->vkGetPhysicalDeviceFormatProperties(m_window->physicalDevice(), m_texFormat, &props);
    const bool canSampleLinear = (props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
    const bool canSampleOptimal = (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
    if (!canSampleLinear && !canSampleOptimal) {
        qWarning("Neither linear nor optimal image sampling is supported for RGBA8");
        return false;
    }

    static bool alwaysStage = qEnvironmentVariableIntValue("QT_VK_FORCE_STAGE_TEX");

    if (canSampleLinear && !alwaysStage) {
        if (!createTextureImage(img.size(), &m_texImage, &m_texMem,
                                VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_SAMPLED_BIT,
                                m_window->hostVisibleMemoryIndex()))
            return false;

        if (!writeLinearImage(img, m_texImage, m_texMem))
            return false;

        m_texLayoutPending = true;
    } else {
        if (!createTextureImage(img.size(), &m_texStaging, &m_texStagingMem,
                                VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
                                m_window->hostVisibleMemoryIndex()))
            return false;

        if (!createTextureImage(img.size(), &m_texImage, &m_texMem,
                                VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT,
                                m_window->deviceLocalMemoryIndex()))
            return false;

        if (!writeLinearImage(img, m_texStaging, m_texStagingMem))
            return false;

        m_texStagingPending = true;
    }

    VkImageViewCreateInfo viewInfo;
    memset(&viewInfo, 0, sizeof(viewInfo));
    viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    viewInfo.image = m_texImage;
    viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
    viewInfo.format = m_texFormat;
    viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
    viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
    viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
    viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
    viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    viewInfo.subresourceRange.levelCount = viewInfo.subresourceRange.layerCount = 1;

    VkResult err = m_devFuncs->vkCreateImageView(dev, &viewInfo, nullptr, &m_texView);
    if (err != VK_SUCCESS) {
        qWarning("Failed to create image view for texture: %d", err);
        return false;
    }

    m_texSize = img.size();

    return true;
}

bool VulkanRenderer::createTextureImage(const QSize &size, VkImage *image, VkDeviceMemory *mem,
                                        VkImageTiling tiling, VkImageUsageFlags usage, uint32_t memIndex)
{
    VkDevice dev = m_window->device();

    VkImageCreateInfo imageInfo;
    memset(&imageInfo, 0, sizeof(imageInfo));
    imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
    imageInfo.imageType = VK_IMAGE_TYPE_2D;
    imageInfo.format = m_texFormat;
    imageInfo.extent.width = size.width();
    imageInfo.extent.height = size.height();
    imageInfo.extent.depth = 1;
    imageInfo.mipLevels = 1;
    imageInfo.arrayLayers = 1;
    imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
    imageInfo.tiling = tiling;
    imageInfo.usage = usage;
    imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;

    VkResult err = m_devFuncs->vkCreateImage(dev, &imageInfo, nullptr, image);
    if (err != VK_SUCCESS) {
        qWarning("Failed to create linear image for texture: %d", err);
        return false;
    }

    VkMemoryRequirements memReq;
    m_devFuncs->vkGetImageMemoryRequirements(dev, *image, &memReq);

    VkMemoryAllocateInfo allocInfo = {
        VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
        nullptr,
        memReq.size,
        memIndex
    };
    qDebug("allocating %u bytes for texture image", uint32_t(memReq.size));

    err = m_devFuncs->vkAllocateMemory(dev, &allocInfo, nullptr, mem);
    if (err != VK_SUCCESS) {
        qWarning("Failed to allocate memory for linear image: %d", err);
        return false;
    }

    err = m_devFuncs->vkBindImageMemory(dev, *image, *mem, 0);
    if (err != VK_SUCCESS) {
        qWarning("Failed to bind linear image memory: %d", err);
        return false;
    }

    return true;
}

bool VulkanRenderer::writeLinearImage(const QImage &img, VkImage image, VkDeviceMemory memory)
{
    VkDevice dev = m_window->device();

