summaryrefslogtreecommitdiffstats
path: root/src/corelib/codecs/qutfcodec.cpp
blob: 8561f908b9468a79e7e3bf60e6032d360ab3368d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2018 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qutfcodec_p.h"
#include "qlist.h"
#include "qendian.h"
#include "qchar.h"

#include "private/qsimd_p.h"
#include "private/qstringiterator_p.h"

QT_BEGIN_NAMESPACE

enum { Endian = 0, Data = 1 };

static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf };

#if (defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2)) \
    || (defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64))
static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept
{
    uint result = qCountLeadingZeroBits(v);
    // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31
    // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when
    // counting up: msb index is 0 (because it starts there), and the lsb index is 31.
    result ^= sizeof(unsigned) * 8 - 1;
    return result;
}
#endif

#if defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2)
static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end)
{
    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16, dst += 16) {
#  ifdef __AVX2__
        __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src));
        __m128i data1 = _mm256_castsi256_si128(data);
        __m128i data2 = _mm256_extracti128_si256(data, 1);
#  else
        __m128i data1 = _mm_loadu_si128((const __m128i*)src);
        __m128i data2 = _mm_loadu_si128(1+(const __m128i*)src);
#  endif

        // check if everything is ASCII
        // the highest ASCII value is U+007F
        // Do the packing directly:
        // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit
        // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff,
        // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII,
        // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as
        // "non-ASCII", but it's an acceptable compromise.
        __m128i packed = _mm_packus_epi16(data1, data2);
        __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128());

        // store, even if there are non-ASCII characters here
        _mm_storeu_si128((__m128i*)dst, packed);

        // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL)
        ushort n = ~_mm_movemask_epi8(nonAscii);
        if (n) {
            // find the next probable ASCII character
            // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
            // characters still coming
            nextAscii = src + qBitScanReverse(n) + 1;

            n = qCountTrailingZeroBits(n);
            dst += n;
            src += n;
            return false;
        }
    }

    if (end - src >= 8) {
        // do eight characters at a time
        __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src));
        __m128i packed = _mm_packus_epi16(data, data);
        __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128());

        // store even non-ASCII
        _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), packed);

        uchar n = ~_mm_movemask_epi8(nonAscii);
        if (n) {
            nextAscii = src + qBitScanReverse(n) + 1;
            n = qCountTrailingZeroBits(n);
            dst += n;
            src += n;
            return false;
        }
    }

    return src == end;
}

static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end)
{
    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16, dst += 16) {
        __m128i data = _mm_loadu_si128((const __m128i*)src);

#ifdef __AVX2__
        const int BitSpacing = 2;
        // load and zero extend to an YMM register
        const __m256i extended = _mm256_cvtepu8_epi16(data);

        uint n = _mm256_movemask_epi8(extended);
        if (!n) {
            // store
            _mm256_storeu_si256((__m256i*)dst, extended);
            continue;
        }
#else
        const int BitSpacing = 1;

        // check if everything is ASCII
        // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII
        uint n = _mm_movemask_epi8(data);
        if (!n) {
            // unpack
            _mm_storeu_si128((__m128i*)dst, _mm_unpacklo_epi8(data, _mm_setzero_si128()));
            _mm_storeu_si128(1+(__m128i*)dst, _mm_unpackhi_epi8(data, _mm_setzero_si128()));
            continue;
        }
#endif

        // copy the front part that is still ASCII
        while (!(n & 1)) {
            *dst++ = *src++;
            n >>= BitSpacing;
        }

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        n = qBitScanReverse(n);
        nextAscii = src + (n / BitSpacing) + 1;
        return false;

    }

    if (end - src >= 8) {
        __m128i data = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src));
        uint n = _mm_movemask_epi8(data) & 0xff;
        if (!n) {
            // unpack and store
            _mm_storeu_si128(reinterpret_cast<__m128i *>(dst), _mm_unpacklo_epi8(data, _mm_setzero_si128()));
        } else {
            while (!(n & 1)) {
                *dst++ = *src++;
                n >>= 1;
            }

            n = qBitScanReverse(n);
            nextAscii = src + n + 1;
            return false;
        }
    }

    return src == end;
}

static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
{
#ifdef __AVX2__
    // do 32 characters at a time
    // (this is similar to simdTestMask in qstring.cpp)
    const __m256i mask = _mm256_set1_epi8(0x80);
    for ( ; end - src >= 32; src += 32) {
        __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src));
        if (_mm256_testz_si256(mask, data))
            continue;

        uint n = _mm256_movemask_epi8(data);
        Q_ASSUME(n);

