summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/libGLESv2/renderer/d3d/d3d11/InputLayoutCache.cpp
blob: ff90a6a69a1cf9dc286ba77974fd3c26a7c5b6ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//
// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// InputLayoutCache.cpp: Defines InputLayoutCache, a class that builds and caches
// D3D11 input layouts.

#include "libGLESv2/renderer/d3d/d3d11/InputLayoutCache.h"
#include "libGLESv2/renderer/d3d/d3d11/VertexBuffer11.h"
#include "libGLESv2/renderer/d3d/d3d11/Buffer11.h"
#include "libGLESv2/renderer/d3d/d3d11/ShaderExecutable11.h"
#include "libGLESv2/renderer/d3d/d3d11/formatutils11.h"
#include "libGLESv2/renderer/d3d/ProgramD3D.h"
#include "libGLESv2/renderer/d3d/VertexDataManager.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/VertexAttribute.h"

#include "third_party/murmurhash/MurmurHash3.h"

namespace rx
{

static void GetInputLayout(const TranslatedAttribute translatedAttributes[gl::MAX_VERTEX_ATTRIBS],
                           gl::VertexFormat inputLayout[gl::MAX_VERTEX_ATTRIBS])
{
    for (unsigned int attributeIndex = 0; attributeIndex < gl::MAX_VERTEX_ATTRIBS; attributeIndex++)
    {
        const TranslatedAttribute &translatedAttribute = translatedAttributes[attributeIndex];

        if (translatedAttributes[attributeIndex].active)
        {
            inputLayout[attributeIndex] = gl::VertexFormat(*translatedAttribute.attribute,
                                                           translatedAttribute.currentValueType);
        }
    }
}

const unsigned int InputLayoutCache::kMaxInputLayouts = 1024;

InputLayoutCache::InputLayoutCache() : mInputLayoutMap(kMaxInputLayouts, hashInputLayout, compareInputLayouts)
{
    mCounter = 0;
    mDevice = NULL;
    mDeviceContext = NULL;
    mCurrentIL = NULL;
    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        mCurrentBuffers[i] = NULL;
        mCurrentVertexStrides[i] = -1;
        mCurrentVertexOffsets[i] = -1;
    }
}

InputLayoutCache::~InputLayoutCache()
{
    clear();
}

void InputLayoutCache::initialize(ID3D11Device *device, ID3D11DeviceContext *context)
{
    clear();
    mDevice = device;
    mDeviceContext = context;
}

void InputLayoutCache::clear()
{
    for (InputLayoutMap::iterator i = mInputLayoutMap.begin(); i != mInputLayoutMap.end(); i++)
    {
        SafeRelease(i->second.inputLayout);
    }
    mInputLayoutMap.clear();
    markDirty();
}

void InputLayoutCache::markDirty()
{
    mCurrentIL = NULL;
    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        mCurrentBuffers[i] = NULL;
        mCurrentVertexStrides[i] = -1;
        mCurrentVertexOffsets[i] = -1;
    }
}

gl::Error InputLayoutCache::applyVertexBuffers(TranslatedAttribute attributes[gl::MAX_VERTEX_ATTRIBS],
                                               gl::ProgramBinary *programBinary)
{
    int sortedSemanticIndices[gl::MAX_VERTEX_ATTRIBS];
    programBinary->sortAttributesByLayout(attributes, sortedSemanticIndices);

    if (!mDevice || !mDeviceContext)
    {
        return gl::Error(GL_OUT_OF_MEMORY, "Internal input layout cache is not initialized.");
    }

    InputLayoutKey ilKey = { 0 };

    static const char* semanticName = "TEXCOORD";

    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        if (attributes[i].active)
        {
            D3D11_INPUT_CLASSIFICATION inputClass = attributes[i].divisor > 0 ? D3D11_INPUT_PER_INSTANCE_DATA : D3D11_INPUT_PER_VERTEX_DATA;

            gl::VertexFormat vertexFormat(*attributes[i].attribute, attributes[i].currentValueType);
            const d3d11::VertexFormat &vertexFormatInfo = d3d11::GetVertexFormatInfo(vertexFormat);

            // Record the type of the associated vertex shader vector in our key
            // This will prevent mismatched vertex shaders from using the same input layout
            GLint attributeSize;
            programBinary->getActiveAttribute(sortedSemanticIndices[i], 0, NULL, &attributeSize, &ilKey.elements[ilKey.elementCount].glslElementType, NULL);

            ilKey.elements[ilKey.elementCount].desc.SemanticName = semanticName;
            ilKey.elements[ilKey.elementCount].desc.SemanticIndex = i;
            ilKey.elements[ilKey.elementCount].desc.Format = vertexFormatInfo.nativeFormat;
            ilKey.elements[ilKey.elementCount].desc.InputSlot = i;
            ilKey.elements[ilKey.elementCount].desc.AlignedByteOffset = 0;
            ilKey.elements[ilKey.elementCount].desc.InputSlotClass = inputClass;
            ilKey.elements[ilKey.elementCount].desc.InstanceDataStepRate = attributes[i].divisor;
            ilKey.elementCount++;
        }
    }