    VkImageSubresource subres = {
        VK_IMAGE_ASPECT_COLOR_BIT,
        0, // mip level
        0
    };
    VkSubresourceLayout layout;
    m_devFuncs->vkGetImageSubresourceLayout(dev, image, &subres, &layout);

    uchar *p;
    VkResult err = m_devFuncs->vkMapMemory(dev, memory, layout.offset, layout.size, 0, reinterpret_cast<void **>(&p));
    if (err != VK_SUCCESS) {
        qWarning("Failed to map memory for linear image: %d", err);
        return false;
    }

    for (int y = 0; y < img.height(); ++y) {
        const uchar *line = img.constScanLine(y);
        memcpy(p, line, img.width() * 4);
        p += layout.rowPitch;
    }

    m_devFuncs->vkUnmapMemory(dev, memory);
    return true;
}

void VulkanRenderer::ensureTexture()
{
    if (!m_texLayoutPending && !m_texStagingPending)
        return;

    Q_ASSERT(m_texLayoutPending != m_texStagingPending);
    VkCommandBuffer cb = m_window->currentCommandBuffer();

    VkImageMemoryBarrier barrier;
    memset(&barrier, 0, sizeof(barrier));
    barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    barrier.subresourceRange.levelCount = barrier.subresourceRange.layerCount = 1;

    if (m_texLayoutPending) {
        m_texLayoutPending = false;

        barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
        barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
        barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
        barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
        barrier.image = m_texImage;

        m_devFuncs->vkCmdPipelineBarrier(cb,
                                VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                                VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
                                0, 0, nullptr, 0, nullptr,
                                1, &barrier);
    } else {
        m_texStagingPending = false;

        barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
        barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
        barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
        barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
        barrier.image = m_texStaging;
        m_devFuncs->vkCmdPipelineBarrier(cb,
                                VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                                VK_PIPELINE_STAGE_TRANSFER_BIT,
                                0, 0, nullptr, 0, nullptr,
                                1, &barrier);

        barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
        barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
        barrier.srcAccessMask = 0;
        barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
        barrier.image = m_texImage;
        m_devFuncs->vkCmdPipelineBarrier(cb,
                                VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                                VK_PIPELINE_STAGE_TRANSFER_BIT,
                                0, 0, nullptr, 0, nullptr,
                                1, &barrier);

        VkImageCopy copyInfo;
        memset(&copyInfo, 0, sizeof(copyInfo));
        copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
        copyInfo.srcSubresource.layerCount = 1;
        copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
        copyInfo.dstSubresource.layerCount = 1;
        copyInfo.extent.width = m_texSize.width();
        copyInfo.extent.height = m_texSize.height();
        copyInfo.extent.depth = 1;
        m_devFuncs->vkCmdCopyImage(cb, m_texStaging, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
                          m_texImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyInfo);

        barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
        barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
        barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
        barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
        barrier.image = m_texImage;
        m_devFuncs->vkCmdPipelineBarrier(cb,
                                VK_PIPELINE_STAGE_TRANSFER_BIT,
                                VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
                                0, 0, nullptr, 0, nullptr,
                                1, &barrier);
    }
}

void VulkanRenderer::initResources()
{
    qDebug("initResources");

    VkDevice dev = m_window->device();
    m_devFuncs = m_window->vulkanInstance()->deviceFunctions(dev);

    // The setup is similar to hellovulkantriangle. The difference is the
    // presence of a second vertex attribute (texcoord), a sampler, and that we
    // need blending.

    const int concurrentFrameCount = m_window->concurrentFrameCount();
    const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
    const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;
    qDebug("uniform buffer offset alignment is %u", (uint) uniAlign);
    VkBufferCreateInfo bufInfo;
    memset(&bufInfo, 0, sizeof(bufInfo));
    bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    // Our internal layout is vertex, uniform, uniform, ... with each uniform buffer start offset aligned to uniAlign.
    const VkDeviceSize vertexAllocSize = aligned(sizeof(vertexData), uniAlign);
    const VkDeviceSize uniformAllocSize = aligned(UNIFORM_DATA_SIZE, uniAlign);
    bufInfo.size = vertexAllocSize + concurrentFrameCount * uniformAllocSize;
    bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;

    VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_buf);
    if (err != VK_SUCCESS)
        qFatal("Failed to create buffer: %d", err);

    VkMemoryRequirements memReq;
    m_devFuncs->vkGetBufferMemoryRequirements(dev, m_buf, &memReq);

    VkMemoryAllocateInfo memAllocInfo = {
        VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
        nullptr,
        memReq.size,
        m_window->hostVisibleMemoryIndex()
    };

    err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
    if (err != VK_SUCCESS)
        qFatal("Failed to allocate memory: %d", err);

    err = m_devFuncs->vkBindBufferMemory(dev, m_buf, m_bufMem, 0);
    if (err != VK_SUCCESS)
        qFatal("Failed to bind buffer memory: %d", err);

    quint8 *p;
    err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, memReq.size, 0, reinterpret_cast<void **>(&p));
    if (err != VK_SUCCESS)
        qFatal("Failed to map memory: %d", err);
    memcpy(p, vertexData, sizeof(vertexData));
    QMatrix4x4 ident;
    memset(m_uniformBufInfo, 0, sizeof(m_uniformBufInfo));
    for (int i = 0; i < concurrentFrameCount; ++i) {
        const VkDeviceSize offset = vertexAllocSize + i * uniformAllocSize;
        memcpy(p + offset, ident.constData(), 16 * sizeof(float));
        m_uniformBufInfo[i].buffer = m_buf;
        m_uniformBufInfo[i].offset = offset;
        m_uniformBufInfo[i].range = uniformAllocSize;
    }
    m_devFuncs->vkUnmapMemory(dev, m_bufMem);

    VkVertexInputBindingDescription vertexBindingDesc = {
        0, // binding
        5 * sizeof(float),
        VK_VERTEX_INPUT_RATE_VERTEX
    };
    VkVertexInputAttributeDescription vertexAttrDesc[] = {
        { // position
            0, // location
            0, // binding
            VK_FORMAT_R32G32B32_SFLOAT,
            0
        },
        { // texcoord
            1,
            0,
            VK_FORMAT_R32G32_SFLOAT,
            3 * sizeof(float)
        }
    };

    VkPipelineVertexInputStateCreateInfo vertexInputInfo;
    vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
    vertexInputInfo.pNext = nullptr;
    vertexInputInfo.flags = 0;
    vertexInputInfo.vertexBindingDescriptionCount = 1;
    vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
    vertexInputInfo.vertexAttributeDescriptionCount = 2;
    vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;

    // Sampler.
    VkSamplerCreateInfo samplerInfo;
    memset(&samplerInfo, 0, sizeof(samplerInfo));
    samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
    samplerInfo.magFilter = VK_FILTER_NEAREST;
    samplerInfo.minFilter = VK_FILTER_NEAREST;
    samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
    samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
    samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
    err = m_devFuncs->vkCreateSampler(dev, &samplerInfo, nullptr, &m_sampler);
    if (err != VK_SUCCESS)
        qFatal("Failed to create sampler: %d", err);

    // Texture.
    if (!createTexture(QStringLiteral(":/qt256.png")))
        qFatal("Failed to create texture");

    // Set up descriptor set and its layout.
    VkDescriptorPoolSize descPoolSizes[2] = {
        { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uint32_t(concurrentFrameCount) },
        { VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, uint32_t(concurrentFrameCount) }
    };
    VkDescriptorPoolCreateInfo descPoolInfo;
    memset(&descPoolInfo, 0, sizeof(descPoolInfo));
    descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
    descPoolInfo.maxSets = concurrentFrameCount;
    descPoolInfo.poolSizeCount = 2;
    descPoolInfo.pPoolSizes = descPoolSizes;
    err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_descPool);
    if (err != VK_SUCCESS)
        qFatal("Failed to create descriptor pool: %d", err);