        // find the next probable ASCII character
        // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        nextAscii = src + qBitScanReverse(n) + 1;

        // return the non-ASCII character
        return src + qCountTrailingZeroBits(n);
    }
#endif

    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16) {
        __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));

        // check if everything is ASCII
        // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII
        uint n = _mm_movemask_epi8(data);
        if (!n)
            continue;

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        nextAscii = src + qBitScanReverse(n) + 1;

        // return the non-ASCII character
        return src + qCountTrailingZeroBits(n);
    }

    // do four characters at a time
    for ( ; end - src >= 4; src += 4) {
        quint32 data = qFromUnaligned<quint32>(src);
        data &= 0x80808080U;
        if (!data)
            continue;

        // We don't try to guess which of the three bytes is ASCII and which
        // one isn't. The chance that at least two of them are non-ASCII is
        // better than 75%.
        nextAscii = src;
        return src;
    }
    nextAscii = end;
    return src;
}
#elif defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64) // vaddv is only available on Aarch64
static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end)
{
    uint16x8_t maxAscii = vdupq_n_u16(0x7f);
    uint16x8_t mask1 = { 1,      1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 };
    uint16x8_t mask2 = vshlq_n_u16(mask1, 1);

    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16, dst += 16) {
        // load 2 lanes (or: "load interleaved")
        uint16x8x2_t in = vld2q_u16(src);

        // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc),
        // add those together into a scalar, and merge the scalars.
        uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1))
                          | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2));

        // merge the two lanes by shifting the values of the second by 8 and inserting them
        uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8);

        // store, even if there are non-ASCII characters here
        vst1q_u8(dst, vreinterpretq_u8_u16(out));

        if (nonAscii) {
            // find the next probable ASCII character
            // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
            // characters still coming
            nextAscii = src + qBitScanReverse(nonAscii) + 1;

            nonAscii = qCountTrailingZeroBits(nonAscii);
            dst += nonAscii;
            src += nonAscii;
            return false;
        }
    }
    return src == end;
}

static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end)
{
    // do eight characters at a time
    uint8x8_t msb_mask = vdup_n_u8(0x80);
    uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
    for ( ; end - src >= 8; src += 8, dst += 8) {
        uint8x8_t c = vld1_u8(src);
        uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask));
        if (!n) {
            // store
            vst1q_u16(dst, vmovl_u8(c));
            continue;
        }

        // copy the front part that is still ASCII
        while (!(n & 1)) {
            *dst++ = *src++;
            n >>= 1;
        }

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        n = qBitScanReverse(n);
        nextAscii = src + n + 1;
        return false;

    }
    return src == end;
}

static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
{
    // The SIMD code below is untested, so just force an early return until
    // we've had the time to verify it works.
    nextAscii = end;
    return src;

    // do eight characters at a time
    uint8x8_t msb_mask = vdup_n_u8(0x80);
    uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
    for ( ; end - src >= 8; src += 8) {
        uint8x8_t c = vld1_u8(src);
        uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask));
        if (!n)
            continue;

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        nextAscii = src + qBitScanReverse(n) + 1;

        // return the non-ASCII character
        return src + qCountTrailingZeroBits(n);
    }
    nextAscii = end;
    return src;
}
#else
static inline bool simdEncodeAscii(uchar *, const ushort *, const ushort *, const ushort *)
{
    return false;
}

static inline bool simdDecodeAscii(ushort *, const uchar *, const uchar *, const uchar *)
{
    return false;
}

static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
{
    nextAscii = end;
    return src;
}
#endif

QByteArray QUtf8::convertFromUnicode(const QChar *uc, int len)
{
    // create a QByteArray with the worst case scenario size
    QByteArray result(len * 3, Qt::Uninitialized);
    uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData()));
    const ushort *src = reinterpret_cast<const ushort *>(uc);
    const ushort *const end = src + len;

    while (src != end) {
        const ushort *nextAscii = end;
        if (simdEncodeAscii(dst, nextAscii, src, end))
            break;

        do {
            ushort uc = *src++;
            int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, dst, src, end);
            if (res < 0) {
                // encoding error - append '?'
                *dst++ = '?';
            }
        } while (src < nextAscii);
    }

    result.truncate(dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData())));
    return result;
}

