summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp
blob: 4a7fa54155832f4f55b15fae24e0735d270c2fb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

#include "compiler/translator/EmulatePrecision.h"

namespace
{

static void writeVectorPrecisionEmulationHelpers(
    TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size)
{
    std::stringstream vecTypeStrStr;
    if (outputLanguage == SH_ESSL_OUTPUT)
        vecTypeStrStr << "highp ";
    vecTypeStrStr << "vec" << size;
    std::string vecType = vecTypeStrStr.str();

    sink <<
    vecType << " angle_frm(in " << vecType << " v) {\n"
    "    v = clamp(v, -65504.0, 65504.0);\n"
    "    " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n"
    "    bvec" << size << " isNonZero = greaterThanEqual(exponent, vec" << size << "(-25.0));\n"
    "    v = v * exp2(-exponent);\n"
    "    v = sign(v) * floor(abs(v));\n"
    "    return v * exp2(exponent) * vec" << size << "(isNonZero);\n"
    "}\n";

    sink <<
    vecType << " angle_frl(in " << vecType << " v) {\n"
    "    v = clamp(v, -2.0, 2.0);\n"
    "    v = v * 256.0;\n"
    "    v = sign(v) * floor(abs(v));\n"
    "    return v * 0.00390625;\n"
    "}\n";
}

static void writeMatrixPrecisionEmulationHelper(
    TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size, const char *functionName)
{
    std::stringstream matTypeStrStr;
    if (outputLanguage == SH_ESSL_OUTPUT)
        matTypeStrStr << "highp ";
    matTypeStrStr << "mat" << size;
    std::string matType = matTypeStrStr.str();

    sink << matType << " " << functionName << "(in " << matType << " m) {\n"
            "    " << matType << " rounded;\n";

    for (unsigned int i = 0; i < size; ++i)
    {
        sink << "    rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n";
    }

    sink << "    return rounded;\n"
            "}\n";
}

static void writeCommonPrecisionEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
{
    // Write the angle_frm functions that round floating point numbers to
    // half precision, and angle_frl functions that round them to minimum lowp
    // precision.

    // Unoptimized version of angle_frm for single floats:
    //
    // int webgl_maxNormalExponent(in int exponentBits) {
    //     int possibleExponents = int(exp2(float(exponentBits)));
    //     int exponentBias = possibleExponents / 2 - 1;
    //     int allExponentBitsOne = possibleExponents - 1;
    //     return (allExponentBitsOne - 1) - exponentBias;
    // }
    //
    // float angle_frm(in float x) {
    //     int mantissaBits = 10;
    //     int exponentBits = 5;
    //     float possibleMantissas = exp2(float(mantissaBits));
    //     float mantissaMax = 2.0 - 1.0 / possibleMantissas;
    //     int maxNE = webgl_maxNormalExponent(exponentBits);
    //     float max = exp2(float(maxNE)) * mantissaMax;
    //     if (x > max) {
    //         return max;
    //     }
    //     if (x < -max) {
    //         return -max;
    //     }
    //     float exponent = floor(log2(abs(x)));
    //     if (abs(x) == 0.0 || exponent < -float(maxNE)) {
    //         return 0.0 * sign(x)
    //     }
    //     x = x * exp2(-(exponent - float(mantissaBits)));
    //     x = sign(x) * floor(abs(x));
    //     return x * exp2(exponent - float(mantissaBits));
    // }

    // All numbers with a magnitude less than 2^-15 are subnormal, and are
    // flushed to zero.

