summaryrefslogtreecommitdiffstats
path: root/src/corelib/arch/symbian/heap_hybrid.cpp
blob: 6e2ef21e93fb1cf679438af0986efcbee78a6a9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights.  These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qt_hybridheap_symbian_p.h"

#ifdef QT_USE_NEW_SYMBIAN_ALLOCATOR

// if non zero this causes the iSlabs to be configured only when the chunk size exceeds this level
#define DELAYED_SLAB_THRESHOLD (64*1024)		// 64KB seems about right based on trace data
#define SLAB_CONFIG 0x3fff						// Use all slab sizes 4,8..56 bytes. This is more efficient for large heaps as Qt tends to have

#ifdef _DEBUG
#define __SIMULATE_ALLOC_FAIL(s)	if (CheckForSimulatedAllocFail()) {s}
#define __ALLOC_DEBUG_HEADER(s)  	(s += EDebugHdrSize)
#define __SET_DEBUG_DATA(p,n,c)   	(((SDebugCell*)(p))->nestingLevel = (n), ((SDebugCell*)(p))->allocCount = (c))
#define __GET_USER_DATA_BFR(p)   	((p!=0) ? (TUint8*)(p) + EDebugHdrSize : NULL)
#define __GET_DEBUG_DATA_BFR(p)   	((p!=0) ? (TUint8*)(p) - EDebugHdrSize : NULL)
#define	__ZAP_CELL(p)				memset( (TUint8*)p, 0xde, (AllocLen(__GET_USER_DATA_BFR(p))+EDebugHdrSize))
#define __DEBUG_SAVE(p)				TInt dbgNestLevel = ((SDebugCell*)p)->nestingLevel
#define __DEBUG_RESTORE(p)			if (p) {((SDebugCell*)p)->nestingLevel = dbgNestLevel;}
#define __DEBUG_HDR_SIZE			EDebugHdrSize
#define __REMOVE_DBG_HDR(n) 		(n*EDebugHdrSize)
#define __GET_AVAIL_BLOCK_SIZE(s)   ( (s<EDebugHdrSize) ? 0 : s-EDebugHdrSize )
#define __UPDATE_ALLOC_COUNT(o,n,c)	if (o!=n && n) {((SDebugCell*)n)->allocCount = (c);}
#define __INIT_COUNTERS(i)	        iCellCount=i,iTotalAllocSize=i
#define __INCREMENT_COUNTERS(p)	    iCellCount++, iTotalAllocSize += AllocLen(p)
#define __DECREMENT_COUNTERS(p)	    iCellCount--, iTotalAllocSize -= AllocLen(p)
#define __UPDATE_TOTAL_ALLOC(p,s)	iTotalAllocSize += (AllocLen(__GET_USER_DATA_BFR(p)) - s)

#else
#define __SIMULATE_ALLOC_FAIL(s)
#define __ALLOC_DEBUG_HEADER(s)
#define __SET_DEBUG_DATA(p,n,c)
#define __GET_USER_DATA_BFR(p)  (p)
#define __GET_DEBUG_DATA_BFR(p) (p)
#define	__ZAP_CELL(p)
#define __DEBUG_SAVE(p)			
#define __DEBUG_RESTORE(p)
#define __DEBUG_HDR_SIZE		0
#define __REMOVE_DBG_HDR(n) 	0
#define __GET_AVAIL_BLOCK_SIZE(s)   (s)
#define __UPDATE_ALLOC_COUNT(o,n,c)	
#define __INIT_COUNTERS(i)	        iCellCount=i,iTotalAllocSize=i
#define __INCREMENT_COUNTERS(p)
#define __DECREMENT_COUNTERS(p)
#define __UPDATE_TOTAL_ALLOC(p,s)

#endif


#define MEMORY_MONITORED  (iFlags & EMonitorMemory)
#define GM  (&iGlobalMallocState)
#define IS_FIXED_HEAP  (iFlags & EFixedSize)
#define __INIT_COUNTERS(i)	iCellCount=i,iTotalAllocSize=i
#define __POWER_OF_2(x)		(!((x)&((x)-1)))

#define __DL_BFR_CHECK(M,P) \
		  if ( MEMORY_MONITORED ) \
             if ( !IS_ALIGNED(P) || ((TUint8*)(P)<M->iSeg.iBase) || ((TUint8*)(P)>(M->iSeg.iBase+M->iSeg.iSize))) \
                  BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)this, (TUint32)P, (TUint32)0), HEAP_PANIC(ETHeapBadCellAddress); \
			 else DoCheckInuseChunk(M, MEM2CHUNK(P)) 

#ifndef __KERNEL_MODE__

#define __SLAB_BFR_CHECK(S,P,B) \
	  if ( MEMORY_MONITORED ) \
		  if ( ((TUint32)P & 0x3) || ((TUint8*)P<iMemBase) || ((TUint8*)(P)>(TUint8*)this))  \
			   BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)this, (TUint32)P, (TUint32)S), HEAP_PANIC(ETHeapBadCellAddress); \
		  else DoCheckSlab(S, EPartialFullSlab, P), BuildPartialSlabBitmap(B,S,P) 					  
#define __PAGE_BFR_CHECK(P) \
		if ( MEMORY_MONITORED ) \
			if ( ((TUint32)P &  ((1 << iPageSize)-1)) || ((TUint8*)P<iMemBase) || ((TUint8*)(P)>(TUint8*)this))  \
				BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)this, (TUint32)P, (TUint32)0), HEAP_PANIC(ETHeapBadCellAddress)

#endif

#ifdef _MSC_VER
// This is required while we are still using VC6 to compile, so as to avoid warnings that cannot be fixed
// without having to edit the original Doug Lea source.  The 4146 warnings are due to the original code having
// a liking for negating unsigned numbers and the 4127 warnings are due to the original code using the RTCHECK
// macro with values that are always defined as 1.  It is better to turn these warnings off than to introduce
// diffs between the original Doug Lea implementation and our adaptation of it
#pragma warning( disable : 4146 ) /* unary minus operator applied to unsigned type, result still unsigned */
#pragma warning( disable : 4127 ) /* conditional expression is constant */
#endif // _MSC_VER


/**
@SYMPatchable
@publishedPartner
@released

Defines the minimum cell size of  a heap.

The constant can be changed at ROM build time using patchdata OBY keyword.

@deprecated Patching this constant no longer has any effect.
*/
#ifdef __X86GCC__	// For X86GCC we don't use the proper data import attribute
#undef IMPORT_D		// since the constants are not really imported. GCC doesn't 
#define IMPORT_D	// allow imports from self.
#endif
IMPORT_D extern const TInt KHeapMinCellSize;

/**
@SYMPatchable
@publishedPartner
@released

This constant defines the ratio that determines the amount of hysteresis between heap growing and heap
shrinking.
It is a 32-bit fixed point number where the radix point is defined to be
between bits 7 and 8 (where the LSB is bit 0) i.e. using standard notation, a Q8 or a fx24.8
fixed point number.  For example, for a ratio of 2.0, set KHeapShrinkHysRatio=0x200.

The heap shrinking hysteresis value is calculated to be:
@code
KHeapShrinkHysRatio*(iGrowBy>>8)
@endcode
where iGrowBy is a page aligned value set by the argument, aGrowBy, to the RHeap constructor.
The default hysteresis value is iGrowBy bytes i.e. KHeapShrinkHysRatio=2.0.

Memory usage may be improved by reducing the heap shrinking hysteresis
by setting 1.0 < KHeapShrinkHysRatio < 2.0.  Heap shrinking hysteresis is disabled/removed
when KHeapShrinkHysRatio <= 1.0.

The constant can be changed at ROM build time using patchdata OBY keyword.
*/
IMPORT_D extern const TInt KHeapShrinkHysRatio;

UEXPORT_C TInt RHeap::AllocLen(const TAny* aCell) const
{
	const MAllocator* m = this;
	return m->AllocLen(aCell);
}

UEXPORT_C TAny* RHeap::Alloc(TInt aSize)
{
	const MAllocator* m = this;
	return ((MAllocator*)m)->Alloc(aSize);
}

UEXPORT_C void RHeap::Free(TAny* aCell)
{
	const MAllocator* m = this;
	((MAllocator*)m)->Free(aCell);
}

UEXPORT_C TAny* RHeap::ReAlloc(TAny* aCell, TInt aSize, TInt aMode)
{
	const MAllocator* m = this;
	return ((MAllocator*)m)->ReAlloc(aCell, aSize, aMode);
}

UEXPORT_C TInt RHeap::DebugFunction(TInt aFunc, TAny* a1, TAny* a2)
{
	const MAllocator* m = this;
	return ((MAllocator*)m)->DebugFunction(aFunc, a1, a2);
}

UEXPORT_C TInt RHeap::Extension_(TUint aExtensionId, TAny*& a0, TAny* a1)
{
	const MAllocator* m = this;
	return ((MAllocator*)m)->Extension_(aExtensionId, a0, a1);
}

#ifndef __KERNEL_MODE__

EXPORT_C TInt RHeap::AllocSize(TInt& aTotalAllocSize) const
{
	const MAllocator* m = this;
	return m->AllocSize(aTotalAllocSize);
}

EXPORT_C TInt RHeap::Available(TInt& aBiggestBlock) const
{
	const MAllocator* m = this;
	return m->Available(aBiggestBlock);
}

EXPORT_C void RHeap::Reset()
{
	const MAllocator* m = this;
	((MAllocator*)m)->Reset();
}

EXPORT_C TInt RHeap::Compress()
{
	const MAllocator* m = this;
	return ((MAllocator*)m)->Compress();
}
#endif

RHybridHeap::RHybridHeap()
	{
	// This initialisation cannot be done in RHeap() for compatibility reasons
	iMaxLength = iChunkHandle = iNestingLevel = 0;
	iTop = NULL;
	iFailType = ENone;
	iTestData = NULL;
	}

void RHybridHeap::operator delete(TAny*, TAny*) 
/**
Called if constructor issued by operator new(TUint aSize, TAny* aBase) throws exception.
This is dummy as corresponding new operator does not allocate memory.
*/
{}


#ifndef __KERNEL_MODE__
void RHybridHeap::Lock() const
   /**
   @internalComponent
*/
   {((RFastLock&)iLock).Wait();}


void RHybridHeap::Unlock() const
   /**
   @internalComponent
*/
   {((RFastLock&)iLock).Signal();}


TInt RHybridHeap::ChunkHandle() const
   /**
   @internalComponent
*/
{
	return iChunkHandle;
}

#else
//
//  This method is implemented in kheap.cpp
//
//void RHybridHeap::Lock() const
   /**
   @internalComponent
*/
//   {;}



//
//  This method is implemented in kheap.cpp
//
//void RHybridHeap::Unlock() const
   /**
   @internalComponent
*/
//   {;}


TInt RHybridHeap::ChunkHandle() const
   /**
   @internalComponent
*/
{
	return 0;
}
#endif

RHybridHeap::RHybridHeap(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign, TBool aSingleThread, TBool aDLOnly, TBool aUseAdjust)
/**
Constructor for a non fixed heap.  Unlike the fixed heap, this heap is quite flexible in terms of its minimum and
maximum lengths and in that it can use the hybrid allocator if all of its requirements are met.
*/
	: iOffset(aOffset), iChunkSize(aMinLength)
	{
	__ASSERT_ALWAYS(iOffset>=0, HEAP_PANIC(ETHeapNewBadOffset));	

	iChunkHandle = aChunkHandle;
	iMinLength = aMinLength;
	iMaxLength = aMaxLength;

	// If the user has explicitly specified 0 as the aGrowBy value, set it to 1 so that it will be rounded up to the nearst page size
	if (aGrowBy == 0)
		aGrowBy = 1;
	GET_PAGE_SIZE(iPageSize);
	iGrowBy = _ALIGN_UP(aGrowBy, iPageSize);

	Construct(aSingleThread, aDLOnly, aUseAdjust, aAlign);
	}

RHybridHeap::RHybridHeap(TInt aMaxLength, TInt aAlign, TBool aSingleThread)
/**
Constructor for a fixed heap.  We have restrictions in that we have fixed minimum and maximum lengths and cannot grow
and we only use DL allocator.
*/
	: iOffset(0), iChunkSize(aMaxLength)
	{
	iChunkHandle = NULL;
	iMinLength = aMaxLength;
	iMaxLength = aMaxLength;
	iGrowBy = 0;

	Construct(aSingleThread, ETrue, ETrue, aAlign);
	}

TAny* RHybridHeap::operator new(TUint aSize, TAny* aBase) __NO_THROW
{
	__ASSERT_ALWAYS(aSize>=sizeof(RHybridHeap), HEAP_PANIC(ETHeapNewBadSize));
	RHybridHeap* h = (RHybridHeap*)aBase;
	h->iBase = ((TUint8*)aBase) + aSize;
	return aBase;
}

void RHybridHeap::Construct(TBool aSingleThread, TBool aDLOnly, TBool aUseAdjust, TInt aAlign)
{
	iAlign = aAlign ? aAlign : RHybridHeap::ECellAlignment;
	__ASSERT_ALWAYS((TUint32)iAlign>=sizeof(TAny*) && __POWER_OF_2(iAlign), HEAP_PANIC(ETHeapNewBadAlignment));

	// This initialisation cannot be done in RHeap() for compatibility reasons
	iTop = NULL;
	iFailType = ENone;
	iNestingLevel = 0;
	iTestData = NULL;

	iHighWaterMark = iMinLength;
	iAllocCount = 0;
	iFlags = aSingleThread ? ESingleThreaded : 0;
	iGrowBy = _ALIGN_UP(iGrowBy, iPageSize);
	
	if ( iMinLength == iMaxLength )
		{
		iFlags |= EFixedSize;
		aDLOnly = ETrue;
		}
#ifndef __KERNEL_MODE__
#ifdef DELAYED_SLAB_THRESHOLD
	iSlabInitThreshold = DELAYED_SLAB_THRESHOLD;
#else
	iSlabInitThreshold = 0;
#endif // DELAYED_SLAB_THRESHOLD
	iUseAdjust = aUseAdjust;
	iDLOnly    = aDLOnly;
#else
	(void)aUseAdjust;	
#endif 
	// Initialise suballocators
	// if DL only is required then it cannot allocate slab or page memory
	// so these sub-allocators should be disabled. Otherwise initialise with default values
	if ( aDLOnly )
		{
		Init(0, 0);
		}
	else
		{
		Init(SLAB_CONFIG, 16);
		}
	
#ifdef ENABLE_BTRACE
	
	TUint32 traceData[4];
	traceData[0] = iMinLength;
	traceData[1] = iMaxLength;
	traceData[2] = iGrowBy;
	traceData[3] = iAlign;
	BTraceContextN(BTrace::ETest1, 90, (TUint32)this, 11, traceData, sizeof(traceData));
#endif
	