QByteArray QUtf8::convertFromUnicode(const QChar *uc, int len, QTextCodec::ConverterState *state)
{
    uchar replacement = '?';
    int rlen = 3*len;
    int surrogate_high = -1;
    if (state) {
        if (state->flags & QTextCodec::ConvertInvalidToNull)
            replacement = 0;
        if (!(state->flags & QTextCodec::IgnoreHeader))
            rlen += 3;
        if (state->remainingChars)
            surrogate_high = state->state_data[0];
    }


    QByteArray rstr(rlen, Qt::Uninitialized);
    uchar *cursor = reinterpret_cast<uchar *>(const_cast<char *>(rstr.constData()));
    const ushort *src = reinterpret_cast<const ushort *>(uc);
    const ushort *const end = src + len;

    int invalid = 0;
    if (state && !(state->flags & QTextCodec::IgnoreHeader)) {
        // append UTF-8 BOM
        *cursor++ = utf8bom[0];
        *cursor++ = utf8bom[1];
        *cursor++ = utf8bom[2];
    }

    const ushort *nextAscii = src;
    while (src != end) {
        int res;
        ushort uc;
        if (surrogate_high != -1) {
            uc = surrogate_high;
            surrogate_high = -1;
            res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, cursor, src, end);
        } else {
            if (src >= nextAscii && simdEncodeAscii(cursor, nextAscii, src, end))
                break;

            uc = *src++;
            res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, cursor, src, end);
        }
        if (Q_LIKELY(res >= 0))
            continue;

        if (res == QUtf8BaseTraits::Error) {
            // encoding error
            ++invalid;
            *cursor++ = replacement;
        } else if (res == QUtf8BaseTraits::EndOfString) {
            surrogate_high = uc;
            break;
        }
    }

    rstr.resize(cursor - (const uchar*)rstr.constData());
    if (state) {
        state->invalidChars += invalid;
        state->flags |= QTextCodec::IgnoreHeader;
        state->remainingChars = 0;
        if (surrogate_high >= 0) {
            state->remainingChars = 1;
            state->state_data[0] = surrogate_high;
        }
    }
    return rstr;
}

QString QUtf8::convertToUnicode(const char *chars, int len)
{
    // UTF-8 to UTF-16 always needs the exact same number of words or less:
    //    UTF-8     UTF-16
    //   1 byte     1 word
    //   2 bytes    1 word
    //   3 bytes    1 word
    //   4 bytes    2 words (one surrogate pair)
    // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8),
    // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or
    // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK).
    //
    // The table holds for invalid sequences too: we'll insert one replacement char
    // per invalid byte.
    QString result(len, Qt::Uninitialized);
    QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared
    const QChar *end = convertToUnicode(data, chars, len);
    result.truncate(end - data);
    return result;
}

/*!
    \since 5.7
    \overload

    Converts the UTF-8 sequence of \a len octets beginning at \a chars to
    a sequence of QChar starting at \a buffer. The buffer is expected to be
    large enough to hold the result. An upper bound for the size of the
    buffer is \a len QChars.

    If, during decoding, an error occurs, a QChar::ReplacementCharacter is
    written.

    Returns a pointer to one past the last QChar written.

    This function never throws.
*/

QChar *QUtf8::convertToUnicode(QChar *buffer, const char *chars, int len) noexcept
{
    ushort *dst = reinterpret_cast<ushort *>(buffer);
    const uchar *src = reinterpret_cast<const uchar *>(chars);
    const uchar *end = src + len;