    // Note the constant numbers below:
    // a) 65504 is the maximum possible mantissa (1.1111111111 in binary) times
    //    2^15, the maximum normal exponent.
    // b) 10.0 is the number of mantissa bits.
    // c) -25.0 is the minimum normal half-float exponent -15.0 minus the number
    //    of mantissa bits.
    // d) + 1e-30 is to make sure the argument of log2() won't be zero. It can
    //    only affect the result of log2 on x where abs(x) < 1e-22. Since these
    //    numbers will be flushed to zero either way (2^-15 is the smallest
    //    normal positive number), this does not introduce any error.

    std::string floatType = "float";
    if (outputLanguage == SH_ESSL_OUTPUT)
        floatType = "highp float";

    sink <<
    floatType << " angle_frm(in " << floatType << " x) {\n"
    "    x = clamp(x, -65504.0, 65504.0);\n"
    "    " << floatType << " exponent = floor(log2(abs(x) + 1e-30)) - 10.0;\n"
    "    bool isNonZero = (exponent >= -25.0);\n"
    "    x = x * exp2(-exponent);\n"
    "    x = sign(x) * floor(abs(x));\n"
    "    return x * exp2(exponent) * float(isNonZero);\n"
    "}\n";

    sink <<
    floatType << " angle_frl(in " << floatType << " x) {\n"
    "    x = clamp(x, -2.0, 2.0);\n"
    "    x = x * 256.0;\n"
    "    x = sign(x) * floor(abs(x));\n"
    "    return x * 0.00390625;\n"
    "}\n";

    writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 2);
    writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 3);
    writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 4);
    for (unsigned int size = 2; size <= 4; ++size)
    {
        writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frm");
        writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frl");
    }
}

static void writeCompoundAssignmentPrecisionEmulation(
    TInfoSinkBase& sink, ShShaderOutput outputLanguage,
    const char *lType, const char *rType, const char *opStr, const char *opNameStr)
{
    std::string lTypeStr = lType;
    std::string rTypeStr = rType;
    if (outputLanguage == SH_ESSL_OUTPUT)
    {
        std::stringstream lTypeStrStr;
        lTypeStrStr << "highp " << lType;
        lTypeStr = lTypeStrStr.str();
        std::stringstream rTypeStrStr;
        rTypeStrStr << "highp " << rType;
        rTypeStr = rTypeStrStr.str();
    }

    // Note that y should be passed through angle_frm at the function call site,
    // but x can't be passed through angle_frm there since it is an inout parameter.
    // So only pass x and the result through angle_frm here.
    sink <<
    lTypeStr << " angle_compound_" << opNameStr << "_frm(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
    "    x = angle_frm(angle_frm(x) " << opStr << " y);\n"
    "    return x;\n"
    "}\n";
    sink <<
    lTypeStr << " angle_compound_" << opNameStr << "_frl(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
    "    x = angle_frl(angle_frm(x) " << opStr << " y);\n"
    "    return x;\n"
    "}\n";
}

const char *getFloatTypeStr(const TType& type)
{
    switch (type.getNominalSize())
    {
      case 1:
        return "float";
      case 2:
        switch(type.getSecondarySize())
        {
          case 1:
            return "vec2";
          case 2:
            return "mat2";
          case 3:
            return "mat2x3";
          case 4:
            return "mat2x4";
          default:
            UNREACHABLE();
            return NULL;
        }
      case 3:
        switch(type.getSecondarySize())
        {
          case 1:
            return "vec3";
          case 2:
            return "mat3x2";
          case 3:
            return "mat3";
          case 4:
            return "mat3x4";
          default:
            UNREACHABLE();
            return NULL;
        }
      case 4:
        switch(type.getSecondarySize())
        {
          case 1:
            return "vec4";
          case 2:
            return "mat4x2";
          case 3:
            return "mat4x3";
          case 4:
            return "mat4";
          default:
            UNREACHABLE();
            return NULL;
        }
      default:
        UNREACHABLE();
        return NULL;
    }
}

bool canRoundFloat(const TType &type)
{
    return type.getBasicType() == EbtFloat && !type.isNonSquareMatrix() && !type.isArray() &&
        (type.getPrecision() == EbpLow || type.getPrecision() == EbpMedium);
}