}

#ifndef __KERNEL_MODE__
TInt RHybridHeap::ConstructLock(TUint32 aMode)
{
	TBool duplicateLock = EFalse;
	TInt r = KErrNone;
	if (!(iFlags & ESingleThreaded))
		{
		duplicateLock = aMode & UserHeap::EChunkHeapSwitchTo;
		r = iLock.CreateLocal(duplicateLock ? EOwnerThread : EOwnerProcess);
		if( r != KErrNone)
			{
			iChunkHandle = 0;
			return r;
			}
		}
	
	if ( aMode & UserHeap::EChunkHeapSwitchTo )
		User::SwitchHeap(this);
	
	iHandles = &iChunkHandle;
	if (!(iFlags & ESingleThreaded))
		{
		// now change the thread-relative chunk/semaphore handles into process-relative handles
		iHandleCount = 2;
		if(duplicateLock)
			{
			RHandleBase s = iLock;
			r = iLock.Duplicate(RThread());
			s.Close();
			}
		if (r==KErrNone && (aMode & UserHeap::EChunkHeapDuplicate))
			{
			r = ((RChunk*)&iChunkHandle)->Duplicate(RThread());
			if (r!=KErrNone)
				iLock.Close(), iChunkHandle=0;
			}
		}
	else
		{
		iHandleCount = 1;
		if (aMode & UserHeap::EChunkHeapDuplicate)
			r = ((RChunk*)&iChunkHandle)->Duplicate(RThread(), EOwnerThread);
		}
	
	return r;
}
#endif

void RHybridHeap::Init(TInt aBitmapSlab, TInt aPagePower)
{
	/*Moved code which does initialization */
	iTop  = (TUint8*)this + iMinLength;
	iBase = Ceiling(iBase, ECellAlignment);	// Align iBase address 
	
    __INIT_COUNTERS(0);
	//	memset(&mparams,0,sizeof(mparams));
	
	InitDlMalloc(iTop - iBase, 0);
	
#ifndef __KERNEL_MODE__	
	SlabInit();
	iSlabConfigBits = aBitmapSlab;
	if ( iChunkSize > iSlabInitThreshold )
		{
		iSlabInitThreshold = KMaxTInt32;
		SlabConfig(aBitmapSlab);   // Delayed slab configuration done
		}
	if ( aPagePower )
		{
		RChunk chunk;
		chunk.SetHandle(iChunkHandle);
		iMemBase = chunk.Base();    // Store base address for paged allocator
		}

	/*10-1K,11-2K,12-4k,13-8K,14-16K,15-32K,16-64K*/
	PagedInit(aPagePower);

#ifdef ENABLE_BTRACE
	TUint32 traceData[3];
	traceData[0] = aBitmapSlab;
	traceData[1] = aPagePower;
	traceData[2] = GM->iTrimCheck;
	BTraceContextN(BTrace::ETest1, 90, (TUint32)this, 0, traceData, sizeof(traceData));
#endif
#else
	(void)aBitmapSlab;
	(void)aPagePower;
#endif	// __KERNEL_MODE__
	
}


TInt RHybridHeap::AllocLen(const TAny* aCell) const
{
	aCell = __GET_DEBUG_DATA_BFR(aCell);
	
	if (PtrDiff(aCell, this) >= 0)
		{
		mchunkptr m = MEM2CHUNK(aCell);
		return CHUNKSIZE(m) - OVERHEAD_FOR(m) - __DEBUG_HDR_SIZE;
		}
#ifndef __KERNEL_MODE__		
	if ( aCell )
		{
		if (LowBits(aCell, iPageSize) )
			return SlabHeaderSize(slab::SlabFor(aCell)->iHeader) - __DEBUG_HDR_SIZE;
		
		return PagedSize((void*)aCell) - __DEBUG_HDR_SIZE;
		}
#endif	
	return 0; // NULL pointer situation, should PANIC !!
}

#ifdef __KERNEL_MODE__
TAny* RHybridHeap::Alloc(TInt aSize)
{
	__CHECK_THREAD_STATE;
	__ASSERT_ALWAYS((TUint)aSize<(KMaxTInt/2),HEAP_PANIC(ETHeapBadAllocatedCellSize));
	__SIMULATE_ALLOC_FAIL(return NULL;)
	Lock();
	__ALLOC_DEBUG_HEADER(aSize);
	TAny* addr = DlMalloc(aSize);
	if ( addr )
		{
//		iCellCount++;
		__SET_DEBUG_DATA(addr, iNestingLevel, ++iAllocCount);
		addr = __GET_USER_DATA_BFR(addr);
		__INCREMENT_COUNTERS(addr);
		memclr(addr, AllocLen(addr));
		}
	Unlock();
#ifdef ENABLE_BTRACE
	if (iFlags & ETraceAllocs)
		{
		if ( addr )
			{
			TUint32 traceData[3];
			traceData[0] = AllocLen(addr);
			traceData[1] = aSize - __DEBUG_HDR_SIZE;
			traceData[2] = 0;
			BTraceContextN(BTrace::EHeap, BTrace::EHeapAlloc, (TUint32)this, (TUint32)addr, traceData, sizeof(traceData));
			}
		else
			BTraceContext8(BTrace::EHeap, BTrace::EHeapAllocFail, (TUint32)this, (TUint32)(aSize - __DEBUG_HDR_SIZE));			
		}
#endif
	return addr;
}
#else

TAny* RHybridHeap::Alloc(TInt aSize)
{
	__ASSERT_ALWAYS((TUint)aSize<(KMaxTInt/2),HEAP_PANIC(ETHeapBadAllocatedCellSize));
	__SIMULATE_ALLOC_FAIL(return NULL;)
			
	TAny* addr;
#ifdef ENABLE_BTRACE
	TInt aSubAllocator=0;
#endif
	
	Lock();
	
	__ALLOC_DEBUG_HEADER(aSize);
	
	if (aSize < iSlabThreshold)
		{
		TInt ix = iSizeMap[(aSize+3)>>2];
		HEAP_ASSERT(ix != 0xff);
		addr = SlabAllocate(iSlabAlloc[ix]);
		if ( !addr )
			{ // Slab allocation has failed, try to allocate from DL
			addr = DlMalloc(aSize);
			}
#ifdef ENABLE_BTRACE
		else
			aSubAllocator=1;
#endif
		}else if((aSize >> iPageThreshold)==0)
			{
			addr = DlMalloc(aSize);
			}
		else
			{
			addr = PagedAllocate(aSize);
			if ( !addr )
				{ // Page allocation has failed, try to allocate from DL
				addr = DlMalloc(aSize);
				}
#ifdef ENABLE_BTRACE
			else
	      		aSubAllocator=2;
#endif
			}
	
	if ( addr )
		{
//		iCellCount++;
		__SET_DEBUG_DATA(addr, iNestingLevel, ++iAllocCount);
		addr = __GET_USER_DATA_BFR(addr);
		__INCREMENT_COUNTERS(addr);
		}
	Unlock();
	
#ifdef ENABLE_BTRACE
	if (iFlags & ETraceAllocs)
		{
		if ( addr )
			{
		    TUint32 traceData[3];
		    traceData[0] = AllocLen(addr);
		    traceData[1] = aSize - __DEBUG_HDR_SIZE;
			traceData[2] = aSubAllocator;
		    BTraceContextN(BTrace::EHeap, BTrace::EHeapAlloc, (TUint32)this, (TUint32)addr, traceData, sizeof(traceData));
			}
		else
			BTraceContext8(BTrace::EHeap, BTrace::EHeapAllocFail, (TUint32)this, (TUint32)(aSize - __DEBUG_HDR_SIZE));			
		}
#endif
	
	return addr;
}
#endif // __KERNEL_MODE__

#ifndef __KERNEL_MODE__
TInt RHybridHeap::Compress()
{
	if ( IS_FIXED_HEAP )
		return 0;
	
	Lock();
	TInt Reduced = SysTrim(GM, 0);
	if (iSparePage)
		{
		Unmap(iSparePage, iPageSize);
		iSparePage = 0;
		Reduced += iPageSize;
		}
	Unlock();
	return Reduced;
}
#endif

void RHybridHeap::Free(TAny* aPtr)
{
	__CHECK_THREAD_STATE;
	if ( !aPtr )
		return;
#ifdef ENABLE_BTRACE
	TInt aSubAllocator=0;
#endif
	Lock();
	
	aPtr = __GET_DEBUG_DATA_BFR(aPtr);

#ifndef __KERNEL_MODE__				
	if (PtrDiff(aPtr, this) >= 0)
		{
#endif
		__DL_BFR_CHECK(GM, aPtr);
		__DECREMENT_COUNTERS(__GET_USER_DATA_BFR(aPtr));
		__ZAP_CELL(aPtr);		
		DlFree( aPtr);
#ifndef __KERNEL_MODE__			
		}

	else if ( LowBits(aPtr, iPageSize) == 0 )
		{
#ifdef ENABLE_BTRACE
		aSubAllocator = 2;
#endif
		__PAGE_BFR_CHECK(aPtr);	
		__DECREMENT_COUNTERS(__GET_USER_DATA_BFR(aPtr));
		PagedFree(aPtr);
		}
	else
		{
#ifdef ENABLE_BTRACE
		aSubAllocator = 1;
#endif
		TUint32 bm[4];   		
		__SLAB_BFR_CHECK(slab::SlabFor(aPtr),aPtr,bm);
		__DECREMENT_COUNTERS(__GET_USER_DATA_BFR(aPtr));  
		__ZAP_CELL(aPtr);		
		SlabFree(aPtr);
		}
#endif  // __KERNEL_MODE__	
//	iCellCount--;
	Unlock();
#ifdef ENABLE_BTRACE
	if (iFlags & ETraceAllocs)
		{
		TUint32 traceData;
		traceData = aSubAllocator;
		BTraceContextN(BTrace::EHeap, BTrace::EHeapFree, (TUint32)this, (TUint32)__GET_USER_DATA_BFR(aPtr), &traceData, sizeof(traceData));
		}
#endif
}

#ifndef __KERNEL_MODE__
void RHybridHeap::Reset()
/**
Frees all allocated cells on this heap.
*/
{
	Lock();
	if ( !IS_FIXED_HEAP )
		{
		if ( GM->iSeg.iSize > (iMinLength - sizeof(*this)) )
			Unmap(GM->iSeg.iBase + (iMinLength - sizeof(*this)), (GM->iSeg.iSize - (iMinLength - sizeof(*this))));
		ResetBitmap();
		if ( !iDLOnly )
			Init(iSlabConfigBits, iPageThreshold);
		else
			Init(0,0);		
		}
	else Init(0,0);
	Unlock();	
}
#endif

TAny* RHybridHeap::ReAllocImpl(TAny* aPtr, TInt aSize, TInt aMode)
{
	// First handle special case of calling reallocate with NULL aPtr
	if (!aPtr)
		{
		if (( aMode & ENeverMove ) == 0 )
			{
			aPtr = Alloc(aSize - __DEBUG_HDR_SIZE);
			aPtr = __GET_DEBUG_DATA_BFR(aPtr);
			}
		return aPtr;
		}
	
	TInt oldsize = AllocLen(__GET_USER_DATA_BFR(aPtr)) + __DEBUG_HDR_SIZE;
	
	// Insist on geometric growth when reallocating memory, this reduces copying and fragmentation
	// generated during arithmetic growth of buffer/array/vector memory
	// Experiments have shown that 25% is a good threshold for this policy
	if (aSize <= oldsize)
		{
		if (aSize >= oldsize - (oldsize>>2))
			return aPtr;		// don't change if >75% original size
		}
	else
		{
		__SIMULATE_ALLOC_FAIL(return NULL;)
		if (aSize < oldsize + (oldsize>>2))
			{
			aSize = _ALIGN_UP(oldsize + (oldsize>>2), 4);	// grow to at least 125% original size
			}
		}
	__DEBUG_SAVE(aPtr);		
	
	TAny* newp;
#ifdef __KERNEL_MODE__
	Lock();
	__DL_BFR_CHECK(GM, aPtr);				
	newp = DlRealloc(aPtr, aSize, aMode);
	Unlock();
	if ( newp )
		{
	    if ( aSize > oldsize )
			memclr(((TUint8*)newp) + oldsize, (aSize-oldsize)); // Buffer has grown in place, clear extra
		__DEBUG_RESTORE(newp);
		__UPDATE_ALLOC_COUNT(aPtr, newp, ++iAllocCount);
		__UPDATE_TOTAL_ALLOC(newp, oldsize);
		}
#else
	// Decide how to reallocate based on (a) the current cell location, (b) the mode requested and (c) the new size
	if ( PtrDiff(aPtr, this) >= 0 )
		{	// current cell in Doug Lea iArena
		if ( (aMode & ENeverMove) 
			 ||
			 (!(aMode & EAllowMoveOnShrink) && (aSize < oldsize))
			 ||
			 ((aSize >= iSlabThreshold) && ((aSize >> iPageThreshold) == 0)) )
			{
			Lock();
			__DL_BFR_CHECK(GM, aPtr);			
			newp = DlRealloc(aPtr, aSize, aMode);			// old and new in DL allocator
			Unlock();
			__DEBUG_RESTORE(newp);
			__UPDATE_ALLOC_COUNT(aPtr,newp, ++iAllocCount);
			__UPDATE_TOTAL_ALLOC(newp, oldsize);
			return newp;
			}
		}
	else if (LowBits(aPtr, iPageSize) == 0)
		{	// current cell in paged iArena
		if ( (aMode & ENeverMove)     
			 ||
			 (!(aMode & EAllowMoveOnShrink) && (aSize < oldsize)) 
			 ||
			 ((aSize >> iPageThreshold) != 0) )
			{
			Lock();
			__PAGE_BFR_CHECK(aPtr);			
			newp = PagedReallocate(aPtr, aSize, aMode);		// old and new in paged allocator
			Unlock();
			__DEBUG_RESTORE(newp);
			__UPDATE_ALLOC_COUNT(aPtr,newp, ++iAllocCount);
			__UPDATE_TOTAL_ALLOC(newp, oldsize);
			return newp;
			}
		}
	else
		{	// current cell in slab iArena
		TUint32 bm[4];
		Lock();
		__SLAB_BFR_CHECK(slab::SlabFor(aPtr), aPtr, bm);
		Unlock();
		if ( aSize <= oldsize)
			return aPtr;
		if (aMode & ENeverMove)
			return NULL;		// cannot grow in slab iArena
		// just use alloc/copy/free...
		}
	
	// fallback to allocate and copy
	// shouldn't get here if we cannot move the cell
	//  	__ASSERT(mode == emobile || (mode==efixshrink && size>oldsize));
	
	newp = Alloc(aSize - __DEBUG_HDR_SIZE);
	newp = __GET_DEBUG_DATA_BFR(newp);
	if (newp)
		{
		memcpy(newp, aPtr, oldsize<aSize ? oldsize : aSize);
		__DEBUG_RESTORE(newp);
		Free(__GET_USER_DATA_BFR(aPtr));
		}
	
#endif	// __KERNEL_MODE__
	return newp;
}


TAny* RHybridHeap::ReAlloc(TAny* aPtr, TInt aSize, TInt aMode )
{
	
	aPtr = __GET_DEBUG_DATA_BFR(aPtr);
	__ALLOC_DEBUG_HEADER(aSize);
	
	TAny* retval = ReAllocImpl(aPtr, aSize, aMode);
	
	retval = __GET_USER_DATA_BFR(retval);
	
#ifdef ENABLE_BTRACE
	if (iFlags & ETraceAllocs)
		{
		if ( retval )
			{
			TUint32 traceData[3];
			traceData[0] = AllocLen(retval);
			traceData[1] = aSize - __DEBUG_HDR_SIZE;
			traceData[2] = (TUint32)aPtr;
			BTraceContextN(BTrace::EHeap, BTrace::EHeapReAlloc,(TUint32)this, (TUint32)retval, traceData, sizeof(traceData));
			}
  		else
  		    BTraceContext12(BTrace::EHeap, BTrace::EHeapReAllocFail, (TUint32)this, (TUint32)aPtr, (TUint32)(aSize - __DEBUG_HDR_SIZE));
		}
#endif
	return retval;
}

#ifndef __KERNEL_MODE__
TInt RHybridHeap::Available(TInt& aBiggestBlock) const
/**
Gets the total free space currently available on the heap and the space
available in the largest free block.