    // attempt to do a full decoding in SIMD
    const uchar *nextAscii = end;
    if (!simdDecodeAscii(dst, nextAscii, src, end)) {
        // at least one non-ASCII entry
        // check if we failed to decode the UTF-8 BOM; if so, skip it
        if (Q_UNLIKELY(src == reinterpret_cast<const uchar *>(chars))
                && end - src >= 3
                && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) {
            src += 3;
        }

        while (src < end) {
            nextAscii = end;
            if (simdDecodeAscii(dst, nextAscii, src, end))
                break;

            do {
                uchar b = *src++;
                int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end);
                if (res < 0) {
                    // decoding error
                    *dst++ = QChar::ReplacementCharacter;
                }
            } while (src < nextAscii);
        }
    }

    return reinterpret_cast<QChar *>(dst);
}

QString QUtf8::convertToUnicode(const char *chars, int len, QTextCodec::ConverterState *state)
{
    bool headerdone = false;
    ushort replacement = QChar::ReplacementCharacter;
    int invalid = 0;
    int res;
    uchar ch = 0;

    // See above for buffer requirements for stateless decoding. However, that
    // fails if the state is not empty. The following situations can add to the
    // requirements:
    //  state contains      chars starts with           requirement
    //   1 of 2 bytes       valid continuation          0
    //   2 of 3 bytes       same                        0
    //   3 bytes of 4       same                        +1 (need to insert surrogate pair)
    //   1 of 2 bytes       invalid continuation        +1 (need to insert replacement and restart)
    //   2 of 3 bytes       same                        +1 (same)
    //   3 of 4 bytes       same                        +1 (same)
    QString result(len + 1, Qt::Uninitialized);

    ushort *dst = reinterpret_cast<ushort *>(const_cast<QChar *>(result.constData()));
    const uchar *src = reinterpret_cast<const uchar *>(chars);
    const uchar *end = src + len;

    if (state) {
        if (state->flags & QTextCodec::IgnoreHeader)
            headerdone = true;
        if (state->flags & QTextCodec::ConvertInvalidToNull)
            replacement = QChar::Null;
        if (state->remainingChars) {
            // handle incoming state first
            uchar remainingCharsData[4]; // longest UTF-8 sequence possible
            int remainingCharsCount = state->remainingChars;
            int newCharsToCopy = qMin<int>(sizeof(remainingCharsData) - remainingCharsCount, end - src);

            memset(remainingCharsData, 0, sizeof(remainingCharsData));
            memcpy(remainingCharsData, &state->state_data[0], remainingCharsCount);
            memcpy(remainingCharsData + remainingCharsCount, src, newCharsToCopy);

            const uchar *begin = &remainingCharsData[1];
            res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(remainingCharsData[0], dst, begin,
                    static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy);
            if (res == QUtf8BaseTraits::Error || (res == QUtf8BaseTraits::EndOfString && len == 0)) {
                // special case for len == 0:
                // if we were supplied an empty string, terminate the previous, unfinished sequence with error
                ++invalid;
                *dst++ = replacement;
            } else if (res == QUtf8BaseTraits::EndOfString) {
                // if we got EndOfString again, then there were too few bytes in src;
                // copy to our state and return
                state->remainingChars = remainingCharsCount + newCharsToCopy;
                memcpy(&state->state_data[0], remainingCharsData, state->remainingChars);
                return QString();
            } else if (!headerdone && res >= 0) {
                // eat the UTF-8 BOM
                headerdone = true;
                if (dst[-1] == 0xfeff)
                    --dst;
            }

            // adjust src now that we have maybe consumed a few chars
            if (res >= 0) {
                Q_ASSERT(res > remainingCharsCount);
                src += res - remainingCharsCount;
            }
        }
    }

    // main body, stateless decoding
    res = 0;
    const uchar *nextAscii = src;
    const uchar *start = src;
    while (res >= 0 && src < end) {
        if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end))
            break;

        ch = *src++;
        res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(ch, dst, src, end);
        if (!headerdone && res >= 0) {
            headerdone = true;
            if (src == start + 3) { // 3 == sizeof(utf8-bom)
                // eat the UTF-8 BOM (it can only appear at the beginning of the string).
                if (dst[-1] == 0xfeff)
                    --dst;
            }
        }
        if (res == QUtf8BaseTraits::Error) {
            res = 0;
            ++invalid;
            *dst++ = replacement;
        }
    }

    if (!state && res == QUtf8BaseTraits::EndOfString) {
        // unterminated UTF sequence
        *dst++ = QChar::ReplacementCharacter;
        while (src++ < end)
            *dst++ = QChar::ReplacementCharacter;
    }

    result.truncate(dst - (const ushort *)result.unicode());
    if (state) {
        state->invalidChars += invalid;
        if (headerdone)
            state->flags |= QTextCodec::IgnoreHeader;
        if (res == QUtf8BaseTraits::EndOfString) {
            --src; // unread the byte in ch
            state->remainingChars = end - src;
            memcpy(&state->state_data[0], src, end - src);
        } else {
            state->remainingChars = 0;
        }
    }
    return result;
}

struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii
{
    struct NoOutput {};
    static void appendUtf16(const NoOutput &, ushort) {}
    static void appendUcs4(const NoOutput &, uint) {}
};