TIntermAggregate *createInternalFunctionCallNode(TString name, TIntermNode *child)
{
    TIntermAggregate *callNode = new TIntermAggregate();
    callNode->setOp(EOpFunctionCall);
    TName nameObj(TFunction::mangleName(name));
    nameObj.setInternal(true);
    callNode->setNameObj(nameObj);
    callNode->getSequence()->push_back(child);
    return callNode;
}

TIntermAggregate *createRoundingFunctionCallNode(TIntermTyped *roundedChild)
{
    TString roundFunctionName;
    if (roundedChild->getPrecision() == EbpMedium)
        roundFunctionName = "angle_frm";
    else
        roundFunctionName = "angle_frl";
    return createInternalFunctionCallNode(roundFunctionName, roundedChild);
}

TIntermAggregate *createCompoundAssignmentFunctionCallNode(TIntermTyped *left, TIntermTyped *right, const char *opNameStr)
{
    std::stringstream strstr;
    if (left->getPrecision() == EbpMedium)
        strstr << "angle_compound_" << opNameStr << "_frm";
    else
        strstr << "angle_compound_" << opNameStr << "_frl";
    TString functionName = strstr.str().c_str();
    TIntermAggregate *callNode = createInternalFunctionCallNode(functionName, left);
    callNode->getSequence()->push_back(right);
    return callNode;
}

bool parentUsesResult(TIntermNode* parent, TIntermNode* node)
{
    if (!parent)
    {
        return false;
    }

    TIntermAggregate *aggParent = parent->getAsAggregate();
    // If the parent's op is EOpSequence, the result is not assigned anywhere,
    // so rounding it is not needed. In particular, this can avoid a lot of
    // unnecessary rounding of unused return values of assignment.
    if (aggParent && aggParent->getOp() == EOpSequence)
    {
        return false;
    }
    if (aggParent && aggParent->getOp() == EOpComma && (aggParent->getSequence()->back() != node))
    {
        return false;
    }
    return true;
}

}  // namespace anonymous

EmulatePrecision::EmulatePrecision(const TSymbolTable &symbolTable, int shaderVersion)
    : TLValueTrackingTraverser(true, true, true, symbolTable, shaderVersion),
      mDeclaringVariables(false)
{}

void EmulatePrecision::visitSymbol(TIntermSymbol *node)
{
    if (canRoundFloat(node->getType()) && !mDeclaringVariables && !isLValueRequiredHere())
    {
        TIntermNode *parent = getParentNode();
        TIntermNode *replacement = createRoundingFunctionCallNode(node);
        mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
    }
}


bool EmulatePrecision::visitBinary(Visit visit, TIntermBinary *node)
{
    bool visitChildren = true;

    TOperator op = node->getOp();

    // RHS of initialize is not being declared.
    if (op == EOpInitialize && visit == InVisit)
        mDeclaringVariables = false;

    if ((op == EOpIndexDirectStruct || op == EOpVectorSwizzle) && visit == InVisit)
        visitChildren = false;

    if (visit != PreVisit)
        return visitChildren;

    const TType& type = node->getType();
    bool roundFloat = canRoundFloat(type);

    if (roundFloat) {
        switch (op) {
          // Math operators that can result in a float may need to apply rounding to the return
          // value. Note that in the case of assignment, the rounding is applied to its return
          // value here, not the value being assigned.
          case EOpAssign:
          case EOpAdd:
          case EOpSub:
          case EOpMul:
          case EOpDiv:
          case EOpVectorTimesScalar:
          case EOpVectorTimesMatrix:
          case EOpMatrixTimesVector:
          case EOpMatrixTimesScalar:
          case EOpMatrixTimesMatrix:
          {
            TIntermNode *parent = getParentNode();
            if (!parentUsesResult(parent, node))
            {
                break;
            }
            TIntermNode *replacement = createRoundingFunctionCallNode(node);
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
            break;
          }

