summaryrefslogtreecommitdiffstats
path: root/src/corelib/global/qnumeric.h
blob: 49d795902c0680ca952d300c3a47955b7e118cc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/****************************************************************************
**
** Copyright (C) 2021 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef QNUMERIC_H
#define QNUMERIC_H

#include <QtCore/qglobal.h>
#include <cmath>
#include <limits>
#include <type_traits>

// min() and max() may be #defined by windows.h if that is included before, but we need them
// for std::numeric_limits below. You should not use the min() and max() macros, so we just #undef.
#ifdef min
#  undef min
#  undef max
#endif

#if defined(Q_CC_MSVC)
#  include <intrin.h>
#  include <float.h>
#  if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64)
#    define Q_INTRINSIC_MUL_OVERFLOW64
#    define Q_UMULH(v1, v2) __umulh(v1, v2);
#    define Q_SMULH(v1, v2) __mulh(v1, v2);
#    pragma intrinsic(__umulh)
#    pragma intrinsic(__mulh)
#  endif
#endif

# if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
#  include <arm64_ghs.h>
#  define Q_INTRINSIC_MUL_OVERFLOW64
#  define Q_UMULH(v1, v2) __MULUH64(v1, v2);
#  define Q_SMULH(v1, v2) __MULSH64(v1, v2);
#endif

QT_BEGIN_NAMESPACE

// To match std::is{inf,nan,finite} functions:
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, bool>::type
qIsInf(T) { return false; }
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, bool>::type
qIsNaN(T) { return false; }
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, bool>::type
qIsFinite(T) { return true; }

// Floating-point types (see qfloat16.h for its overloads).
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION bool qIsInf(double d);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION bool qIsNaN(double d);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION bool qIsFinite(double d);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION int qFpClassify(double val);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION bool qIsInf(float f);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION bool qIsNaN(float f);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION bool qIsFinite(float f);
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION int qFpClassify(float val);

#if QT_CONFIG(signaling_nan)
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION double qSNaN();
#endif
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION double qQNaN();
Q_CORE_EXPORT Q_DECL_CONST_FUNCTION double qInf();

Q_CORE_EXPORT quint32 qFloatDistance(float a, float b);
Q_CORE_EXPORT quint64 qFloatDistance(double a, double b);

#define Q_INFINITY (QT_PREPEND_NAMESPACE(qInf)())
#if QT_CONFIG(signaling_nan)
#  define Q_SNAN (QT_PREPEND_NAMESPACE(qSNaN)())
#endif
#define Q_QNAN (QT_PREPEND_NAMESPACE(qQNaN)())

// Overflow math.
// This provides efficient implementations for int, unsigned, qsizetype and
// size_t. Implementations for 8- and 16-bit types will work but may not be as
// efficient. Implementations for 64-bit may be missing on 32-bit platforms.

#if (((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \
      && Q_CC_GNU >= 500) \
     || __has_builtin(__builtin_add_overflow)) \
    && !(QT_POINTER_SIZE == 4 && defined(Q_CC_CLANG))
// GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows
// 32 bit Clang has the builtins but tries to link a library which hasn't
#define Q_INTRINSIC_MUL_OVERFLOW64

template <typename T> inline
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
qAddOverflow(T v1, T v2, T *r)
{ return __builtin_add_overflow(v1, v2, r); }

template <typename T> inline
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
qSubOverflow(T v1, T v2, T *r)
{ return __builtin_sub_overflow(v1, v2, r); }

template <typename T> inline
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
qMulOverflow(T v1, T v2, T *r)
{ return __builtin_mul_overflow(v1, v2, r); }

#else
// Generic implementations

template <typename T> inline typename std::enable_if_t<std::is_unsigned_v<T>, bool>
qAddOverflow(T v1, T v2, T *r)
{
    // unsigned additions are well-defined
    *r = v1 + v2;
    return v1 > T(v1 + v2);
}

template <typename T> inline typename std::enable_if_t<std::is_signed_v<T>, bool>
qAddOverflow(T v1, T v2, T *r)
{
    // Here's how we calculate the overflow:
    // 1) unsigned addition is well-defined, so we can always execute it
    // 2) conversion from unsigned back to signed is implementation-
    //    defined and in the implementations we use, it's a no-op.
    // 3) signed integer overflow happens if the sign of the two input operands
    //    is the same but the sign of the result is different. In other words,
    //    the sign of the result must be the same as the sign of either
    //    operand.

    using U = typename std::make_unsigned_t<T>;
    *r = T(U(v1) + U(v2));

    // If int is two's complement, assume all integer types are too.
    if (std::is_same_v<int32_t, int>) {
        // Two's complement equivalent (generates slightly shorter code):
        //  x ^ y             is negative if x and y have different signs
        //  x & y             is negative if x and y are negative
        // (x ^ z) & (y ^ z)  is negative if x and z have different signs
        //                    AND y and z have different signs
        return ((v1 ^ *r) & (v2 ^ *r)) < 0;
    }

    bool s1 = (v1 < 0);
    bool s2 = (v2 < 0);
    bool sr = (*r < 0);
    return s1 != sr && s2 != sr;
    // also: return s1 == s2 && s1 != sr;
}

template <typename T> inline typename std::enable_if_t<std::is_unsigned_v<T>, bool>
qSubOverflow(T v1, T v2, T *r)
{
    // unsigned subtractions are well-defined
    *r = v1 - v2;
    return v1 < v2;
}

template <typename T> inline typename std::enable_if_t<std::is_signed_v<T>, bool>
qSubOverflow(T v1, T v2, T *r)
{
    // See above for explanation. This is the same with some signs reversed.
    // We can't use qAddOverflow(v1, -v2, r) because it would be UB if
    // v2 == std::numeric_limits<T>::min().