QUtf8::ValidUtf8Result QUtf8::isValidUtf8(const char *chars, qsizetype len)
{
    const uchar *src = reinterpret_cast<const uchar *>(chars);
    const uchar *end = src + len;
    const uchar *nextAscii = src;
    bool isValidAscii = true;

    while (src < end) {
        if (src >= nextAscii)
            src = simdFindNonAscii(src, end, nextAscii);
        if (src == end)
            break;

        do {
            uchar b = *src++;
            if ((b & 0x80) == 0)
                continue;

            isValidAscii = false;
            QUtf8NoOutputTraits::NoOutput output;
            int res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, output, src, end);
            if (res < 0) {
                // decoding error
                return { false, false };
            }
        } while (src < nextAscii);
    }

    return { true, isValidAscii };
}

int QUtf8::compareUtf8(const char *utf8, qsizetype u8len, const QChar *utf16, int u16len)
{
    uint uc1, uc2;
    auto src1 = reinterpret_cast<const uchar *>(utf8);
    auto end1 = src1 + u8len;
    QStringIterator src2(utf16, utf16 + u16len);

    while (src1 < end1 && src2.hasNext()) {
        uchar b = *src1++;
        uint *output = &uc1;
        int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1);
        if (res < 0) {
            // decoding error
            uc1 = QChar::ReplacementCharacter;
        }

        uc2 = src2.next();
        if (uc1 != uc2)
            return int(uc1) - int(uc2);
    }

    // the shorter string sorts first
    return (end1 > src1) - int(src2.hasNext());
}

int QUtf8::compareUtf8(const char *utf8, qsizetype u8len, QLatin1String s)
{
    uint uc1;
    auto src1 = reinterpret_cast<const uchar *>(utf8);
    auto end1 = src1 + u8len;
    auto src2 = reinterpret_cast<const uchar *>(s.latin1());
    auto end2 = src2 + s.size();

    while (src1 < end1 && src2 < end2) {
        uchar b = *src1++;
        uint *output = &uc1;
        int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1);
        if (res < 0) {
            // decoding error
            uc1 = QChar::ReplacementCharacter;
        }

        uint uc2 = *src2++;
        if (uc1 != uc2)
            return int(uc1) - int(uc2);
    }

    // the shorter string sorts first
    return (end1 > src1) - (end2 > src2);
}

QByteArray QUtf16::convertFromUnicode(const QChar *uc, int len, QTextCodec::ConverterState *state, DataEndianness e)
{
    DataEndianness endian = e;
    int length =  2*len;
    if (!state || (!(state->flags & QTextCodec::IgnoreHeader))) {
        length += 2;
    }
    if (e == DetectEndianness) {
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
    }

    QByteArray d;
    d.resize(length);
    char *data = d.data();
    if (!state || !(state->flags & QTextCodec::IgnoreHeader)) {
        QChar bom(QChar::ByteOrderMark);
        if (endian == BigEndianness)
            qToBigEndian(bom.unicode(), data);
        else
            qToLittleEndian(bom.unicode(), data);
        data += 2;
    }
    if (endian == BigEndianness)
        qToBigEndian<ushort>(uc, len, data);
    else
        qToLittleEndian<ushort>(uc, len, data);

    if (state) {
        state->remainingChars = 0;
        state->flags |= QTextCodec::IgnoreHeader;
    }
    return d;
}

QString QUtf16::convertToUnicode(const char *chars, int len, QTextCodec::ConverterState *state, DataEndianness e)
{
    DataEndianness endian = e;
    bool half = false;
    uchar buf = 0;
    bool headerdone = false;
    if (state) {
        headerdone = state->flags & QTextCodec::IgnoreHeader;
        if (endian == DetectEndianness)
            endian = (DataEndianness)state->state_data[Endian];
        if (state->remainingChars) {
            half = true;
            buf = state->state_data[Data];
        }
    }
    if (headerdone && endian == DetectEndianness)
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;