          // Compound assignment cases need to replace the operator with a function call.
          case EOpAddAssign:
          {
            mEmulateCompoundAdd.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
            TIntermNode *parent = getParentNode();
            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "add");
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
            break;
          }
          case EOpSubAssign:
          {
            mEmulateCompoundSub.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
            TIntermNode *parent = getParentNode();
            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "sub");
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
            break;
          }
          case EOpMulAssign:
          case EOpVectorTimesMatrixAssign:
          case EOpVectorTimesScalarAssign:
          case EOpMatrixTimesScalarAssign:
          case EOpMatrixTimesMatrixAssign:
          {
            mEmulateCompoundMul.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
            TIntermNode *parent = getParentNode();
            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "mul");
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
            break;
          }
          case EOpDivAssign:
          {
            mEmulateCompoundDiv.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
            TIntermNode *parent = getParentNode();
            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "div");
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
            break;
          }
          default:
            // The rest of the binary operations should not need precision emulation.
            break;
        }
    }
    return visitChildren;
}

bool EmulatePrecision::visitAggregate(Visit visit, TIntermAggregate *node)
{
    bool visitChildren = true;
    switch (node->getOp())
    {
      case EOpSequence:
      case EOpConstructStruct:
      case EOpFunction:
        break;
      case EOpPrototype:
        visitChildren = false;
        break;
      case EOpParameters:
        visitChildren = false;
        break;
      case EOpInvariantDeclaration:
        visitChildren = false;
        break;
      case EOpDeclaration:
        // Variable declaration.
        if (visit == PreVisit)
        {
            mDeclaringVariables = true;
        }
        else if (visit == InVisit)
        {
            mDeclaringVariables = true;
        }
        else
        {
            mDeclaringVariables = false;
        }
        break;
      case EOpFunctionCall:
      {
        // Function call.
        if (visit == PreVisit)
        {
            // User-defined function return values are not rounded, this relies on that
            // calculations producing the value were rounded.
            TIntermNode *parent = getParentNode();
            if (canRoundFloat(node->getType()) && !isInFunctionMap(node) &&
                parentUsesResult(parent, node))
            {
                TIntermNode *replacement = createRoundingFunctionCallNode(node);
                mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
            }
        }
        break;
      }
      default:
        TIntermNode *parent = getParentNode();
        if (canRoundFloat(node->getType()) && visit == PreVisit && parentUsesResult(parent, node))
        {
            TIntermNode *replacement = createRoundingFunctionCallNode(node);
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
        }
        break;
    }
    return visitChildren;
}

bool EmulatePrecision::visitUnary(Visit visit, TIntermUnary *node)
{
    switch (node->getOp())
    {
      case EOpNegative:
      case EOpVectorLogicalNot:
      case EOpLogicalNot:
      case EOpPostIncrement:
      case EOpPostDecrement:
      case EOpPreIncrement:
      case EOpPreDecrement:
        break;
      default:
        if (canRoundFloat(node->getType()) && visit == PreVisit)
        {
            TIntermNode *parent = getParentNode();
            TIntermNode *replacement = createRoundingFunctionCallNode(node);
            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
        }
        break;
    }

    return true;
}

void EmulatePrecision::writeEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
{
    // Other languages not yet supported
    ASSERT(outputLanguage == SH_GLSL_COMPATIBILITY_OUTPUT ||
           IsGLSL130OrNewer(outputLanguage) ||
           outputLanguage == SH_ESSL_OUTPUT);
    writeCommonPrecisionEmulationHelpers(sink, outputLanguage);

    EmulationSet::const_iterator it;
    for (it = mEmulateCompoundAdd.begin(); it != mEmulateCompoundAdd.end(); it++)
        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "+", "add");
    for (it = mEmulateCompoundSub.begin(); it != mEmulateCompoundSub.end(); it++)
        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "-", "sub");
    for (it = mEmulateCompoundDiv.begin(); it != mEmulateCompoundDiv.end(); it++)
        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "/", "div");
    for (it = mEmulateCompoundMul.begin(); it != mEmulateCompoundMul.end(); it++)
        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "*", "mul");
}