Note that this function exists mainly for compatibility reasons.  In a modern
heap implementation such as that present in Symbian it is not appropriate to
concern oneself with details such as the amount of free memory available on a
heap and its largeset free block, because the way that a modern heap implementation
works is not simple.  The amount of available virtual memory != physical memory
and there are multiple allocation strategies used internally, which makes all
memory usage figures "fuzzy" at best.

In short, if you want to see if there is enough memory available to allocate a
block of memory, call Alloc() and if it succeeds then there is enough memory!
Messing around with functions like this is somewhat pointless with modern heap
allocators.

@param aBiggestBlock On return, contains the space available in the largest
                     free block on the heap.  Due to the internals of modern
                     heap implementations, you can probably still allocate a
                     block larger than this!

@return The total free space currently available on the heap.  Again, you can
        probably still allocate more than this!
*/
{
	struct HeapInfo info;
	Lock();
	TInt Biggest  = GetInfo(&info);
	aBiggestBlock = __GET_AVAIL_BLOCK_SIZE(Biggest);
	Unlock();
	return __GET_AVAIL_BLOCK_SIZE(info.iFreeBytes);
	
}

TInt RHybridHeap::AllocSize(TInt& aTotalAllocSize) const
   /**
   Gets the number of cells allocated on this heap, and the total space 
   allocated to them.
   
   @param aTotalAllocSize On return, contains the total space allocated
   to the cells.
   
   @return The number of cells allocated on this heap.
*/   
{
	struct HeapInfo info;
	Lock();
	GetInfo(&info);
	aTotalAllocSize = info.iAllocBytes - __REMOVE_DBG_HDR(info.iAllocN);
	Unlock();
	return info.iAllocN;
}

#endif

TInt RHybridHeap::Extension_(TUint /* aExtensionId */, TAny*& /* a0 */, TAny* /* a1 */)
{
	return KErrNotSupported;
}



///////////////////////////////////////////////////////////////////////////////
// imported from dla.cpp
///////////////////////////////////////////////////////////////////////////////

//#include <unistd.h>
//#define DEBUG_REALLOC
#ifdef DEBUG_REALLOC
#include <e32debug.h>
#endif

inline void RHybridHeap::InitBins(mstate m)
{
	/* Establish circular links for iSmallBins */
	bindex_t i;
	for (i = 0; i < NSMALLBINS; ++i) {
		sbinptr bin = SMALLBIN_AT(m,i);
		bin->iFd = bin->iBk = bin;
		}
	}
/* ---------------------------- malloc support --------------------------- */

/* allocate a large request from the best fitting chunk in a treebin */
void* RHybridHeap::TmallocLarge(mstate m, size_t nb) {
	tchunkptr v = 0;
	size_t rsize = -nb; /* Unsigned negation */
	tchunkptr t;
	bindex_t idx;
	ComputeTreeIndex(nb, idx);
	
	if ((t = *TREEBIN_AT(m, idx)) != 0)
		{
		/* Traverse tree for this bin looking for node with size == nb */
		size_t sizebits = nb << LEFTSHIFT_FOR_TREE_INDEX(idx);
		tchunkptr rst = 0;  /* The deepest untaken right subtree */
		for (;;)
			{
			tchunkptr rt;
			size_t trem = CHUNKSIZE(t) - nb;
			if (trem < rsize)
				{
				v = t;
				if ((rsize = trem) == 0)
					break;
				}
			rt = t->iChild[1];
			t = t->iChild[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
			if (rt != 0 && rt != t)
				rst = rt;
			if (t == 0)
				{
				t = rst; /* set t to least subtree holding sizes > nb */
				break;
				}
			sizebits <<= 1;
			}
		}
	if (t == 0 && v == 0)
		{ /* set t to root of next non-empty treebin */
		binmap_t leftbits = LEFT_BITS(IDX2BIT(idx)) & m->iTreeMap;
		if (leftbits != 0)
			{
			bindex_t i;
			binmap_t leastbit = LEAST_BIT(leftbits);
			ComputeBit2idx(leastbit, i);
			t = *TREEBIN_AT(m, i);
			}
		}
	while (t != 0)
		{ /* Find smallest of tree or subtree */
		size_t trem = CHUNKSIZE(t) - nb;
		if (trem < rsize) {
			rsize = trem;
			v = t;
			}
		t = LEFTMOST_CHILD(t);
		}
	/*  If iDv is a better fit, return 0 so malloc will use it */
	if (v != 0 && rsize < (size_t)(m->iDvSize - nb))
		{
		if (RTCHECK(OK_ADDRESS(m, v)))
			{ /* split */
			mchunkptr r = CHUNK_PLUS_OFFSET(v, nb);
			HEAP_ASSERT(CHUNKSIZE(v) == rsize + nb);
			if (RTCHECK(OK_NEXT(v, r)))
				{
				UnlinkLargeChunk(m, v);
				if (rsize < MIN_CHUNK_SIZE)
					SET_INUSE_AND_PINUSE(m, v, (rsize + nb));
				else
					{
					SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(m, v, nb);
					SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize);
					InsertChunk(m, r, rsize);
					}
				return CHUNK2MEM(v);
				}
			}
		//    CORRUPTION_ERROR_ACTION(m);
		}
	return 0;
	}

/* allocate a small request from the best fitting chunk in a treebin */
void* RHybridHeap::TmallocSmall(mstate m, size_t nb)
{
	tchunkptr t, v;
	size_t rsize;
	bindex_t i;
	binmap_t leastbit = LEAST_BIT(m->iTreeMap);
	ComputeBit2idx(leastbit, i);
	
	v = t = *TREEBIN_AT(m, i);
	rsize = CHUNKSIZE(t) - nb;
	
	while ((t = LEFTMOST_CHILD(t)) != 0)
		{
		size_t trem = CHUNKSIZE(t) - nb;
		if (trem < rsize)
			{
			rsize = trem;
			v = t;
			}
		}
	
	if (RTCHECK(OK_ADDRESS(m, v)))
		{
		mchunkptr r = CHUNK_PLUS_OFFSET(v, nb);
		HEAP_ASSERT(CHUNKSIZE(v) == rsize + nb);
		if (RTCHECK(OK_NEXT(v, r)))
			{
			UnlinkLargeChunk(m, v);
			if (rsize < MIN_CHUNK_SIZE)
				SET_INUSE_AND_PINUSE(m, v, (rsize + nb));
			else
				{
				SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(m, v, nb);
				SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize);
				ReplaceDv(m, r, rsize);
				}
			return CHUNK2MEM(v);
			}
		}
	//  CORRUPTION_ERROR_ACTION(m);
	//  return 0;
	}

inline void RHybridHeap::InitTop(mstate m, mchunkptr p, size_t psize)
{
	/* Ensure alignment */
	size_t offset = ALIGN_OFFSET(CHUNK2MEM(p));
	p = (mchunkptr)((TUint8*)p + offset);
	psize -= offset;
	m->iTop = p;
	m->iTopSize = psize;
	p->iHead = psize | PINUSE_BIT;
	/* set size of fake trailing chunk holding overhead space only once */
	mchunkptr chunkPlusOff = CHUNK_PLUS_OFFSET(p, psize);
	chunkPlusOff->iHead = TOP_FOOT_SIZE;
	m->iTrimCheck = KHeapShrinkHysRatio*(iGrowBy>>8);
}


/* Unlink the first chunk from a smallbin */
inline void RHybridHeap::UnlinkFirstSmallChunk(mstate M,mchunkptr B,mchunkptr P,bindex_t& I)
{
	mchunkptr F = P->iFd;
	HEAP_ASSERT(P != B);
	HEAP_ASSERT(P != F);
	HEAP_ASSERT(CHUNKSIZE(P) == SMALL_INDEX2SIZE(I));
	if (B == F)
		CLEAR_SMALLMAP(M, I);
	else if (RTCHECK(OK_ADDRESS(M, F)))
		{
		B->iFd = F;
		F->iBk = B;
		}
	else
		{
		CORRUPTION_ERROR_ACTION(M);
		}
}
/* Link a free chunk into a smallbin  */
inline void RHybridHeap::InsertSmallChunk(mstate M,mchunkptr P, size_t S)
{
	bindex_t I  = SMALL_INDEX(S);
	mchunkptr B = SMALLBIN_AT(M, I);
	mchunkptr F = B;
	HEAP_ASSERT(S >= MIN_CHUNK_SIZE);
	if (!SMALLMAP_IS_MARKED(M, I))
		MARK_SMALLMAP(M, I);
	else if (RTCHECK(OK_ADDRESS(M, B->iFd)))
		F = B->iFd;
	else
		{
		CORRUPTION_ERROR_ACTION(M);
		}
	B->iFd = P;
	F->iBk = P;
	P->iFd = F;
	P->iBk = B;
}


inline void RHybridHeap::InsertChunk(mstate M,mchunkptr P,size_t S)
{
	if (IS_SMALL(S))
		InsertSmallChunk(M, P, S);
	else
		{
		tchunkptr TP = (tchunkptr)(P); InsertLargeChunk(M, TP, S);
		}
}

inline void RHybridHeap::UnlinkLargeChunk(mstate M,tchunkptr X)
{
	tchunkptr XP = X->iParent;
	tchunkptr R;
	if (X->iBk != X)
		{
		tchunkptr F = X->iFd;
		R = X->iBk;
		if (RTCHECK(OK_ADDRESS(M, F)))
			{
			F->iBk = R;
			R->iFd = F;
			}
		else
			{
			CORRUPTION_ERROR_ACTION(M);
			}
		}
	else
		{
		tchunkptr* RP;
		if (((R = *(RP = &(X->iChild[1]))) != 0) ||
			  ((R = *(RP = &(X->iChild[0]))) != 0))
			{
			tchunkptr* CP;
			while ((*(CP = &(R->iChild[1])) != 0) ||
				   (*(CP = &(R->iChild[0])) != 0))
				{
				R = *(RP = CP);
				}
			if (RTCHECK(OK_ADDRESS(M, RP)))
				*RP = 0;
			else
				{
				CORRUPTION_ERROR_ACTION(M);
				}
			}
		}
	if (XP != 0)
		{
		tbinptr* H = TREEBIN_AT(M, X->iIndex);
		if (X == *H)
			{
			if ((*H = R) == 0)
				CLEAR_TREEMAP(M, X->iIndex);
			}
		else if (RTCHECK(OK_ADDRESS(M, XP)))
			{
			if (XP->iChild[0] == X)
				XP->iChild[0] = R;
			else
				XP->iChild[1] = R;
			}
		else
			CORRUPTION_ERROR_ACTION(M);
		if (R != 0)
			{
			if (RTCHECK(OK_ADDRESS(M, R)))
				{
				tchunkptr C0, C1;
				R->iParent = XP;
				if ((C0 = X->iChild[0]) != 0)
					{
					if (RTCHECK(OK_ADDRESS(M, C0)))
						{
						R->iChild[0] = C0;
						C0->iParent = R;
						}
					else
						CORRUPTION_ERROR_ACTION(M);
					}
				if ((C1 = X->iChild[1]) != 0)
					{
					if (RTCHECK(OK_ADDRESS(M, C1)))
						{
						R->iChild[1] = C1;
						C1->iParent = R;
						}
					else
						CORRUPTION_ERROR_ACTION(M);
					}
				}
			else
				CORRUPTION_ERROR_ACTION(M);
			}
		}
}

/* Unlink a chunk from a smallbin  */
inline void RHybridHeap::UnlinkSmallChunk(mstate M, mchunkptr P,size_t S)
{
	mchunkptr F = P->iFd;
	mchunkptr B = P->iBk;
	bindex_t I = SMALL_INDEX(S);
	HEAP_ASSERT(P != B);
	HEAP_ASSERT(P != F);
	HEAP_ASSERT(CHUNKSIZE(P) == SMALL_INDEX2SIZE(I));
	if (F == B)
		CLEAR_SMALLMAP(M, I);
	else if (RTCHECK((F == SMALLBIN_AT(M,I) || OK_ADDRESS(M, F)) &&
					 (B == SMALLBIN_AT(M,I) || OK_ADDRESS(M, B))))
		{
		F->iBk = B;
		B->iFd = F;
		}
	else
		{
		CORRUPTION_ERROR_ACTION(M);
		}
}

inline void RHybridHeap::UnlinkChunk(mstate M, mchunkptr P, size_t S)
{
	if (IS_SMALL(S))
		UnlinkSmallChunk(M, P, S);
	else
		{
		tchunkptr TP = (tchunkptr)(P); UnlinkLargeChunk(M, TP);
		}
}

// For DL debug functions
void RHybridHeap::DoComputeTreeIndex(size_t S, bindex_t& I)
{
	ComputeTreeIndex(S, I);
}	

inline void RHybridHeap::ComputeTreeIndex(size_t S, bindex_t& I)
{
	size_t X = S >> TREEBIN_SHIFT;
	if (X == 0)
		I = 0;
	else if (X > 0xFFFF)
		I = NTREEBINS-1;
	else
		{
		unsigned int Y = (unsigned int)X;
		unsigned int N = ((Y - 0x100) >> 16) & 8;
		unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;
		N += K;
		N += K = (((Y <<= K) - 0x4000) >> 16) & 2;
		K = 14 - N + ((Y <<= K) >> 15);
		I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));
		}
}