    QString result(len, Qt::Uninitialized); // worst case
    QChar *qch = (QChar *)result.data();
    while (len--) {
        if (half) {
            QChar ch;
            if (endian == LittleEndianness) {
                ch.setRow(*chars++);
                ch.setCell(buf);
            } else {
                ch.setRow(buf);
                ch.setCell(*chars++);
            }
            if (!headerdone) {
                headerdone = true;
                if (endian == DetectEndianness) {
                    if (ch == QChar::ByteOrderSwapped) {
                        endian = LittleEndianness;
                    } else if (ch == QChar::ByteOrderMark) {
                        endian = BigEndianness;
                    } else {
                        if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
                            endian = BigEndianness;
                        } else {
                            endian = LittleEndianness;
                            ch = QChar((ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8));
                        }
                        *qch++ = ch;
                    }
                } else if (ch != QChar::ByteOrderMark) {
                    *qch++ = ch;
                }
            } else {
                *qch++ = ch;
            }
            half = false;
        } else {
            buf = *chars++;
            half = true;
        }
    }
    result.truncate(qch - result.unicode());

    if (state) {
        if (headerdone)
            state->flags |= QTextCodec::IgnoreHeader;
        state->state_data[Endian] = endian;
        if (half) {
            state->remainingChars = 1;
            state->state_data[Data] = buf;
        } else {
            state->remainingChars = 0;
            state->state_data[Data] = 0;
        }
    }
    return result;
}

QByteArray QUtf32::convertFromUnicode(const QChar *uc, int len, QTextCodec::ConverterState *state, DataEndianness e)
{
    DataEndianness endian = e;
    int length =  4*len;
    if (!state || (!(state->flags & QTextCodec::IgnoreHeader))) {
        length += 4;
    }
    if (e == DetectEndianness) {
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
    }

    QByteArray d(length, Qt::Uninitialized);
    char *data = d.data();
    if (!state || !(state->flags & QTextCodec::IgnoreHeader)) {
        if (endian == BigEndianness) {
            data[0] = 0;
            data[1] = 0;
            data[2] = (char)0xfe;
            data[3] = (char)0xff;
        } else {
            data[0] = (char)0xff;
            data[1] = (char)0xfe;
            data[2] = 0;
            data[3] = 0;
        }
        data += 4;
    }

    QStringIterator i(uc, uc + len);
    if (endian == BigEndianness) {
        while (i.hasNext()) {
            uint cp = i.next();
            qToBigEndian(cp, data);
            data += 4;
        }
    } else {
        while (i.hasNext()) {
            uint cp = i.next();
            qToLittleEndian(cp, data);
            data += 4;
        }
    }

    if (state) {
        state->remainingChars = 0;
        state->flags |= QTextCodec::IgnoreHeader;
    }
    return d;
}

QString QUtf32::convertToUnicode(const char *chars, int len, QTextCodec::ConverterState *state, DataEndianness e)
{
    DataEndianness endian = e;
    uchar tuple[4];
    int num = 0;
    bool headerdone = false;
    if (state) {
        headerdone = state->flags & QTextCodec::IgnoreHeader;
        if (endian == DetectEndianness) {
            endian = (DataEndianness)state->state_data[Endian];
        }
        num = state->remainingChars;
        memcpy(tuple, &state->state_data[Data], 4);
    }
    if (headerdone && endian == DetectEndianness)
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;

    QString result;
    result.resize((num + len) >> 2 << 1); // worst case
    QChar *qch = (QChar *)result.data();