    VkDescriptorSetLayoutBinding layoutBinding[2] =
    {
        {
            0, // binding
            VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
            1, // descriptorCount
            VK_SHADER_STAGE_VERTEX_BIT,
            nullptr
        },
        {
            1, // binding
            VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
            1, // descriptorCount
            VK_SHADER_STAGE_FRAGMENT_BIT,
            nullptr
        }
    };
    VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
        VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
        nullptr,
        0,
        2, // bindingCount
        layoutBinding
    };
    err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_descSetLayout);
    if (err != VK_SUCCESS)
        qFatal("Failed to create descriptor set layout: %d", err);

    for (int i = 0; i < concurrentFrameCount; ++i) {
        VkDescriptorSetAllocateInfo descSetAllocInfo = {
            VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
            nullptr,
            m_descPool,
            1,
            &m_descSetLayout
        };
        err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_descSet[i]);
        if (err != VK_SUCCESS)
            qFatal("Failed to allocate descriptor set: %d", err);

        VkWriteDescriptorSet descWrite[2];
        memset(descWrite, 0, sizeof(descWrite));
        descWrite[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
        descWrite[0].dstSet = m_descSet[i];
        descWrite[0].dstBinding = 0;
        descWrite[0].descriptorCount = 1;
        descWrite[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
        descWrite[0].pBufferInfo = &m_uniformBufInfo[i];

        VkDescriptorImageInfo descImageInfo = {
            m_sampler,
            m_texView,
            VK_IMAGE_LAYOUT_GENERAL
        };

        descWrite[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
        descWrite[1].dstSet = m_descSet[i];
        descWrite[1].dstBinding = 1;
        descWrite[1].descriptorCount = 1;
        descWrite[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
        descWrite[1].pImageInfo = &descImageInfo;

        m_devFuncs->vkUpdateDescriptorSets(dev, 2, descWrite, 0, nullptr);
    }

    // Pipeline cache
    VkPipelineCacheCreateInfo pipelineCacheInfo;
    memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
    pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
    if (err != VK_SUCCESS)
        qFatal("Failed to create pipeline cache: %d", err);

    // Pipeline layout
    VkPipelineLayoutCreateInfo pipelineLayoutInfo;
    memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
    pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    pipelineLayoutInfo.setLayoutCount = 1;
    pipelineLayoutInfo.pSetLayouts = &m_descSetLayout;
    err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_pipelineLayout);
    if (err != VK_SUCCESS)
        qFatal("Failed to create pipeline layout: %d", err);

    // Shaders
    VkShaderModule vertShaderModule = createShader(QStringLiteral(":/texture_vert.spv"));
    VkShaderModule fragShaderModule = createShader(QStringLiteral(":/texture_frag.spv"));

    // Graphics pipeline
    VkGraphicsPipelineCreateInfo pipelineInfo;
    memset(&pipelineInfo, 0, sizeof(pipelineInfo));
    pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;

    VkPipelineShaderStageCreateInfo shaderStages[2] = {
        {
            VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
            nullptr,
            0,
            VK_SHADER_STAGE_VERTEX_BIT,
            vertShaderModule,
            "main",
            nullptr
        },
        {
            VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
            nullptr,
            0,
            VK_SHADER_STAGE_FRAGMENT_BIT,
            fragShaderModule,
            "main",
            nullptr
        }
    };
    pipelineInfo.stageCount = 2;
    pipelineInfo.pStages = shaderStages;

    pipelineInfo.pVertexInputState = &vertexInputInfo;

    VkPipelineInputAssemblyStateCreateInfo ia;
    memset(&ia, 0, sizeof(ia));
    ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
    pipelineInfo.pInputAssemblyState = &ia;

