summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/libGLESv2/angletypes.cpp
blob: bb6425df64737ee2d3cc68ef8c463c285ad9f565 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//
// Copyright (c) 2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// angletypes.h : Defines a variety of structures and enum types that are used throughout libGLESv2

#include "libGLESv2/angletypes.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/VertexAttribute.h"

namespace gl
{

SamplerState::SamplerState()
    : minFilter(GL_NEAREST_MIPMAP_LINEAR),
      magFilter(GL_LINEAR),
      wrapS(GL_REPEAT),
      wrapT(GL_REPEAT),
      wrapR(GL_REPEAT),
      maxAnisotropy(1.0f),
      baseLevel(0),
      maxLevel(1000),
      minLod(-FLT_MAX),
      maxLod(FLT_MAX),
      compareMode(GL_NONE),
      compareFunc(GL_LEQUAL),
      swizzleRed(GL_RED),
      swizzleGreen(GL_GREEN),
      swizzleBlue(GL_BLUE),
      swizzleAlpha(GL_ALPHA)
{}

bool SamplerState::swizzleRequired() const
{
    return swizzleRed != GL_RED || swizzleGreen != GL_GREEN ||
           swizzleBlue != GL_BLUE || swizzleAlpha != GL_ALPHA;
}

static void MinMax(int a, int b, int *minimum, int *maximum)
{
    if (a < b)
    {
        *minimum = a;
        *maximum = b;
    }
    else
    {
        *minimum = b;
        *maximum = a;
    }
}

bool ClipRectangle(const Rectangle &source, const Rectangle &clip, Rectangle *intersection)
{
    int minSourceX, maxSourceX, minSourceY, maxSourceY;
    MinMax(source.x, source.x + source.width, &minSourceX, &maxSourceX);
    MinMax(source.y, source.y + source.height, &minSourceY, &maxSourceY);

    int minClipX, maxClipX, minClipY, maxClipY;
    MinMax(clip.x, clip.x + clip.width, &minClipX, &maxClipX);
    MinMax(clip.y, clip.y + clip.height, &minClipY, &maxClipY);

    if (minSourceX >= maxClipX || maxSourceX <= minClipX || minSourceY >= maxClipY || maxSourceY <= minClipY)
    {
        if (intersection)
        {
            intersection->x = minSourceX;
            intersection->y = maxSourceY;
            intersection->width = maxSourceX - minSourceX;
            intersection->height = maxSourceY - minSourceY;
        }

        return false;
    }
    else
    {
        if (intersection)
        {
            intersection->x = std::max(minSourceX, minClipX);
            intersection->y = std::max(minSourceY, minClipY);
            intersection->width  = std::min(maxSourceX, maxClipX) - std::max(minSourceX, minClipX);
            intersection->height = std::min(maxSourceY, maxClipY) - std::max(minSourceY, minClipY);
        }

        return true;
    }
}

VertexFormat::VertexFormat()
    : mType(GL_NONE),
      mNormalized(GL_FALSE),
      mComponents(0),
      mPureInteger(false)
{}

VertexFormat::VertexFormat(GLenum type, GLboolean normalized, GLuint components, bool pureInteger)
    : mType(type),
      mNormalized(normalized),
      mComponents(components),
      mPureInteger(pureInteger)
{
    // Float data can not be normalized, so ignore the user setting
    if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED)
    {
        mNormalized = GL_FALSE;
    }
}

VertexFormat::VertexFormat(const VertexAttribute &attrib)
    : mType(attrib.type),
      mNormalized(attrib.normalized ? GL_TRUE : GL_FALSE),
      mComponents(attrib.size),
      mPureInteger(attrib.pureInteger)
{
    // Ensure we aren't initializing a vertex format which should be using
    // the current-value type
    ASSERT(attrib.enabled);

    // Float data can not be normalized, so ignore the user setting
    if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED)
    {
        mNormalized = GL_FALSE;
    }
}

VertexFormat::VertexFormat(const VertexAttribute &attrib, GLenum currentValueType)
    : mType(attrib.type),
      mNormalized(attrib.normalized ? GL_TRUE : GL_FALSE),
      mComponents(attrib.size),
      mPureInteger(attrib.pureInteger)
{
    if (!attrib.enabled)
    {
        mType = currentValueType;
        mNormalized = GL_FALSE;
        mComponents = 4;
        mPureInteger = (currentValueType != GL_FLOAT);
    }

    // Float data can not be normalized, so ignore the user setting
    if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED)
    {
        mNormalized = GL_FALSE;
    }
}

void VertexFormat::GetInputLayout(VertexFormat *inputLayout,
                                  ProgramBinary *programBinary,
                                  const VertexAttribute *attributes,
                                  const gl::VertexAttribCurrentValueData *currentValues)
{
    for (unsigned int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
    {
        int semanticIndex = programBinary->getSemanticIndex(attributeIndex);

        if (semanticIndex != -1)
        {
            inputLayout[semanticIndex] = VertexFormat(attributes[attributeIndex], currentValues[attributeIndex].Type);
        }
    }
}

bool VertexFormat::operator==(const VertexFormat &other) const
{
    return (mType == other.mType                &&
            mComponents == other.mComponents    &&
            mNormalized == other.mNormalized    &&
            mPureInteger == other.mPureInteger  );
}

bool VertexFormat::operator!=(const VertexFormat &other) const
{
    return !(*this == other);
}

bool VertexFormat::operator<(const VertexFormat& other) const
{
    if (mType != other.mType)
    {
        return mType < other.mType;
    }
    if (mNormalized != other.mNormalized)
    {
        return mNormalized < other.mNormalized;
    }
    if (mComponents != other.mComponents)
    {
        return mComponents < other.mComponents;
    }
    return mPureInteger < other.mPureInteger;
}

}