    const char *end = chars + len;
    while (chars < end) {
        tuple[num++] = *chars++;
        if (num == 4) {
            if (!headerdone) {
                headerdone = true;
                if (endian == DetectEndianness) {
                    if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0 && endian != BigEndianness) {
                        endian = LittleEndianness;
                        num = 0;
                        continue;
                    } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff && endian != LittleEndianness) {
                        endian = BigEndianness;
                        num = 0;
                        continue;
                    } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
                        endian = BigEndianness;
                    } else {
                        endian = LittleEndianness;
                    }
                } else if (((endian == BigEndianness) ? qFromBigEndian<quint32>(tuple) : qFromLittleEndian<quint32>(tuple)) == QChar::ByteOrderMark) {
                    num = 0;
                    continue;
                }
            }
            uint code = (endian == BigEndianness) ? qFromBigEndian<quint32>(tuple) : qFromLittleEndian<quint32>(tuple);
            if (QChar::requiresSurrogates(code)) {
                *qch++ = QChar(QChar::highSurrogate(code));
                *qch++ = QChar(QChar::lowSurrogate(code));
            } else {
                *qch++ = QChar(code);
            }
            num = 0;
        }
    }
    result.truncate(qch - result.unicode());

    if (state) {
        if (headerdone)
            state->flags |= QTextCodec::IgnoreHeader;
        state->state_data[Endian] = endian;
        state->remainingChars = num;
        memcpy(&state->state_data[Data], tuple, 4);
    }
    return result;
}


#if QT_CONFIG(textcodec)

QUtf8Codec::~QUtf8Codec()
{
}

QByteArray QUtf8Codec::convertFromUnicode(const QChar *uc, int len, ConverterState *state) const
{
    return QUtf8::convertFromUnicode(uc, len, state);
}

void QUtf8Codec::convertToUnicode(QString *target, const char *chars, int len, ConverterState *state) const
{
    *target += QUtf8::convertToUnicode(chars, len, state);
}

QString QUtf8Codec::convertToUnicode(const char *chars, int len, ConverterState *state) const
{
    return QUtf8::convertToUnicode(chars, len, state);
}

QByteArray QUtf8Codec::name() const
{
    return "UTF-8";
}

int QUtf8Codec::mibEnum() const
{
    return 106;
}

QUtf16Codec::~QUtf16Codec()
{
}

QByteArray QUtf16Codec::convertFromUnicode(const QChar *uc, int len, ConverterState *state) const
{
    return QUtf16::convertFromUnicode(uc, len, state, e);
}

QString QUtf16Codec::convertToUnicode(const char *chars, int len, ConverterState *state) const
{
    return QUtf16::convertToUnicode(chars, len, state, e);
}

int QUtf16Codec::mibEnum() const
{
    return 1015;
}

QByteArray QUtf16Codec::name() const
{
    return "UTF-16";
}

QList<QByteArray> QUtf16Codec::aliases() const
{
    return QList<QByteArray>();
}

int QUtf16BECodec::mibEnum() const
{
    return 1013;
}

QByteArray QUtf16BECodec::name() const
{
    return "UTF-16BE";
}

QList<QByteArray> QUtf16BECodec::aliases() const
{
    QList<QByteArray> list;
    return list;
}

int QUtf16LECodec::mibEnum() const
{
    return 1014;
}

QByteArray QUtf16LECodec::name() const
{
    return "UTF-16LE";
}

QList<QByteArray> QUtf16LECodec::aliases() const
{
    QList<QByteArray> list;
    return list;
}

QUtf32Codec::~QUtf32Codec()
{
}

QByteArray QUtf32Codec::convertFromUnicode(const QChar *uc, int len, ConverterState *state) const
{
    return QUtf32::convertFromUnicode(uc, len, state, e);
}

QString QUtf32Codec::convertToUnicode(const char *chars, int len, ConverterState *state) const
{
    return QUtf32::convertToUnicode(chars, len, state, e);
}

int QUtf32Codec::mibEnum() const
{
    return 1017;
}

QByteArray QUtf32Codec::name() const
{
    return "UTF-32";
}

QList<QByteArray> QUtf32Codec::aliases() const
{
    QList<QByteArray> list;
    return list;
}

int QUtf32BECodec::mibEnum() const
{
    return 1018;
}

QByteArray QUtf32BECodec::name() const
{
    return "UTF-32BE";
}

QList<QByteArray> QUtf32BECodec::aliases() const
{
    QList<QByteArray> list;
    return list;
}

int QUtf32LECodec::mibEnum() const
{
    return 1019;
}

QByteArray QUtf32LECodec::name() const
{
    return "UTF-32LE";
}

QList<QByteArray> QUtf32LECodec::aliases() const
{
    QList<QByteArray> list;
    return list;
}

#endif // textcodec

QT_END_NAMESPACE