    // The viewport and scissor will be set dynamically via vkCmdSetViewport/Scissor.
    // This way the pipeline does not need to be touched when resizing the window.
    VkPipelineViewportStateCreateInfo vp;
    memset(&vp, 0, sizeof(vp));
    vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
    vp.viewportCount = 1;
    vp.scissorCount = 1;
    pipelineInfo.pViewportState = &vp;

    VkPipelineRasterizationStateCreateInfo rs;
    memset(&rs, 0, sizeof(rs));
    rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
    rs.polygonMode = VK_POLYGON_MODE_FILL;
    rs.cullMode = VK_CULL_MODE_BACK_BIT;
    rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
    rs.lineWidth = 1.0f;
    pipelineInfo.pRasterizationState = &rs;

    VkPipelineMultisampleStateCreateInfo ms;
    memset(&ms, 0, sizeof(ms));
    ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
    ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
    pipelineInfo.pMultisampleState = &ms;

    VkPipelineDepthStencilStateCreateInfo ds;
    memset(&ds, 0, sizeof(ds));
    ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
    ds.depthTestEnable = VK_TRUE;
    ds.depthWriteEnable = VK_TRUE;
    ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
    pipelineInfo.pDepthStencilState = &ds;

    VkPipelineColorBlendStateCreateInfo cb;
    memset(&cb, 0, sizeof(cb));
    cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
    // assume pre-multiplied alpha, blend, write out all of rgba
    VkPipelineColorBlendAttachmentState att;
    memset(&att, 0, sizeof(att));
    att.colorWriteMask = 0xF;
    att.blendEnable = VK_TRUE;
    att.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
    att.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
    att.colorBlendOp = VK_BLEND_OP_ADD;
    att.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
    att.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
    att.alphaBlendOp = VK_BLEND_OP_ADD;
    cb.attachmentCount = 1;
    cb.pAttachments = &att;
    pipelineInfo.pColorBlendState = &cb;

    VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
    VkPipelineDynamicStateCreateInfo dyn;
    memset(&dyn, 0, sizeof(dyn));
    dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
    dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
    dyn.pDynamicStates = dynEnable;
    pipelineInfo.pDynamicState = &dyn;

    pipelineInfo.layout = m_pipelineLayout;
    pipelineInfo.renderPass = m_window->defaultRenderPass();

    err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_pipeline);
    if (err != VK_SUCCESS)
        qFatal("Failed to create graphics pipeline: %d", err);

    if (vertShaderModule)
        m_devFuncs->vkDestroyShaderModule(dev, vertShaderModule, nullptr);
    if (fragShaderModule)
        m_devFuncs->vkDestroyShaderModule(dev, fragShaderModule, nullptr);
}

void VulkanRenderer::initSwapChainResources()
{
    qDebug("initSwapChainResources");

    // Projection matrix
    m_proj = *m_window->clipCorrectionMatrix(); // adjust for Vulkan-OpenGL clip space differences
    const QSize sz = m_window->swapChainImageSize();
    m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 100.0f);
    m_proj.translate(0, 0, -4);
}

void VulkanRenderer::releaseSwapChainResources()
{
    qDebug("releaseSwapChainResources");
}

void VulkanRenderer::releaseResources()
{
    qDebug("releaseResources");

    VkDevice dev = m_window->device();

    if (m_sampler) {
        m_devFuncs->vkDestroySampler(dev, m_sampler, nullptr);
        m_sampler = VK_NULL_HANDLE;
    }

    if (m_texStaging) {
        m_devFuncs->vkDestroyImage(dev, m_texStaging, nullptr);
        m_texStaging = VK_NULL_HANDLE;
    }

    if (m_texStagingMem) {
        m_devFuncs->vkFreeMemory(dev, m_texStagingMem, nullptr);
        m_texStagingMem = VK_NULL_HANDLE;
    }

    if (m_texView) {
        m_devFuncs->vkDestroyImageView(dev, m_texView, nullptr);
        m_texView = VK_NULL_HANDLE;
    }

    if (m_texImage) {
        m_devFuncs->vkDestroyImage(dev, m_texImage, nullptr);
        m_texImage = VK_NULL_HANDLE;
    }