/* ------------------------- Operations on trees ------------------------- */

/* Insert chunk into tree */
inline void RHybridHeap::InsertLargeChunk(mstate M,tchunkptr X,size_t S)
{
	tbinptr* H;
	bindex_t I;
	ComputeTreeIndex(S, I);
	H = TREEBIN_AT(M, I);
	X->iIndex = I;
	X->iChild[0] = X->iChild[1] = 0;
	if (!TREEMAP_IS_MARKED(M, I))
		{
		MARK_TREEMAP(M, I);
		*H = X;
		X->iParent = (tchunkptr)H;
		X->iFd = X->iBk = X;
		}
	else
		{
		tchunkptr T = *H;
		size_t K = S << LEFTSHIFT_FOR_TREE_INDEX(I);
		for (;;)
			{
			if (CHUNKSIZE(T) != S) {
				tchunkptr* C = &(T->iChild[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);
				K <<= 1;
				if (*C != 0)
					T = *C;
				else if (RTCHECK(OK_ADDRESS(M, C)))
					{
					*C = X;
					X->iParent = T;
					X->iFd = X->iBk = X;
					break;
					}
				else
					{
					CORRUPTION_ERROR_ACTION(M);
					break;
					}
				}
			else
				{
				tchunkptr F = T->iFd;
				if (RTCHECK(OK_ADDRESS(M, T) && OK_ADDRESS(M, F)))
					{
					T->iFd = F->iBk = X;
					X->iFd = F;
					X->iBk = T;
					X->iParent = 0;
					break;
					}
				else
					{
					CORRUPTION_ERROR_ACTION(M);
					break;
					}
				}
			}
		}
}

/*
Unlink steps:

1. If x is a chained node, unlink it from its same-sized iFd/iBk links
and choose its iBk node as its replacement.
2. If x was the last node of its size, but not a leaf node, it must
be replaced with a leaf node (not merely one with an open left or
right), to make sure that lefts and rights of descendents
correspond properly to bit masks.  We use the rightmost descendent
of x.  We could use any other leaf, but this is easy to locate and
tends to counteract removal of leftmosts elsewhere, and so keeps
paths shorter than minimally guaranteed.  This doesn't loop much
because on average a node in a tree is near the bottom.
3. If x is the base of a chain (i.e., has iParent links) relink
x's iParent and children to x's replacement (or null if none).
*/

/* Replace iDv node, binning the old one */
/* Used only when iDvSize known to be small */
inline void RHybridHeap::ReplaceDv(mstate M, mchunkptr P, size_t S)
{
	size_t DVS = M->iDvSize;
	if (DVS != 0)
		{
		mchunkptr DV = M->iDv;
		HEAP_ASSERT(IS_SMALL(DVS));
		InsertSmallChunk(M, DV, DVS);
		}
	M->iDvSize = S;
	M->iDv = P;
}


inline void RHybridHeap::ComputeBit2idx(binmap_t X,bindex_t& I)
{
	unsigned int Y = X - 1;
	unsigned int K = Y >> (16-4) & 16;
	unsigned int N = K;        Y >>= K;
	N += K = Y >> (8-3) &  8;  Y >>= K;
	N += K = Y >> (4-2) &  4;  Y >>= K;
	N += K = Y >> (2-1) &  2;  Y >>= K;
	N += K = Y >> (1-0) &  1;  Y >>= K;
	I = (bindex_t)(N + Y);
}



int RHybridHeap::SysTrim(mstate m, size_t pad)
{
	size_t extra = 0;
	
	if ( IS_INITIALIZED(m) )
		{
		pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
		
		if (m->iTopSize > pad)
			{
			extra = Floor(m->iTopSize - pad, iPageSize);
			if ( (m->iSeg.iSize - extra) < (iMinLength - sizeof(*this)) )			  
				{
				if ( m->iSeg.iSize > (iMinLength - sizeof(*this)) )				  
					extra = Floor(m->iSeg.iSize - (iMinLength - sizeof(*this)), iPageSize); /* do not shrink heap below min length */
				else extra = 0;
				}
			
			if ( extra )
				{
				Unmap(m->iSeg.iBase + m->iSeg.iSize - extra, extra);
				
				m->iSeg.iSize -= extra;
				InitTop(m, m->iTop, m->iTopSize - extra);
				CHECK_TOP_CHUNK(m, m->iTop);
				}
			}
		
		}
	
	return extra;
}

/* Get memory from system using MORECORE */

void* RHybridHeap::SysAlloc(mstate m, size_t nb)
{
	HEAP_ASSERT(m->iTop);
	/* Subtract out existing available iTop space from MORECORE request. */
//	size_t asize = _ALIGN_UP(nb - m->iTopSize + TOP_FOOT_SIZE + SIZE_T_ONE, iGrowBy);  
  	TInt asize = _ALIGN_UP(nb - m->iTopSize + SYS_ALLOC_PADDING, iGrowBy);  // From DLA version 2.8.4
	
	char* br = (char*)Map(m->iSeg.iBase+m->iSeg.iSize, asize);
	if (!br)
		return 0;
	HEAP_ASSERT(br == (char*)m->iSeg.iBase+m->iSeg.iSize);
	
	/* Merge with an existing segment */
	m->iSeg.iSize += asize;
	InitTop(m, m->iTop, m->iTopSize + asize);
	
	if (nb < m->iTopSize)
		{ /* Allocate from new or extended iTop space */
		size_t rsize = m->iTopSize -= nb;
		mchunkptr p = m->iTop;
		mchunkptr r = m->iTop = CHUNK_PLUS_OFFSET(p, nb);
		r->iHead = rsize | PINUSE_BIT;
		SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(m, p, nb);
		CHECK_TOP_CHUNK(m, m->iTop);
		CHECK_MALLOCED_CHUNK(m, CHUNK2MEM(p), nb);
		return CHUNK2MEM(p);
		}
	
	return 0;
}	


void RHybridHeap::InitDlMalloc(size_t capacity, int /*locked*/)
{
	memset(GM,0,sizeof(malloc_state));
	// The maximum amount that can be allocated can be calculated as:-
	// 2^sizeof(size_t) - sizeof(malloc_state) - TOP_FOOT_SIZE - page Size(all accordingly padded)
	// If the capacity exceeds this, no allocation will be done.
	GM->iSeg.iBase = iBase;
	GM->iSeg.iSize = capacity;
	InitBins(GM);
	InitTop(GM, (mchunkptr)iBase, capacity - TOP_FOOT_SIZE);
}

void* RHybridHeap::DlMalloc(size_t bytes) 
{
	/*
	Basic algorithm:
	If a small request (< 256 bytes minus per-chunk overhead):
	1. If one exists, use a remainderless chunk in associated smallbin.
	(Remainderless means that there are too few excess bytes to
	represent as a chunk.)
	2. If it is big enough, use the iDv chunk, which is normally the
	chunk adjacent to the one used for the most recent small request.
	3. If one exists, split the smallest available chunk in a bin,
	saving remainder in iDv.
	4. If it is big enough, use the iTop chunk.
	5. If available, get memory from system and use it
	Otherwise, for a large request:
	1. Find the smallest available binned chunk that fits, and use it
	if it is better fitting than iDv chunk, splitting if necessary.
	2. If better fitting than any binned chunk, use the iDv chunk.
	3. If it is big enough, use the iTop chunk.
	4. If request size >= mmap threshold, try to directly mmap this chunk.
	5. If available, get memory from system and use it
*/
	void* mem;
	size_t nb;
	if (bytes <= MAX_SMALL_REQUEST)
		{
		bindex_t idx;
		binmap_t smallbits;
		nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : PAD_REQUEST(bytes);
		idx = SMALL_INDEX(nb);
		smallbits = GM->iSmallMap >> idx;
		
		if ((smallbits & 0x3U) != 0)
			{ /* Remainderless fit to a smallbin. */
			mchunkptr b, p;
			idx += ~smallbits & 1;			 /* Uses next bin if idx empty */
			b = SMALLBIN_AT(GM, idx);
			p = b->iFd;
			HEAP_ASSERT(CHUNKSIZE(p) == SMALL_INDEX2SIZE(idx));
			UnlinkFirstSmallChunk(GM, b, p, idx);
			SET_INUSE_AND_PINUSE(GM, p, SMALL_INDEX2SIZE(idx));
			mem = CHUNK2MEM(p);
			CHECK_MALLOCED_CHUNK(GM, mem, nb);
			return mem;
			}
		
		else if (nb > GM->iDvSize)
			{
			if (smallbits != 0)
				{ /* Use chunk in next nonempty smallbin */
				mchunkptr b, p, r;
				size_t rsize;
				bindex_t i;
				binmap_t leftbits = (smallbits << idx) & LEFT_BITS(IDX2BIT(idx));
				binmap_t leastbit = LEAST_BIT(leftbits);
				ComputeBit2idx(leastbit, i);
				b = SMALLBIN_AT(GM, i);
				p = b->iFd;
				HEAP_ASSERT(CHUNKSIZE(p) == SMALL_INDEX2SIZE(i));
				UnlinkFirstSmallChunk(GM, b, p, i);
				rsize = SMALL_INDEX2SIZE(i) - nb;
				/* Fit here cannot be remainderless if 4byte sizes */
				if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
					SET_INUSE_AND_PINUSE(GM, p, SMALL_INDEX2SIZE(i));
				else
					{
					SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(GM, p, nb);
					r = CHUNK_PLUS_OFFSET(p, nb);
					SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize);
					ReplaceDv(GM, r, rsize);
					}
				mem = CHUNK2MEM(p);
				CHECK_MALLOCED_CHUNK(GM, mem, nb);
				return mem;
				}
			
			else if (GM->iTreeMap != 0 && (mem = TmallocSmall(GM, nb)) != 0)
				{
				CHECK_MALLOCED_CHUNK(GM, mem, nb);
				return mem;
				}
			}
		}
	else if (bytes >= MAX_REQUEST)
		nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
	else
		{
		nb = PAD_REQUEST(bytes);
		if (GM->iTreeMap != 0 && (mem = TmallocLarge(GM, nb)) != 0)
			{
			CHECK_MALLOCED_CHUNK(GM, mem, nb);
			return mem;
			}
		}
	
	if (nb <= GM->iDvSize)
		{
		size_t rsize = GM->iDvSize - nb;
		mchunkptr p = GM->iDv;
		if (rsize >= MIN_CHUNK_SIZE)
			{ /* split iDv */
			mchunkptr r = GM->iDv = CHUNK_PLUS_OFFSET(p, nb);
			GM->iDvSize = rsize;
			SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize);
			SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(GM, p, nb);
			}
		else
			{ /* exhaust iDv */
			size_t dvs = GM->iDvSize;
			GM->iDvSize = 0;
			GM->iDv = 0;
			SET_INUSE_AND_PINUSE(GM, p, dvs);
			}
		mem = CHUNK2MEM(p);
		CHECK_MALLOCED_CHUNK(GM, mem, nb);
		return mem;
		}
	
	else if (nb < GM->iTopSize)
		{ /* Split iTop */
		size_t rsize = GM->iTopSize -= nb;
		mchunkptr p = GM->iTop;
		mchunkptr r = GM->iTop = CHUNK_PLUS_OFFSET(p, nb);
		r->iHead = rsize | PINUSE_BIT;
		SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(GM, p, nb);
		mem = CHUNK2MEM(p);
		CHECK_TOP_CHUNK(GM, GM->iTop);
		CHECK_MALLOCED_CHUNK(GM, mem, nb);
		return mem;
		}
	
	return SysAlloc(GM, nb);
}


void RHybridHeap::DlFree(void* mem)
{
	/*
	Consolidate freed chunks with preceding or succeeding bordering
	free chunks, if they exist, and then place in a bin.	Intermixed
	with special cases for iTop, iDv, mmapped chunks, and usage errors.
*/
	mchunkptr p	= MEM2CHUNK(mem);
	CHECK_INUSE_CHUNK(GM, p);
	if (RTCHECK(OK_ADDRESS(GM, p) && OK_CINUSE(p)))
		{
		size_t psize = CHUNKSIZE(p);
		mchunkptr next = CHUNK_PLUS_OFFSET(p, psize);
		if (!PINUSE(p))
			{
			size_t prevsize = p->iPrevFoot;
			mchunkptr prev = CHUNK_MINUS_OFFSET(p, prevsize);
			psize += prevsize;
			p = prev;
			if (RTCHECK(OK_ADDRESS(GM, prev)))
				{ /* consolidate backward */
				if (p != GM->iDv)
					{
					UnlinkChunk(GM, p, prevsize);
					}
				else if ((next->iHead & INUSE_BITS) == INUSE_BITS)
					{
					GM->iDvSize = psize;
					SET_FREE_WITH_PINUSE(p, psize, next);
					return;
					}
				}
			else
				{
				USAGE_ERROR_ACTION(GM, p);
				return;
				}
			}
		
		if (RTCHECK(OK_NEXT(p, next) && OK_PINUSE(next)))
			{
			if (!CINUSE(next))
				{	/* consolidate forward */
				if (next == GM->iTop)
					{
					size_t tsize = GM->iTopSize += psize;
					GM->iTop = p;
					p->iHead = tsize | PINUSE_BIT;
					if (p == GM->iDv)
						{
						GM->iDv = 0;
						GM->iDvSize = 0;
						}
					if ( !IS_FIXED_HEAP && SHOULD_TRIM(GM, tsize)  )					
						SysTrim(GM, 0);
					return;
					}
				else if (next == GM->iDv)
					{
					size_t dsize = GM->iDvSize += psize;
					GM->iDv = p;
					SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(p, dsize);
					return;
					}
				else
					{
					size_t nsize = CHUNKSIZE(next);
					psize += nsize;
					UnlinkChunk(GM, next, nsize);
					SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(p, psize);
					if (p == GM->iDv)
						{
						GM->iDvSize = psize;
						return;
						}
					}
				}
			else
				SET_FREE_WITH_PINUSE(p, psize, next);
			InsertChunk(GM, p, psize);
			CHECK_FREE_CHUNK(GM, p);
			return;
			}
		}
}


void* RHybridHeap::DlRealloc(void* oldmem, size_t bytes, TInt mode)
{
	mchunkptr oldp = MEM2CHUNK(oldmem);
	size_t oldsize = CHUNKSIZE(oldp);
	mchunkptr next = CHUNK_PLUS_OFFSET(oldp, oldsize);
	mchunkptr newp = 0;
	void* extra = 0;
	