    ID3D11InputLayout *inputLayout = NULL;

    InputLayoutMap::iterator keyIter = mInputLayoutMap.find(ilKey);
    if (keyIter != mInputLayoutMap.end())
    {
        inputLayout = keyIter->second.inputLayout;
        keyIter->second.lastUsedTime = mCounter++;
    }
    else
    {
        gl::VertexFormat shaderInputLayout[gl::MAX_VERTEX_ATTRIBS];
        GetInputLayout(attributes, shaderInputLayout);
        ProgramD3D *programD3D = ProgramD3D::makeProgramD3D(programBinary->getImplementation());

        ShaderExecutable *shader = NULL;
        gl::Error error = programD3D->getVertexExecutableForInputLayout(shaderInputLayout, &shader);
        if (error.isError())
        {
            return error;
        }

        ShaderExecutable *shader11 = ShaderExecutable11::makeShaderExecutable11(shader);

        D3D11_INPUT_ELEMENT_DESC descs[gl::MAX_VERTEX_ATTRIBS];
        for (unsigned int j = 0; j < ilKey.elementCount; ++j)
        {
            descs[j] = ilKey.elements[j].desc;
        }

        HRESULT result = mDevice->CreateInputLayout(descs, ilKey.elementCount, shader11->getFunction(), shader11->getLength(), &inputLayout);
        if (FAILED(result))
        {
            return gl::Error(GL_OUT_OF_MEMORY, "Failed to create internal input layout, HRESULT: 0x%08x", result);
        }

        if (mInputLayoutMap.size() >= kMaxInputLayouts)
        {
            TRACE("Overflowed the limit of %u input layouts, removing the least recently used "
                  "to make room.", kMaxInputLayouts);

            InputLayoutMap::iterator leastRecentlyUsed = mInputLayoutMap.begin();
            for (InputLayoutMap::iterator i = mInputLayoutMap.begin(); i != mInputLayoutMap.end(); i++)
            {
                if (i->second.lastUsedTime < leastRecentlyUsed->second.lastUsedTime)
                {
                    leastRecentlyUsed = i;
                }
            }
            SafeRelease(leastRecentlyUsed->second.inputLayout);
            mInputLayoutMap.erase(leastRecentlyUsed);
        }

        InputLayoutCounterPair inputCounterPair;
        inputCounterPair.inputLayout = inputLayout;
        inputCounterPair.lastUsedTime = mCounter++;

        mInputLayoutMap.insert(std::make_pair(ilKey, inputCounterPair));
    }

    if (inputLayout != mCurrentIL)
    {
        mDeviceContext->IASetInputLayout(inputLayout);
        mCurrentIL = inputLayout;
    }

    bool dirtyBuffers = false;
    size_t minDiff = gl::MAX_VERTEX_ATTRIBS;
    size_t maxDiff = 0;
    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        ID3D11Buffer *buffer = NULL;

        if (attributes[i].active)
        {
            VertexBuffer11 *vertexBuffer = VertexBuffer11::makeVertexBuffer11(attributes[i].vertexBuffer);
            Buffer11 *bufferStorage = attributes[i].storage ? Buffer11::makeBuffer11(attributes[i].storage) : NULL;

            buffer = bufferStorage ? bufferStorage->getBuffer(BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK)
                                   : vertexBuffer->getBuffer();
        }

        UINT vertexStride = attributes[i].stride;
        UINT vertexOffset = attributes[i].offset;

        if (buffer != mCurrentBuffers[i] || vertexStride != mCurrentVertexStrides[i] ||
            vertexOffset != mCurrentVertexOffsets[i])
        {
            dirtyBuffers = true;
            minDiff = std::min(minDiff, static_cast<size_t>(i));
            maxDiff = std::max(maxDiff, static_cast<size_t>(i));

            mCurrentBuffers[i] = buffer;
            mCurrentVertexStrides[i] = vertexStride;
            mCurrentVertexOffsets[i] = vertexOffset;
        }
    }

    if (dirtyBuffers)
    {
        ASSERT(minDiff <= maxDiff && maxDiff < gl::MAX_VERTEX_ATTRIBS);
        mDeviceContext->IASetVertexBuffers(minDiff, maxDiff - minDiff + 1, mCurrentBuffers + minDiff,
                                           mCurrentVertexStrides + minDiff, mCurrentVertexOffsets + minDiff);
    }

    return gl::Error(GL_NO_ERROR);
}

std::size_t InputLayoutCache::hashInputLayout(const InputLayoutKey &inputLayout)
{
    static const unsigned int seed = 0xDEADBEEF;

    std::size_t hash = 0;
    MurmurHash3_x86_32(inputLayout.begin(), inputLayout.end() - inputLayout.begin(), seed, &hash);
    return hash;
}

bool InputLayoutCache::compareInputLayouts(const InputLayoutKey &a, const InputLayoutKey &b)
{
    if (a.elementCount != b.elementCount)
    {
        return false;
    }

    return std::equal(a.begin(), a.end(), b.begin());
}

}