    if (m_texMem) {
        m_devFuncs->vkFreeMemory(dev, m_texMem, nullptr);
        m_texMem = VK_NULL_HANDLE;
    }

    if (m_pipeline) {
        m_devFuncs->vkDestroyPipeline(dev, m_pipeline, nullptr);
        m_pipeline = VK_NULL_HANDLE;
    }

    if (m_pipelineLayout) {
        m_devFuncs->vkDestroyPipelineLayout(dev, m_pipelineLayout, nullptr);
        m_pipelineLayout = VK_NULL_HANDLE;
    }

    if (m_pipelineCache) {
        m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
        m_pipelineCache = VK_NULL_HANDLE;
    }

    if (m_descSetLayout) {
        m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_descSetLayout, nullptr);
        m_descSetLayout = VK_NULL_HANDLE;
    }

    if (m_descPool) {
        m_devFuncs->vkDestroyDescriptorPool(dev, m_descPool, nullptr);
        m_descPool = VK_NULL_HANDLE;
    }

    if (m_buf) {
        m_devFuncs->vkDestroyBuffer(dev, m_buf, nullptr);
        m_buf = VK_NULL_HANDLE;
    }

    if (m_bufMem) {
        m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
        m_bufMem = VK_NULL_HANDLE;
    }
}

void VulkanRenderer::startNextFrame()
{
    VkDevice dev = m_window->device();
    VkCommandBuffer cb = m_window->currentCommandBuffer();
    const QSize sz = m_window->swapChainImageSize();

    // Add the necessary barriers and do the host-linear -> device-optimal copy, if not yet done.
    ensureTexture();

    VkClearColorValue clearColor = { 0, 0, 0, 1 };
    VkClearDepthStencilValue clearDS = { 1, 0 };
    VkClearValue clearValues[2];
    memset(clearValues, 0, sizeof(clearValues));
    clearValues[0].color = clearColor;
    clearValues[1].depthStencil = clearDS;

    VkRenderPassBeginInfo rpBeginInfo;
    memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
    rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rpBeginInfo.renderPass = m_window->defaultRenderPass();
    rpBeginInfo.framebuffer = m_window->currentFramebuffer();
    rpBeginInfo.renderArea.extent.width = sz.width();
    rpBeginInfo.renderArea.extent.height = sz.height();
    rpBeginInfo.clearValueCount = 2;
    rpBeginInfo.pClearValues = clearValues;
    VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
    m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);

    quint8 *p;
    VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem, m_uniformBufInfo[m_window->currentFrame()].offset,
            UNIFORM_DATA_SIZE, 0, reinterpret_cast<void **>(&p));
    if (err != VK_SUCCESS)
        qFatal("Failed to map memory: %d", err);
    QMatrix4x4 m = m_proj;
    m.rotate(m_rotation, 0, 0, 1);
    memcpy(p, m.constData(), 16 * sizeof(float));
    m_devFuncs->vkUnmapMemory(dev, m_bufMem);

    // Not exactly a real animation system, just advance on every frame for now.
    m_rotation += 1.0f;

    m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline);
    m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1,
                               &m_descSet[m_window->currentFrame()], 0, nullptr);
    VkDeviceSize vbOffset = 0;
    m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_buf, &vbOffset);

    VkViewport viewport;
    viewport.x = viewport.y = 0;
    viewport.width = sz.width();
    viewport.height = sz.height();
    viewport.minDepth = 0;
    viewport.maxDepth = 1;
    m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);

    VkRect2D scissor;
    scissor.offset.x = scissor.offset.y = 0;
    scissor.extent.width = viewport.width;
    scissor.extent.height = viewport.height;
    m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);

    m_devFuncs->vkCmdDraw(cb, 4, 1, 0, 0);

    m_devFuncs->vkCmdEndRenderPass(cmdBuf);

    m_window->frameReady();
    m_window->requestUpdate(); // render continuously, throttled by the presentation rate
}