	/* Try to either shrink or extend into iTop. Else malloc-copy-free */
	
	if (RTCHECK(OK_ADDRESS(GM, oldp) && OK_CINUSE(oldp) &&
				OK_NEXT(oldp, next) && OK_PINUSE(next)))
		{
		size_t nb = REQUEST2SIZE(bytes);
		if (oldsize >= nb) { /* already big enough */
			size_t rsize = oldsize - nb;
			newp = oldp;
			if (rsize >= MIN_CHUNK_SIZE)
				{     
				mchunkptr remainder = CHUNK_PLUS_OFFSET(newp, nb);
				SET_INUSE(GM, newp, nb);
//				SET_INUSE(GM, remainder, rsize);
 				SET_INUSE_AND_PINUSE(GM, remainder, rsize);  // corrected in original DLA version V2.8.4
				extra = CHUNK2MEM(remainder);
				}
			}
		else if (next == GM->iTop && oldsize + GM->iTopSize > nb)
			{
			/* Expand into iTop */
			size_t newsize = oldsize + GM->iTopSize;
			size_t newtopsize = newsize - nb;
			mchunkptr newtop = CHUNK_PLUS_OFFSET(oldp, nb);
			SET_INUSE(GM, oldp, nb);
			newtop->iHead = newtopsize |PINUSE_BIT;
			GM->iTop = newtop;
			GM->iTopSize = newtopsize;
			newp = oldp;
			}
		}
	else
		{
		USAGE_ERROR_ACTION(GM, oldmem);
		}
	
	if (newp != 0)
		{
		if (extra != 0)
			{
			DlFree(extra);
			}
		CHECK_INUSE_CHUNK(GM, newp);
		return CHUNK2MEM(newp);
		}
	else
		{
		if ( mode & ENeverMove )
			return 0;		// cannot move
		void* newmem = DlMalloc(bytes);
		if (newmem != 0)
			{
			size_t oc = oldsize - OVERHEAD_FOR(oldp);
			memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
			DlFree(oldmem);
			}
		return newmem;
		}
	//	return 0;
}

size_t RHybridHeap::DlInfo(struct HeapInfo* i, SWalkInfo* wi) const
{
	TInt max = ((GM->iTopSize-1) & ~CHUNK_ALIGN_MASK) - CHUNK_OVERHEAD;
	if ( max < 0 )
		max = 0;
	else ++i->iFreeN;			// iTop always free
	i->iFreeBytes += max;
	
	Walk(wi, GM->iTop, max, EGoodFreeCell, EDougLeaAllocator); // Introduce DL iTop buffer to the walk function 
	
	for (mchunkptr q = ALIGN_AS_CHUNK(GM->iSeg.iBase); q != GM->iTop; q = NEXT_CHUNK(q))
		{
		TInt sz = CHUNKSIZE(q);
		if (!CINUSE(q))
			{
			if ( sz > max )
				max = sz;
			i->iFreeBytes += sz;
			++i->iFreeN;
			Walk(wi, CHUNK2MEM(q), sz, EGoodFreeCell, EDougLeaAllocator); // Introduce DL free buffer to the walk function 
			}
		else
			{
			i->iAllocBytes += sz - CHUNK_OVERHEAD;
			++i->iAllocN;
			Walk(wi, CHUNK2MEM(q), (sz- CHUNK_OVERHEAD), EGoodAllocatedCell, EDougLeaAllocator); // Introduce DL allocated buffer to the walk function 
			}
		}
	return max;  // return largest available chunk size
}

//
// get statistics about the state of the allocator
//
TInt RHybridHeap::GetInfo(struct HeapInfo* i, SWalkInfo* wi) const
{
	memset(i,0,sizeof(HeapInfo));
	i->iFootprint = iChunkSize;
	i->iMaxSize = iMaxLength;
#ifndef __KERNEL_MODE__		
	PagedInfo(i, wi);
	SlabInfo(i, wi);
#endif	
	return DlInfo(i,wi);
}

//
// Methods to commit/decommit memory pages from chunk
//


void* RHybridHeap::Map(void* p, TInt sz)
//
// allocate pages in the chunk
// if p is NULL, Find an allocate the required number of pages (which must lie in the lower half)
// otherwise commit the pages specified
//
{
	HEAP_ASSERT(sz > 0);

	if ( iChunkSize + sz > iMaxLength)
		return 0;

#ifdef __KERNEL_MODE__

	TInt r = ((DChunk*)iChunkHandle)->Adjust(iChunkSize + iOffset + sz);
	if (r < 0)
		return 0;

	iChunkSize += sz;
	
#else	

	RChunk chunk;
	chunk.SetHandle(iChunkHandle);
	if ( p )
		{
		TInt r;
		if ( iUseAdjust )
			r = chunk.Adjust(iChunkSize + sz);
		else
			{
			HEAP_ASSERT(sz == Ceiling(sz, iPageSize));
			HEAP_ASSERT(p == Floor(p, iPageSize));
			r = chunk.Commit(iOffset + PtrDiff(p, this),sz);
			}			
		if (r < 0)
			return 0;
		}
	else
		{
		TInt r = chunk.Allocate(sz);
		if (r < 0)
			return 0;
		if (r > iOffset)
			{
			// can't allow page allocations in DL zone
			chunk.Decommit(r, sz);
			return 0;
			}
		p = Offset(this, r - iOffset);
		}
	iChunkSize += sz;
	
	if (iChunkSize >= iSlabInitThreshold)
		{	// set up slab system now that heap is large enough
		SlabConfig(iSlabConfigBits);
		iSlabInitThreshold = KMaxTInt32;
		}

#endif //	__KERNEL_MODE__
	
#ifdef ENABLE_BTRACE
	if(iChunkSize > iHighWaterMark)
		{
		iHighWaterMark = Ceiling(iChunkSize,16*iPageSize);
		TUint32 traceData[6];
		traceData[0] = iChunkHandle;
		traceData[1] = iMinLength;
		traceData[2] = iMaxLength;
		traceData[3] = sz;
		traceData[4] = iChunkSize;
		traceData[5] = iHighWaterMark;
		BTraceContextN(BTrace::ETest1, 90, (TUint32)this, 33, traceData, sizeof(traceData));
		}
#endif

	return p;
}

void RHybridHeap::Unmap(void* p, TInt sz)
{
	HEAP_ASSERT(sz > 0);
	
#ifdef __KERNEL_MODE__
	
	(void)p;
	HEAP_ASSERT(sz == Ceiling(sz, iPageSize));
#if defined(_DEBUG)		
	TInt r =
#endif				
   ((DChunk*)iChunkHandle)->Adjust(iChunkSize + iOffset - sz);
	HEAP_ASSERT(r >= 0);
	
#else

	RChunk chunk;
	chunk.SetHandle(iChunkHandle);
	if ( iUseAdjust )
		{
		HEAP_ASSERT(sz == Ceiling(sz, iPageSize));
#if defined(_DEBUG)		
		TInt r =
#endif				
		chunk.Adjust(iChunkSize - sz);
		HEAP_ASSERT(r >= 0);		
		}
	else
		{
		HEAP_ASSERT(sz == Ceiling(sz, iPageSize));
		HEAP_ASSERT(p == Floor(p, iPageSize));
#if defined(_DEBUG)		
		TInt r =
#endif
		chunk.Decommit(PtrDiff(p, Offset(this,-iOffset)), sz);
		HEAP_ASSERT(r >= 0);				
		}			
#endif  // __KERNEL_MODE__
	
	iChunkSize -= sz;
}


#ifndef __KERNEL_MODE__
//
// Slab allocator code
//

//inline slab* slab::SlabFor(void* p)
slab* slab::SlabFor( const void* p)
{
	return (slab*)(Floor(p, SLABSIZE));
}

//
// Remove slab s from its tree/heap (not necessarily the root), preserving the address order
// invariant of the heap
//
void RHybridHeap::TreeRemove(slab* s)
{
	slab** r = s->iParent;
	slab* c1 = s->iChild1;
	slab* c2 = s->iChild2;
	for (;;)
		{
		if (!c2)
			{
			*r = c1;
			if (c1)
				c1->iParent = r;
			return;
			}
		if (!c1)
			{
			*r = c2;
			c2->iParent = r;
			return;
			}
		if (c1 > c2)
			{
			slab* c3 = c1;
			c1 = c2;
			c2 = c3;
			}
		slab* newc2 = c1->iChild2;
		*r = c1;
		c1->iParent = r;
		c1->iChild2 = c2;
		c2->iParent = &c1->iChild2;
		s = c1;
		c1 = s->iChild1;
		c2 = newc2;
		r = &s->iChild1;
		}
}
//
// Insert slab s into the tree/heap rooted at r, preserving the address ordering
// invariant of the heap
//
void RHybridHeap::TreeInsert(slab* s,slab** r)
{
	slab* n = *r;
	for (;;)
		{
		if (!n)
			{	// tree empty
			*r = s;
			s->iParent = r;
			s->iChild1 = s->iChild2 = 0;
			break;
			}
		if (s < n)
			{	// insert between iParent and n
			*r = s;
			s->iParent = r;
			s->iChild1 = n;
			s->iChild2 = 0;
			n->iParent = &s->iChild1;
			break;
			}
		slab* c1 = n->iChild1;
		slab* c2 = n->iChild2;
		if ((c1 - 1) > (c2 - 1))
			{
			r = &n->iChild1;
			n = c1;
			}
		else
			{
			r = &n->iChild2;
			n = c2;
			}
		}
}

void* RHybridHeap::AllocNewSlab(slabset& allocator)
//
// Acquire and initialise a new slab, returning a cell from the slab
// The strategy is:
// 1. Use the lowest address free slab, if available. This is done by using the lowest slab
//    in the page at the root of the iPartialPage heap (which is address ordered). If the
//    is now fully used, remove it from the iPartialPage heap.
// 2. Allocate a new page for iSlabs if no empty iSlabs are available
//
{
	page* p = page::PageFor(iPartialPage);
	if (!p)
		return AllocNewPage(allocator);
	
	unsigned h = p->iSlabs[0].iHeader;
	unsigned pagemap = SlabHeaderPagemap(h);
	HEAP_ASSERT(&p->iSlabs[HIBIT(pagemap)] == iPartialPage);
	
	unsigned slabix = LOWBIT(pagemap);
	p->iSlabs[0].iHeader = h &~ (0x100<<slabix);
	if (!(pagemap &~ (1<<slabix)))
		{
		TreeRemove(iPartialPage);	// last free slab in page
		}
	
	return InitNewSlab(allocator, &p->iSlabs[slabix]);
}

/**Defination of this functionis not there in proto code***/
#if 0
void RHybridHeap::partial_insert(slab* s)
{
	// slab has had first cell freed and needs to be linked back into iPartial tree
	slabset& ss = iSlabAlloc[iSizeMap[s->clz]];
	
	HEAP_ASSERT(s->used == slabfull);
	s->used = ss.fulluse - s->clz;		// full-1 loading
	TreeInsert(s,&ss.iPartial);
	CHECKTREE(&ss.iPartial);
}
/**Defination of this functionis not there in proto code***/
#endif

void* RHybridHeap::AllocNewPage(slabset& allocator)
//
// Acquire and initialise a new page, returning a cell from a new slab
// The iPartialPage tree is empty (otherwise we'd have used a slab from there)
// The iPartialPage link is put in the highest addressed slab in the page, and the
// lowest addressed slab is used to fulfill the allocation request
//
{
	page* p	 = iSparePage;
	if (p)
		iSparePage = 0;
	else
		{
		p = static_cast<page*>(Map(0, iPageSize));
		if (!p)
			return 0;
		}
	HEAP_ASSERT(p == Floor(p, iPageSize));
	// Store page allocated for slab into paged_bitmap (for RHybridHeap::Reset())
	if (!PagedSetSize(p, iPageSize))
		{
		Unmap(p, iPageSize);
		return 0;
		}
	p->iSlabs[0].iHeader = ((1<<3) + (1<<2) + (1<<1))<<8;		// set pagemap
	p->iSlabs[3].iParent = &iPartialPage;
	p->iSlabs[3].iChild1 = p->iSlabs[3].iChild2 = 0;
	iPartialPage = &p->iSlabs[3];
	return InitNewSlab(allocator,&p->iSlabs[0]);
}

void RHybridHeap::FreePage(page* p)
//
// Release an unused page to the OS
// A single page is cached for reuse to reduce thrashing
// the OS allocator.
//
{
	HEAP_ASSERT(Ceiling(p, iPageSize) == p);
	if (!iSparePage)
		{
		iSparePage = p;
		return;
		}
	
	// unmapped slab page must be cleared from paged_bitmap, too
	PagedZapSize(p, iPageSize);		// clear page map
	
	Unmap(p, iPageSize);
}

void RHybridHeap::FreeSlab(slab* s)
//
// Release an empty slab to the slab manager
// The strategy is:
// 1. The page containing the slab is checked to see the state of the other iSlabs in the page by
//    inspecting the pagemap field in the iHeader of the first slab in the page.
// 2. The pagemap is updated to indicate the new unused slab
// 3. If this is the only unused slab in the page then the slab iHeader is used to add the page to
//    the iPartialPage tree/heap
// 4. If all the iSlabs in the page are now unused the page is release back to the OS
// 5. If this slab has a higher address than the one currently used to track this page in
//    the iPartialPage heap, the linkage is moved to the new unused slab
//
{
	TreeRemove(s);
	CHECKTREE(s->iParent);
	HEAP_ASSERT(SlabHeaderUsedm4(s->iHeader) == SlabHeaderSize(s->iHeader)-4);

	page* p = page::PageFor(s);
	unsigned h = p->iSlabs[0].iHeader;
	int slabix = s - &p->iSlabs[0];
	unsigned pagemap = SlabHeaderPagemap(h);
	p->iSlabs[0].iHeader = h | (0x100<<slabix);
	if (pagemap == 0)
		{	// page was full before, use this slab as link in empty heap
		TreeInsert(s, &iPartialPage);
		}
	else
		{	// Find the current empty-link slab
		slab* sl = &p->iSlabs[HIBIT(pagemap)];
		pagemap ^= (1<<slabix);
		if (pagemap == 0xf)
			{	// page is now empty so recycle page to os
			TreeRemove(sl);
			FreePage(p);
			return;
			}
		// ensure the free list link is in highest address slab in page
		if (s > sl)
			{	// replace current link with new one. Address-order tree so position stays the same
			slab** r = sl->iParent;
			slab* c1 = sl->iChild1;
			slab* c2 = sl->iChild2;
			s->iParent = r;
			s->iChild1 = c1;
			s->iChild2 = c2;
			*r = s;
			if (c1)
				c1->iParent = &s->iChild1;
			if (c2)
				c2->iParent = &s->iChild2;
			}
		CHECK(if (s < sl) s=sl);
		}
	HEAP_ASSERT(SlabHeaderPagemap(p->iSlabs[0].iHeader) != 0);
	HEAP_ASSERT(HIBIT(SlabHeaderPagemap(p->iSlabs[0].iHeader)) == unsigned(s - &p->iSlabs[0]));
}


void RHybridHeap::SlabInit()
{
	iSlabThreshold=0;
	iPartialPage = 0;
	iFullSlab = 0;
	iSparePage = 0;
	memset(&iSizeMap[0],0xff,sizeof(iSizeMap));
	memset(&iSlabAlloc[0],0,sizeof(iSlabAlloc));
}

void RHybridHeap::SlabConfig(unsigned slabbitmap)
{
	HEAP_ASSERT((slabbitmap & ~EOkBits) == 0);
	HEAP_ASSERT(MAXSLABSIZE <= 60);
	
	unsigned int ix = 0xff;
	unsigned int bit = 1<<((MAXSLABSIZE>>2)-1);
	for (int sz = MAXSLABSIZE; sz >= 0; sz -= 4, bit >>= 1)
		{
		if (slabbitmap & bit)
			{
			if (ix == 0xff)
				iSlabThreshold=sz+1;
			ix = (sz>>2)-1;
			}
		iSizeMap[sz>>2] = (TUint8) ix;
		}
}


void* RHybridHeap::SlabAllocate(slabset& ss)
//
// Allocate a cell from the given slabset
// Strategy:
// 1. Take the partially full slab at the iTop of the heap (lowest address).
// 2. If there is no such slab, allocate from a new slab
// 3. If the slab has a non-empty freelist, pop the cell from the front of the list and update the slab
// 4. Otherwise, if the slab is not full, return the cell at the end of the currently used region of
//    the slab, updating the slab
// 5. Otherwise, release the slab from the iPartial tree/heap, marking it as 'floating' and go back to
//    step 1
//
{
	for (;;)
		{
		slab *s = ss.iPartial;
		if (!s)
			break;
		unsigned h = s->iHeader;
		unsigned free = h & 0xff;		// extract free cell positioning
		if (free)
			{
			HEAP_ASSERT(((free<<2)-sizeof(slabhdr))%SlabHeaderSize(h) == 0);
			void* p = Offset(s,free<<2);
			free = *(unsigned char*)p;	// get next pos in free list
			h += (h&0x3C000)<<6;		// update usedm4
			h &= ~0xff;
			h |= free;					// update freelist
			s->iHeader = h;
			HEAP_ASSERT(SlabHeaderFree(h) == 0 || ((SlabHeaderFree(h)<<2)-sizeof(slabhdr))%SlabHeaderSize(h) == 0);
			HEAP_ASSERT(SlabHeaderUsedm4(h) <= 0x3F8u);
			HEAP_ASSERT((SlabHeaderUsedm4(h)+4)%SlabHeaderSize(h) == 0);
			return p;
			}
		unsigned h2 = h + ((h&0x3C000)<<6);
//		if (h2 < 0xfc00000)
  		if (h2 < MAXUSEDM4BITS)		
			{
			HEAP_ASSERT((SlabHeaderUsedm4(h2)+4)%SlabHeaderSize(h2) == 0);
			s->iHeader = h2;
			return Offset(s,(h>>18) + sizeof(unsigned) + sizeof(slabhdr));
			}
		h |= FLOATING_BIT;				// mark the slab as full-floating
		s->iHeader = h;
		TreeRemove(s);
		slab* c = iFullSlab;			// add to full list
		iFullSlab = s;
		s->iParent = &iFullSlab;
		s->iChild1 = c;
		s->iChild2 = 0;
		if (c)
			c->iParent = &s->iChild1;
		
		CHECKTREE(&ss.iPartial);
		// go back and try the next slab...
		}
	// no iPartial iSlabs found, so allocate from a new slab
	return AllocNewSlab(ss);
}

void RHybridHeap::SlabFree(void* p)
//
// Free a cell from the slab allocator
// Strategy:
// 1. Find the containing slab (round down to nearest 1KB boundary)
// 2. Push the cell into the slab's freelist, and update the slab usage count
// 3. If this is the last allocated cell, free the slab to the main slab manager
// 4. If the slab was full-floating then insert the slab in it's respective iPartial tree
//
{
	HEAP_ASSERT(LowBits(p,3)==0);
	slab* s = slab::SlabFor(p);
	CHECKSLAB(s,ESlabAllocator,p);
	CHECKSLABBFR(s,p);	

	unsigned pos = LowBits(p, SLABSIZE);
	unsigned h = s->iHeader;
	HEAP_ASSERT(SlabHeaderUsedm4(h) != 0x3fC);		// slab is empty already
	HEAP_ASSERT((pos-sizeof(slabhdr))%SlabHeaderSize(h) == 0);
	*(unsigned char*)p = (unsigned char)h;
	h &= ~0xFF;
	h |= (pos>>2);
	unsigned size = h & 0x3C000;
	if (int(h) >= 0)
		{
		h -= size<<6;
		if (int(h)>=0)
			{
			s->iHeader = h;
			return;
			}
		FreeSlab(s);
		return;
		}
	h -= size<<6;
    h &= ~FLOATING_BIT;	
	s->iHeader = h;
	slab** full = s->iParent;		// remove from full list
	slab* c = s->iChild1;
	*full = c;
	if (c)
		c->iParent = full;
	
	slabset& ss = iSlabAlloc[iSizeMap[size>>14]];
	TreeInsert(s,&ss.iPartial);
	CHECKTREE(&ss.iPartial);
}

void* RHybridHeap::InitNewSlab(slabset& allocator, slab* s)
//
// initialise an empty slab for this allocator and return the fist cell
// pre-condition: the slabset has no iPartial iSlabs for allocation
//
{
	HEAP_ASSERT(allocator.iPartial==0);
	TInt size = 4 + ((&allocator-&iSlabAlloc[0])<<2);	// infer size from slab allocator address
	unsigned h = s->iHeader & 0xF00;	// preserve pagemap only
	h |= (size<<12);					// set size
	h |= (size-4)<<18;					// set usedminus4 to one object minus 4
	s->iHeader = h;
	allocator.iPartial = s;
	s->iParent = &allocator.iPartial;
	s->iChild1 = s->iChild2 = 0;
	return Offset(s,sizeof(slabhdr));
}

const unsigned char slab_bitcount[16] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};

const unsigned char slab_ext_frag[16] =
{
	0,
	16 + (1008 % 4),
	16 + (1008 % 8),
	16 + (1008 % 12),
	16 + (1008 % 16),
	16 + (1008 % 20),
	16 + (1008 % 24),
	16 + (1008 % 28),
	16 + (1008 % 32),
	16 + (1008 % 36),
	16 + (1008 % 40),
	16 + (1008 % 44),
	16 + (1008 % 48),
	16 + (1008 % 52),
	16 + (1008 % 56),
	16 + (1008 % 60)
};

void RHybridHeap::TreeWalk(slab* const* root, void (*f)(slab*, struct HeapInfo*, SWalkInfo*), struct HeapInfo* i, SWalkInfo* wi)
{
	// iterative walk around the tree at root
	
	slab* s = *root;
	if (!s)
		return;
	
	for (;;)
		{
		slab* c;
		while ((c = s->iChild1) != 0)
			s = c;		// walk down left side to end
		for (;;)
			{
			f(s, i, wi);
			c = s->iChild2;
			if (c)
				{	// one step down right side, now try and walk down left
				s = c;
				break;
				}
			for (;;)
				{	// loop to walk up right side
				slab** pp = s->iParent;
				if (pp == root)
					return;
				s = slab::SlabFor(pp);
				if (pp == &s->iChild1)
					break;
				}
			}
		}
}

void RHybridHeap::SlabEmptyInfo(slab* s, struct HeapInfo* i, SWalkInfo* wi)
{
	Walk(wi, s, SLABSIZE, EGoodFreeCell, EEmptySlab); // Introduce an empty slab to the walk function 
	int nslab = slab_bitcount[SlabHeaderPagemap(page::PageFor(s)->iSlabs[0].iHeader)];
	i->iFreeN += nslab;
	i->iFreeBytes += nslab << SLABSHIFT;
}

void RHybridHeap::SlabPartialInfo(slab* s, struct HeapInfo* i, SWalkInfo* wi)
{
	Walk(wi, s, SLABSIZE, EGoodAllocatedCell, EPartialFullSlab); // Introduce a full slab to the walk function 
	unsigned h = s->iHeader;
	unsigned used = SlabHeaderUsedm4(h)+4;
	unsigned size = SlabHeaderSize(h);
	unsigned free = 1024 - slab_ext_frag[size>>2] - used;
	i->iFreeN += (free/size);
	i->iFreeBytes += free;
	i->iAllocN += (used/size);
	i->iAllocBytes += used;
}

void RHybridHeap::SlabFullInfo(slab* s, struct HeapInfo* i, SWalkInfo* wi)
{
	Walk(wi, s, SLABSIZE, EGoodAllocatedCell, EFullSlab); // Introduce a full slab to the walk function 
	unsigned h = s->iHeader;
	unsigned used = SlabHeaderUsedm4(h)+4;
	unsigned size = SlabHeaderSize(h);
	HEAP_ASSERT(1024 - slab_ext_frag[size>>2] - used == 0);
	i->iAllocN += (used/size);
	i->iAllocBytes += used;
}

void RHybridHeap::SlabInfo(struct HeapInfo* i, SWalkInfo* wi) const
{
	if (iSparePage)
		{
		i->iFreeBytes += iPageSize;
		i->iFreeN = 4;
		Walk(wi, iSparePage, iPageSize, EGoodFreeCell, ESlabSpare); // Introduce Slab spare page to the walk function 
		}
	TreeWalk(&iFullSlab, &SlabFullInfo, i, wi);
	for (int ix = 0; ix < (MAXSLABSIZE>>2); ++ix)
		TreeWalk(&iSlabAlloc[ix].iPartial, &SlabPartialInfo, i, wi);
	TreeWalk(&iPartialPage, &SlabEmptyInfo, i, wi);
}


//
// Bitmap class implementation for large page allocator 
//
inline unsigned char* paged_bitmap::Addr() const {return iBase;}
inline unsigned paged_bitmap::Size() const {return iNbits;}
//

void paged_bitmap::Init(unsigned char* p, unsigned size, unsigned bit)
{
	iBase = p;
	iNbits=size;
	int bytes=Ceiling(size,8)>>3;
	memset(p,bit?0xff:0,bytes);
}

inline void paged_bitmap::Set(unsigned ix, unsigned bit)
{
	if (bit)
		iBase[ix>>3] |= (1<<(ix&7));
	else
		iBase[ix>>3] &= ~(1<<(ix&7));
}

inline unsigned paged_bitmap::operator[](unsigned ix) const
{
	return 1U&(iBase[ix>>3] >> (ix&7));
}

void paged_bitmap::Setn(unsigned ix, unsigned len, unsigned bit)
{
	int l=len;
	while (--l>=0)
		Set(ix++,bit);
}

void paged_bitmap::Set(unsigned ix, unsigned len, unsigned val)
{
	int l=len;
	while (--l>=0)
		{
		Set(ix++,val&1);
		val>>=1;
		}
}

unsigned paged_bitmap::Bits(unsigned ix, unsigned len) const
{
	int l=len;
	unsigned val=0;
	unsigned bit=0;
	while (--l>=0)
		val |= (*this)[ix++]<<bit++;
	return val;
}

bool paged_bitmap::Is(unsigned ix, unsigned len, unsigned bit) const
{
	unsigned i2 = ix+len;
	if (i2 > iNbits)
		return false;
	for (;;)
		{
		if ((*this)[ix] != bit)
			return false;
		if (++ix==i2)
			return true;
		}
}

int paged_bitmap::Find(unsigned start, unsigned bit) const
{
	if (start<iNbits) do
		{
		if ((*this)[start]==bit)
			return start;
		} while (++start<iNbits);
	return -1;
}


//
// Page allocator code
//
void RHybridHeap::PagedInit(TInt aPagePower)
{
	if (aPagePower > 0)
		{
		if (aPagePower < MINPAGEPOWER)
			aPagePower = MINPAGEPOWER;
		}
	else aPagePower = 31;

	iPageThreshold = aPagePower;
	/*-------------------------------------------------------------
	 * Initialize page bitmap
	 *-------------------------------------------------------------*/
	iPageMap.Init((unsigned char*)&iBitMapBuffer, MAXSMALLPAGEBITS, 0);
}

void* RHybridHeap::PagedAllocate(unsigned size)
{
	TInt nbytes = Ceiling(size, iPageSize);
	void* p = Map(0, nbytes);
	if (!p)
		return 0;
	if (!PagedSetSize(p, nbytes))
		{
		Unmap(p, nbytes);
		return 0;
		}
	return p;
}

void* RHybridHeap::PagedReallocate(void* p, unsigned size, TInt mode)
{
	
	HEAP_ASSERT(Ceiling(p, iPageSize) == p);
	unsigned nbytes = Ceiling(size, iPageSize);
	
	unsigned osize = PagedSize(p);
	if ( nbytes == 0 )  // Special case to handle shrinking below min page threshold 
		nbytes = Min((1 << MINPAGEPOWER), osize);
	
	if (osize == nbytes)
		return p;
	
	if (nbytes < osize)
		{	// shrink in place, unmap final pages and rewrite the pagemap
		Unmap(Offset(p, nbytes), osize-nbytes);
		// zap old code and then write new code (will not fail)
		PagedZapSize(p, osize);

		TBool check = PagedSetSize(p, nbytes);
        __ASSERT_ALWAYS(check, HEAP_PANIC(ETHeapBadCellAddress));
		
		return p;
		}
	
	// nbytes > osize
	// try and extend current region first
			
	void* newp = Map(Offset(p, osize), nbytes-osize);
	if (newp)
		{	// In place growth. Possibility that pagemap may have to grow AND then fails
		if (!PagedSetSize(p, nbytes))
			{	// must release extra mapping
			Unmap(Offset(p, osize), nbytes-osize);
			return 0;
			}
		// if successful, the new length code will have overwritten the old one (it is at least as long)
		return p;
		}
	
	// fallback to  allocate/copy/free
	if (mode & ENeverMove)
		return 0;		// not allowed to move cell
	
	newp = PagedAllocate(nbytes);
	if (!newp)
		return 0;
	memcpy(newp, p, osize);
	PagedFree(p);
	return newp;
}

void RHybridHeap::PagedFree(void* p)
{
	HEAP_ASSERT(Ceiling(p, iPageSize) == p);

	
	unsigned size = PagedSize(p);
	
	PagedZapSize(p, size);		// clear page map
	Unmap(p, size);
}

void RHybridHeap::PagedInfo(struct HeapInfo* i, SWalkInfo* wi) const
{
	for (int ix = 0;(ix = iPageMap.Find(ix,1)) >= 0;)
		{
		int npage = PagedDecode(ix);
		// Introduce paged buffer to the walk function 
		TAny* bfr = Bitmap2addr(ix);
		int len = npage << PAGESHIFT;
		if ( len > iPageSize )
			{ // If buffer is not larger than one page it must be a slab page mapped into bitmap
			i->iAllocBytes += len;
			++i->iAllocN;
			Walk(wi, bfr, len, EGoodAllocatedCell, EPageAllocator);
			}
		ix += (npage<<1);
		}
}

void RHybridHeap::ResetBitmap()
/*---------------------------------------------------------
 * Go through paged_bitmap and unmap all buffers to system
 * This method is called from RHybridHeap::Reset() to unmap all page
 * allocated - and slab pages which are stored in bitmap, too
 *---------------------------------------------------------*/ 
{
	unsigned iNbits = iPageMap.Size();
	if ( iNbits )
		{
		for (int ix = 0;(ix = iPageMap.Find(ix,1)) >= 0;)
			{
			int npage = PagedDecode(ix);
			void* p = Bitmap2addr(ix);
			unsigned size = PagedSize(p);
			PagedZapSize(p, size);		// clear page map
			Unmap(p, size);
			ix += (npage<<1);
			}
		if ( (TInt)iNbits > MAXSMALLPAGEBITS )
			{
			// unmap page reserved for enlarged bitmap
			Unmap(iPageMap.Addr(), (iNbits >> 3) );
			}
		}
}

TBool RHybridHeap::CheckBitmap(void* aBfr, TInt aSize, TUint32& aDummy, TInt& aNPages)
/*---------------------------------------------------------
 * If aBfr = NULL
 *   Go through paged_bitmap and unmap all buffers to system
 *   and assure that by reading the first word of each page of aBfr
 *   that aBfr is still accessible
 * else  
 *   Assure that specified buffer is mapped with correct length in
 *   page map
 *---------------------------------------------------------*/ 
{
	TBool ret;
	if ( aBfr )
		{
		__ASSERT_ALWAYS((Ceiling(aBfr, iPageSize) == aBfr), HEAP_PANIC(ETHeapBadCellAddress));		
        ret = ( aSize == (TInt)PagedSize(aBfr));
		}
	else
		{
		ret = ETrue;
		unsigned iNbits = iPageMap.Size();
		if ( iNbits )
			{
			TInt npage;
			aNPages = 0;
			for (int ix = 0;(ix = iPageMap.Find(ix,1)) >= 0;)
				{
				npage = PagedDecode(ix);
				aNPages += npage;
				void* p = Bitmap2addr(ix);
				__ASSERT_ALWAYS((Ceiling(p, iPageSize) == p), HEAP_PANIC(ETHeapBadCellAddress));						
				unsigned s = PagedSize(p);
				__ASSERT_ALWAYS((Ceiling(s, iPageSize) == s), HEAP_PANIC(ETHeapBadCellAddress));	
				while ( s )
					{
					aDummy += *(TUint32*)((TUint8*)p + (s-iPageSize));
					s -= iPageSize;
					}
				ix += (npage<<1);
				}
			if ( (TInt)iNbits > MAXSMALLPAGEBITS )
				{
				// add enlarged bitmap page(s) to total page count
                npage = (iNbits >> 3); 
				__ASSERT_ALWAYS((Ceiling(npage, iPageSize) == npage), HEAP_PANIC(ETHeapBadCellAddress));
				aNPages += (npage / iPageSize);
				}
			}
		}
	
	return ret;
}


// The paged allocations are tracked in a bitmap which has 2 bits per page
// this allows us to store allocations as small as 4KB
// The presence and size of an allocation is encoded as follows:
// let N = number of pages in the allocation, then
// 10            : N = 1			// 4KB
// 110n			 : N = 2 + n		// 8-12KB
// 1110nnnn      : N = nnnn			// 16-60KB
// 1111n[18]	 : N = n[18]		// 64KB-1GB

const struct etab { unsigned char offset, len, codelen, code;} encode_table[] =
{
	{1,2,2,0x1},
	{2,4,3,0x3},
	{0,8,4,0x7},
	{0,22,4,0xf}
};

// Return code length for specified allocation Size(assumed to be aligned to pages)
inline unsigned paged_codelen(unsigned size, unsigned pagesz)
{
	HEAP_ASSERT(size == Ceiling(size, pagesz));
	
	if (size == pagesz)
		return 2;
	else if (size < 4*pagesz)
		return 4;
	else if (size < 16*pagesz)
		return 8;
	else
		return 22;
}

inline const etab& paged_coding(unsigned npage)
{
	if (npage < 4)
		return encode_table[npage>>1];
	else if (npage < 16)
		return encode_table[2];
	else
		return encode_table[3];
}

bool RHybridHeap::PagedEncode(unsigned pos, unsigned npage)
{
	const etab& e = paged_coding(npage);
	if (pos + e.len > iPageMap.Size())
		{
		// need to grow the page bitmap to fit the cell length into the map
		// if we outgrow original bitmap buffer in RHybridHeap metadata, then just get enough pages to cover the full space:
		// * initial 68 byte bitmap mapped (68*8*4kB):2 = 1,1MB
		// * 4KB can Map(4096*8*4kB):2 = 64MB
		unsigned maxsize = Ceiling(iMaxLength, iPageSize);
		unsigned mapbits = maxsize >> (PAGESHIFT-1);
		maxsize = Ceiling(mapbits>>3, iPageSize);
		void* newb = Map(0, maxsize);
		if (!newb)
			return false;
		
		unsigned char* oldb = iPageMap.Addr();
		iPageMap.Init((unsigned char*)newb, (maxsize<<3), 0);
		memcpy(newb, oldb, Ceiling(MAXSMALLPAGEBITS,8)>>3);
		}
	// encode the allocation block size into the bitmap, starting at the bit for the start page
	unsigned bits = e.code;
	bits |= (npage - e.offset) << e.codelen;
	iPageMap.Set(pos, e.len, bits);
	return true;
}

unsigned RHybridHeap::PagedDecode(unsigned pos) const
{
	__ASSERT_ALWAYS(pos + 2 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress));
	
	unsigned bits = iPageMap.Bits(pos,2);
	__ASSERT_ALWAYS(bits & 1, HEAP_PANIC(ETHeapBadCellAddress));
	bits >>= 1;
	if (bits == 0)
		return 1;
	__ASSERT_ALWAYS(pos + 4 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress));
	bits = iPageMap.Bits(pos+2,2);
	if ((bits & 1) == 0)
		return 2 + (bits>>1);
	else if ((bits>>1) == 0)
		{
		__ASSERT_ALWAYS(pos + 8 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress));
		return iPageMap.Bits(pos+4, 4);
		}
	else
		{
		__ASSERT_ALWAYS(pos + 22 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress));
		return iPageMap.Bits(pos+4, 18);
		}
}

inline void RHybridHeap::PagedZapSize(void* p, unsigned size)
{iPageMap.Setn(PtrDiff(p, iMemBase) >> (PAGESHIFT-1), paged_codelen(size, iPageSize) ,0);}

inline unsigned RHybridHeap::PagedSize(void* p) const
   { return PagedDecode(PtrDiff(p, iMemBase) >> (PAGESHIFT-1)) << PAGESHIFT; }

inline bool RHybridHeap::PagedSetSize(void* p, unsigned size)
{ return PagedEncode(PtrDiff(p, iMemBase) >> (PAGESHIFT-1), size >> PAGESHIFT); }

inline void* RHybridHeap::Bitmap2addr(unsigned pos) const
   { return iMemBase + (1 << (PAGESHIFT-1))*pos; }


#ifndef QT_SYMBIAN4_ALLOCATOR_UNWANTED_CODE
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/**
Constructor where minimum and maximum length of the heap can be defined.
It defaults the chunk heap to be created to have use a new local chunk, 
to have a grow by value of KMinHeapGrowBy, to be unaligned, not to be 
single threaded and not to have any mode flags set.

@param aMinLength    The minimum length of the heap to be created.
@param aMaxLength    The maximum length to which the heap to be created can grow.
                     If the supplied value is less than a page size, then it
                     is discarded and the page size is used instead.
*/
EXPORT_C TChunkHeapCreateInfo::TChunkHeapCreateInfo(TInt aMinLength, TInt aMaxLength) :
   iVersionNumber(EVersion0), iMinLength(aMinLength), iMaxLength(aMaxLength),
iAlign(0), iGrowBy(1), iSingleThread(EFalse), 
iOffset(0), iPaging(EUnspecified), iMode(0), iName(NULL)
{
}


/**
Sets the chunk heap to create a new chunk with the specified name.

This overriddes any previous call to TChunkHeapCreateInfo::SetNewChunkHeap() or
TChunkHeapCreateInfo::SetExistingChunkHeap() for this TChunkHeapCreateInfo object.

@param aName	The name to be given to the chunk heap to be created
If NULL, the function constructs a local chunk to host the heap.
If not NULL, a pointer to a descriptor containing the name to be 
assigned to the global chunk hosting the heap.
*/
EXPORT_C void TChunkHeapCreateInfo::SetCreateChunk(const TDesC* aName)
{
	iName = (TDesC*)aName;
	iChunk.SetHandle(KNullHandle);
}


/**
Sets the chunk heap to be created to use the chunk specified.

This overriddes any previous call to TChunkHeapCreateInfo::SetNewChunkHeap() or
TChunkHeapCreateInfo::SetExistingChunkHeap() for this TChunkHeapCreateInfo object.

@param aChunk	A handle to the chunk to use for the heap.
*/
EXPORT_C void TChunkHeapCreateInfo::SetUseChunk(const RChunk aChunk)
{
	iName = NULL;
	iChunk = aChunk;
}

EXPORT_C RHeap* UserHeap::FixedHeap(TAny* aBase, TInt aMaxLength, TInt aAlign, TBool aSingleThread)
/**
Creates a fixed length heap at a specified location.

On successful return from this function, the heap is ready to use.  This assumes that
the memory pointed to by aBase is mapped and able to be used.  You must ensure that you
pass in a large enough value for aMaxLength.  Passing in a value that is too small to
hold the metadata for the heap (~1 KB) will result in the size being rounded up and the
heap thereby running over the end of the memory assigned to it.  But then if you were to
pass in such as small value then you would not be able to do any allocations from the
heap anyway.  Moral of the story: Use a sensible value for aMaxLength!

@param aBase         A pointer to the location where the heap is to be constructed.
@param aMaxLength    The maximum length in bytes to which the heap can grow.  If the
                     supplied value is too small to hold the heap's metadata, it
                     will be increased.
@param aAlign        From Symbian^4 onwards, this value is ignored but EABI 8
                     byte alignment is guaranteed for all allocations 8 bytes or
                     more in size.  4 byte allocations will be aligned to a 4
                     byte boundary.  Best to pass in zero.
@param aSingleThread EFalse if the heap is to be accessed from multiple threads.
                     This will cause internal locks to be created, guaranteeing
                     thread safety.

@return A pointer to the new heap, or NULL if the heap could not be created.

@panic USER 56 if aMaxLength is negative.
*/
{
	__ASSERT_ALWAYS( aMaxLength>=0, ::Panic(ETHeapMaxLengthNegative));
	if ( aMaxLength < (TInt)sizeof(RHybridHeap) )
		aMaxLength = sizeof(RHybridHeap);
	
	RHybridHeap* h = new(aBase) RHybridHeap(aMaxLength, aAlign, aSingleThread);
	
	if (!aSingleThread)
		{
		TInt r = h->iLock.CreateLocal();
		if (r!=KErrNone)
			return NULL; // No need to delete the RHybridHeap instance as the new above is only a placement new
		h->iHandles = (TInt*)&h->iLock;
		h->iHandleCount = 1;
		}
	return h;
}

/**
Creates a chunk heap of the type specified by the parameter aCreateInfo.

@param aCreateInfo	A reference to a TChunkHeapCreateInfo object specifying the
type of chunk heap to create.

@return A pointer to the new heap or NULL if the heap could not be created.

@panic USER 41 if the heap's specified minimum length is greater than the specified maximum length.
@panic USER 55 if the heap's specified minimum length is negative.
@panic USER 172 if the heap's specified alignment is not a power of 2 or is less than the size of a TAny*.
*/
EXPORT_C RHeap* UserHeap::ChunkHeap(const TChunkHeapCreateInfo& aCreateInfo)
{
	// aCreateInfo must have been configured to use a new chunk or an exiting chunk.
	__ASSERT_ALWAYS(!(aCreateInfo.iMode & (TUint32)~EChunkHeapMask), ::Panic(EHeapCreateInvalidMode));
	RHeap* h = NULL;
	
	if (aCreateInfo.iChunk.Handle() == KNullHandle)
		{
		// A new chunk is to be created for this heap.
		
		__ASSERT_ALWAYS(aCreateInfo.iMinLength >= 0, ::Panic(ETHeapMinLengthNegative));
		__ASSERT_ALWAYS(aCreateInfo.iMaxLength >= aCreateInfo.iMinLength, ::Panic(ETHeapCreateMaxLessThanMin));

		TInt maxLength = aCreateInfo.iMaxLength;
		TInt page_size;
		GET_PAGE_SIZE(page_size);

		if (maxLength < page_size)
			maxLength = page_size;
		
		TChunkCreateInfo chunkInfo;
#if USE_HYBRID_HEAP
		if ( aCreateInfo.iOffset )
			chunkInfo.SetNormal(0, maxLength);  // Create DL only heap
		else
			{
			maxLength = 2*maxLength;
			chunkInfo.SetDisconnected(0, 0, maxLength); // Create hybrid heap
			}
#else
		chunkInfo.SetNormal(0, maxLength);  // Create DL only heap		
#endif			
		chunkInfo.SetOwner((aCreateInfo.iSingleThread)? EOwnerThread : EOwnerProcess);
		if (aCreateInfo.iName)
			chunkInfo.SetGlobal(*aCreateInfo.iName);
		// Set the paging attributes of the chunk.
		if (aCreateInfo.iPaging == TChunkHeapCreateInfo::EPaged)
			chunkInfo.SetPaging(TChunkCreateInfo::EPaged);
		if (aCreateInfo.iPaging == TChunkHeapCreateInfo::EUnpaged)
			chunkInfo.SetPaging(TChunkCreateInfo::EUnpaged);
		// Create the chunk.
		RChunk chunk;
		if (chunk.Create(chunkInfo) != KErrNone)
			return NULL;
		// Create the heap using the new chunk.
		TUint mode = aCreateInfo.iMode | EChunkHeapDuplicate;	// Must duplicate the handle.
		h = OffsetChunkHeap(chunk, aCreateInfo.iMinLength, aCreateInfo.iOffset,
							aCreateInfo.iGrowBy, maxLength, aCreateInfo.iAlign,
							aCreateInfo.iSingleThread, mode);
		chunk.Close();
		}
	else
		{
		h = OffsetChunkHeap(aCreateInfo.iChunk, aCreateInfo.iMinLength, aCreateInfo.iOffset,
							aCreateInfo.iGrowBy, aCreateInfo.iMaxLength, aCreateInfo.iAlign,
							aCreateInfo.iSingleThread, aCreateInfo.iMode);
		}
	return h;
}



EXPORT_C RHeap* UserHeap::ChunkHeap(const TDesC* aName, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign, TBool aSingleThread)
/**
Creates a heap in a local or global chunk.

The chunk hosting the heap can be local or global.

A local chunk is one which is private to the process creating it and is not
intended for access by other user processes.  A global chunk is one which is
visible to all processes.

The hosting chunk is local, if the pointer aName is NULL, otherwise the
hosting chunk is global and the descriptor *aName is assumed to contain
the name to be assigned to it.

Ownership of the host chunk is vested in the current process.

A minimum and a maximum size for the heap can be specified. On successful
return from this function, the size of the heap is at least aMinLength.
If subsequent requests for allocation of memory from the heap cannot be
satisfied by compressing the heap, the size of the heap is extended in
increments of aGrowBy until the request can be satisfied.  Attempts to extend
the heap causes the size of the host chunk to be adjusted.

Note that the size of the heap cannot be adjusted by more than aMaxLength.

@param aName         If NULL, the function constructs a local chunk to host
                     the heap.  If not NULL, a pointer to a descriptor containing
                     the name to be assigned to the global chunk hosting the heap.
@param aMinLength    The minimum length of the heap in bytes.  This will be
                     rounded up to the nearest page size by the allocator.
@param aMaxLength    The maximum length in bytes to which the heap can grow.  This
                     will be rounded up to the nearest page size by the allocator.
@param aGrowBy       The number of bytes by which the heap will grow when more
                     memory is required.  This will be rounded up to the nearest
                     page size by the allocator.  If a value is not explicitly
                     specified, the page size is taken by default.
@param aAlign        From Symbian^4 onwards, this value is ignored but EABI 8
                     byte alignment is guaranteed for all allocations 8 bytes or
                     more in size.  4 byte allocations will be aligned to a 4
                     byte boundary.  Best to pass in zero.
@param aSingleThread EFalse if the heap is to be accessed from multiple threads.
                     This will cause internal locks to be created, guaranteeing
                     thread safety.

@return A pointer to the new heap or NULL if the heap could not be created.

@panic USER 41 if aMaxLength is < aMinLength.
@panic USER 55 if aMinLength is negative.
@panic USER 56 if aMaxLength is negative.
*/
	{
	TInt page_size;
	GET_PAGE_SIZE(page_size);
	TInt minLength = _ALIGN_UP(aMinLength, page_size);
	TInt maxLength = Max(aMaxLength, minLength);

	TChunkHeapCreateInfo createInfo(minLength, maxLength);
	createInfo.SetCreateChunk(aName);
	createInfo.SetGrowBy(aGrowBy);
	createInfo.SetAlignment(aAlign);
	createInfo.SetSingleThread(aSingleThread);

	return ChunkHeap(createInfo);
	}
#endif // QT_SYMBIAN4_ALLOCATOR_UNWANTED_CODE

EXPORT_C RHeap* UserHeap::ChunkHeap(RChunk aChunk, TInt aMinLength, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode)
/**
Creates a heap in an existing chunk.

This function is intended to be used to create a heap in a user writable code
chunk as created by a call to RChunk::CreateLocalCode().  This type of heap can
be used to hold code fragments from a JIT compiler.

@param aChunk        The chunk that will host the heap.
@param aMinLength    The minimum length of the heap in bytes.  This will be
                     rounded up to the nearest page size by the allocator.
@param aGrowBy       The number of bytes by which the heap will grow when more
                     memory is required.  This will be rounded up to the nearest
                     page size by the allocator.  If a value is not explicitly
                     specified, the page size is taken by default.
@param aMaxLength    The maximum length in bytes to which the heap can grow.  This
                     will be rounded up to the nearest page size by the allocator.
                     If 0 is passed in, the maximum lengt of the chunk is used.
@param aAlign        From Symbian^4 onwards, this value is ignored but EABI 8
                     byte alignment is guaranteed for all allocations 8 bytes or
                     more in size.  4 byte allocations will be aligned to a 4
                     byte boundary.  Best to pass in zero.
@param aSingleThread EFalse if the heap is to be accessed from multiple threads.
                     This will cause internal locks to be created, guaranteeing
                     thread safety.
@param aMode         Flags controlling the heap creation.  See RAllocator::TFlags.

@return A pointer to the new heap or NULL if the heap could not be created.

@see UserHeap::OffsetChunkHeap()
*/
	{
	return OffsetChunkHeap(aChunk, aMinLength, 0, aGrowBy, aMaxLength, aAlign, aSingleThread, aMode);
	}

EXPORT_C RHeap* UserHeap::OffsetChunkHeap(RChunk aChunk, TInt aMinLength, TInt aOffset, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode)
/**
Creates a heap in an existing chunk, offset from the beginning of the chunk.

This function is intended to be used to create a heap using a chunk which has
some of its memory already used, at the start of that that chunk.  The maximum
length to which the heap can grow is the maximum size of the chunk, minus the
data at the start of the chunk.

The offset at which to create the heap is passed in as the aOffset parameter.
Legacy heap implementations always respected the aOffset value, however more
modern heap implementations are more sophisticated and cannot necessarily respect
this value.  Therefore, if possible, you should always use an aOffset of 0 unless
you have a very explicit requirement for using a non zero value.  Using a non zero
value will result in a less efficient heap algorithm being used in order to respect
the offset.

Another issue to consider when using this function is the type of the chunk passed
in.  In order for the most efficient heap algorithms to be used, the chunk passed
in should always be a disconnected chunk.  Passing in a non disconnected chunk will
again result in a less efficient heap algorithm being used.

Finally, another requirement for the most efficient heap algorithms to be used is
for the heap to be able to expand.  Therefore, unless you have a specific reason to
do so, always specify aMaxLength > aMinLength.

So, if possible, use aOffset == zero, aMaxLength > aMinLength and a disconnected
chunk for best results!

@param aChunk        The chunk that will host the heap.
@param aMinLength    The minimum length of the heap in bytes.  This will be
                     rounded up to the nearest page size by the allocator.
@param aOffset       The offset in bytes from the start of the chunk at which to
                     create the heap.  If used (and it shouldn't really be!)
                     then it will be rounded up to a multiple of 8, to respect
                     EABI 8 byte alignment requirements.
@param aGrowBy       The number of bytes by which the heap will grow when more
                     memory is required.  This will be rounded up to the nearest
                     page size by the allocator.  If a value is not explicitly
                     specified, the page size is taken by default.
@param aMaxLength    The maximum length in bytes to which the heap can grow.  This
                     will be rounded up to the nearest page size by the allocator.
                     If 0 is passed in, the maximum length of the chunk is used.
@param aAlign        From Symbian^4 onwards, this value is ignored but EABI 8
                     byte alignment is guaranteed for all allocations 8 bytes or
                     more in size.  4 byte allocations will be aligned to a 4
                     byte boundary.  Best to pass in zero.
@param aSingleThread EFalse if the heap is to be accessed from multiple threads.
                     This will cause internal locks to be created, guaranteeing
                     thread safety.
@param aMode         Flags controlling the heap creation.  See RAllocator::TFlags.

@return A pointer to the new heap or NULL if the heap could not be created.

@panic USER 41 if aMaxLength is < aMinLength.
@panic USER 55 if aMinLength is negative.
@panic USER 56 if aMaxLength is negative.
@panic USER 168 if aOffset is negative.
*/
	{
	TBool dlOnly = EFalse;
	TInt pageSize;
	GET_PAGE_SIZE(pageSize);
	TInt align = RHybridHeap::ECellAlignment; // Always use EABI 8 byte alignment

	__ASSERT_ALWAYS(aMinLength>=0, ::Panic(ETHeapMinLengthNegative));
	__ASSERT_ALWAYS(aMaxLength>=0, ::Panic(ETHeapMaxLengthNegative));

	if ( aMaxLength > 0 ) 
		__ASSERT_ALWAYS(aMaxLength>=aMinLength, ::Panic(ETHeapCreateMaxLessThanMin));

	// Stick to EABI alignment for the start offset, if any
	aOffset = _ALIGN_UP(aOffset, align);

	// Using an aOffset > 0 means that we can't use the hybrid allocator and have to revert to Doug Lea only
	if (aOffset > 0)
		dlOnly = ETrue;

	// Ensure that the minimum length is enough to hold the RHybridHeap object itself
	TInt minCell = _ALIGN_UP(Max((TInt)RHybridHeap::EAllocCellSize, (TInt)RHybridHeap::EFreeCellSize), align);
	TInt hybridHeapSize = (sizeof(RHybridHeap) + minCell);
	if (aMinLength < hybridHeapSize)
		aMinLength = hybridHeapSize;

	// Round the minimum length up to a multiple of the page size, taking into account that the
	// offset takes up a part of the chunk's memory
	aMinLength = _ALIGN_UP((aMinLength + aOffset), pageSize);

	// If aMaxLength is 0 then use the entire chunk
	TInt chunkSize = aChunk.MaxSize();
	if (aMaxLength == 0)
		{
		aMaxLength = chunkSize;
		}
	// Otherwise round the maximum length up to a multiple of the page size, taking into account that
	// the offset takes up a part of the chunk's memory.  We also clip the maximum length to the chunk
	// size, so the user may get a little less than requested if the chunk size is not large enough
	else
		{
		aMaxLength = _ALIGN_UP((aMaxLength + aOffset), pageSize);
		if (aMaxLength > chunkSize)
			aMaxLength = chunkSize;
		}
	
	// If the rounded up values don't make sense then a crazy aMinLength or aOffset must have been passed
	// in, so fail the heap creation
	if (aMinLength > aMaxLength)
		return NULL;

	// Adding the offset into the minimum and maximum length was only necessary for ensuring a good fit of
	// the heap into the chunk.  Re-adjust them now back to non offset relative sizes
	aMinLength -= aOffset;
	aMaxLength -= aOffset;

	// If we are still creating the hybrid allocator (call parameter
	// aOffset is 0 and aMaxLength > aMinLength), we must reduce heap
	// aMaxLength size to the value aMaxLength/2 and set the aOffset to point in the middle of chunk.
	TInt offset = aOffset;
	TInt maxLength = aMaxLength;
	if (!dlOnly && (aMaxLength > aMinLength))
		maxLength = offset = _ALIGN_UP(aMaxLength >> 1, pageSize);

	// Try to use commit to map aMinLength physical memory for the heap, taking into account the offset.  If
	// the operation fails, suppose that the chunk is not a disconnected heap and try to map physical memory
	// with adjust.  In this case, we also can't use the hybrid allocator and have to revert to Doug Lea only
	TBool useAdjust = EFalse;
	TInt r = aChunk.Commit(offset, aMinLength);
	if (r == KErrGeneral)
		{
		dlOnly = useAdjust = ETrue;
		r = aChunk.Adjust(aMinLength);
		if (r != KErrNone)
			return NULL;
		}
	else if (r == KErrNone)
		{
		// We have a disconnected chunk reset aOffset and aMaxlength
		aOffset = offset;
		aMaxLength = maxLength;
		}

	else
		return NULL;

	// Parameters have been mostly verified and we know whether to use the hybrid allocator or Doug Lea only.  The
	// constructor for the hybrid heap will automatically drop back to Doug Lea if it determines that aMinLength
	// == aMaxLength, so no need to worry about that requirement here.  The user specified alignment is not used but
	// is passed in so that it can be sanity checked in case the user is doing something totally crazy with it
	RHybridHeap* h = new (aChunk.Base() + aOffset) RHybridHeap(aChunk.Handle(), aOffset, aMinLength, aMaxLength,
		aGrowBy, aAlign, aSingleThread, dlOnly, useAdjust);

	if (h->ConstructLock(aMode) != KErrNone)
		return NULL;

	// Return the heap address
	return h;
	}

#define UserTestDebugMaskBit(bit) (TBool)(UserSvr::DebugMask(bit>>5) & (1<<(bit&31)))

_LIT(KLitDollarHeap,"$HEAP");
EXPORT_C TInt UserHeap::CreateThreadHeap(SStdEpocThreadCreateInfo& aInfo, RHeap*& aHeap, TInt aAlign, TBool aSingleThread)
/**
@internalComponent
*/
//
// Create a user-side heap
//
{
	TInt page_size;
	GET_PAGE_SIZE(page_size);
	TInt minLength = _ALIGN_UP(aInfo.iHeapInitialSize, page_size);
	TInt maxLength = Max(aInfo.iHeapMaxSize, minLength);
#ifdef ENABLE_BTRACE
	if (UserTestDebugMaskBit(96)) // 96 == KUSERHEAPTRACE in nk_trace.h
		aInfo.iFlags |= ETraceHeapAllocs;
#endif // ENABLE_BTRACE
	// Create the thread's heap chunk.
	RChunk c;
#ifndef NO_NAMED_LOCAL_CHUNKS
	TChunkCreateInfo createInfo;

	createInfo.SetThreadHeap(0, maxLength, KLitDollarHeap());	// Initialise with no memory committed.	
#if USE_HYBRID_HEAP
	//
	// Create disconnected chunk for hybrid heap with double max length value
	//
	maxLength = 2*maxLength;
	createInfo.SetDisconnected(0, 0, maxLength);
#endif	
#ifdef SYMBIAN_WRITABLE_DATA_PAGING
	// Set the paging policy of the heap chunk based on the thread's paging policy.
	TUint pagingflags = aInfo.iFlags & EThreadCreateFlagPagingMask;
	switch (pagingflags)
		{
		case EThreadCreateFlagPaged:
			createInfo.SetPaging(TChunkCreateInfo::EPaged);
			break;
		case EThreadCreateFlagUnpaged:
			createInfo.SetPaging(TChunkCreateInfo::EUnpaged);
			break;
		case EThreadCreateFlagPagingUnspec:
			// Leave the chunk paging policy unspecified so the process's 
			// paging policy is used.
			break;
		}
#endif // SYMBIAN_WRITABLE_DATA_PAGING
	
	TInt r = c.Create(createInfo);
#else
	TInt r = c.CreateDisconnectedLocal(0, 0, maxLength * 2);
#endif
	if (r!=KErrNone)
		return r;
	
	aHeap = ChunkHeap(c, minLength, page_size, maxLength, aAlign, aSingleThread, EChunkHeapSwitchTo|EChunkHeapDuplicate);
	c.Close();
	
	if ( !aHeap )
		return KErrNoMemory;
	
#ifdef ENABLE_BTRACE
	if (aInfo.iFlags & ETraceHeapAllocs)
		{
		aHeap->iFlags |= RHeap::ETraceAllocs;
    	BTraceContext8(BTrace::EHeap, BTrace::EHeapCreate,(TUint32)aHeap, RHybridHeap::EAllocCellSize);
		TInt chunkId = ((RHandleBase&)((RHybridHeap*)aHeap)->iChunkHandle).BTraceId();
		BTraceContext8(BTrace::EHeap, BTrace::EHeapChunkCreate, (TUint32)aHeap, chunkId);
		}
	if (aInfo.iFlags & EMonitorHeapMemory)
		aHeap->iFlags |= RHeap::EMonitorMemory;
#endif // ENABLE_BTRACE
	
	return KErrNone;
}

#endif  // __KERNEL_MODE__

#endif /* QT_USE_NEW_SYMBIAN_ALLOCATOR */