    using U = typename std::make_unsigned_t<T>;
    *r = T(U(v1) - U(v2));

    if (std::is_same_v<int32_t, int>)
        return ((v1 ^ *r) & (~v2 ^ *r)) < 0;

    bool s1 = (v1 < 0);
    bool s2 = !(v2 < 0);
    bool sr = (*r < 0);
    return s1 != sr && s2 != sr;
    // also: return s1 == s2 && s1 != sr;
}

template <typename T> inline
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
qMulOverflow(T v1, T v2, T *r)
{
    // use the next biggest type
    // Note: for 64-bit systems where __int128 isn't supported, this will cause an error.
    using LargerInt = QIntegerForSize<sizeof(T) * 2>;
    using Larger = typename std::conditional_t<std::is_signed_v<T>,
            typename LargerInt::Signed, typename LargerInt::Unsigned>;
    Larger lr = Larger(v1) * Larger(v2);
    *r = T(lr);
    return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min();
}

# if defined(Q_INTRINSIC_MUL_OVERFLOW64)
template <> inline bool qMulOverflow(quint64 v1, quint64 v2, quint64 *r)
{
    *r = v1 * v2;
    return Q_UMULH(v1, v2);
}
template <> inline bool qMulOverflow(qint64 v1, qint64 v2, qint64 *r)
{
    // This is slightly more complex than the unsigned case above: the sign bit
    // of 'low' must be replicated as the entire 'high', so the only valid
    // values for 'high' are 0 and -1. Use unsigned multiply since it's the same
    // as signed for the low bits and use a signed right shift to verify that
    // 'high' is nothing but sign bits that match the sign of 'low'.

    qint64 high = Q_SMULH(v1, v2);
    *r = qint64(quint64(v1) * quint64(v2));
    return (*r >> 63) != high;
}

#   if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
template <> inline bool qMulOverflow(uint64_t v1, uint64_t v2, uint64_t *r)
{
    return qMulOverflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r));
}

template <> inline bool qMulOverflow(int64_t v1, int64_t v2, int64_t *r)
{
    return qMulOverflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r));
}
#    endif // OS_INTEGRITY ARM64
#  endif // Q_INTRINSIC_MUL_OVERFLOW64

#  if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86)
// We can use intrinsics for the unsigned operations with MSVC
template <> inline bool qAddOverflow(unsigned v1, unsigned v2, unsigned *r)
{ return _addcarry_u32(0, v1, v2, r); }

// 32-bit qMulOverflow is fine with the generic code above

template <> inline bool qAddOverflow(quint64 v1, quint64 v2, quint64 *r)
{
#    if defined(Q_PROCESSOR_X86_64)
    return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r));
#    else
    uint low, high;
    uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low);
    carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high);
    *r = (quint64(high) << 32) | low;
    return carry;
#    endif // !x86-64
}
#  endif // MSVC X86
#endif // !GCC

// Implementations for addition, subtraction or multiplication by a
// compile-time constant. For addition and subtraction, we simply call the code
// that detects overflow at runtime. For multiplication, we compare to the
// maximum possible values before multiplying to ensure no overflow happens.

template <typename T, T V2> bool qAddOverflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qAddOverflow(v1, V2, r);
}

template <auto V2, typename T> bool qAddOverflow(T v1, T *r)
{
    return qAddOverflow(v1, std::integral_constant<T, V2>{}, r);
}

template <typename T, T V2> bool qSubOverflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qSubOverflow(v1, V2, r);
}

template <auto V2, typename T> bool qSubOverflow(T v1, T *r)
{
    return qSubOverflow(v1, std::integral_constant<T, V2>{}, r);
}

template <typename T, T V2> bool qMulOverflow(T v1, std::integral_constant<T, V2>, T *r)
{
    // Runtime detection for anything smaller than or equal to a register
    // width, as most architectures' multiplication instructions actually
    // produce a result twice as wide as the input registers, allowing us to
    // efficiently detect the overflow.
    if constexpr (sizeof(T) <= sizeof(qregisteruint)) {
        return qMulOverflow(v1, V2, r);

#ifdef Q_INTRINSIC_MUL_OVERFLOW64
    } else if constexpr (sizeof(T) <= sizeof(quint64)) {
        // If we have intrinsics detecting overflow of 64-bit multiplications,
        // then detect overflows through them up to 64 bits.
        return qMulOverflow(v1, V2, r);
#endif

    } else if constexpr (V2 == 0 || V2 == 1) {
        // trivial cases (and simplify logic below due to division by zero)
        *r = v1 * V2;
        return false;
    } else if constexpr (V2 == -1) {
        // multiplication by -1 is valid *except* for signed minimum values
        // (necessary to avoid diving min() by -1, which is an overflow)
        if (v1 < 0 && v1 == std::numeric_limits<T>::min())
            return true;
        *r = -v1;
        return false;
    } else {
        // For 64-bit multiplications on 32-bit platforms, let's instead compare v1
        // against the bounds that would overflow.
        constexpr T Highest = std::numeric_limits<T>::max() / V2;
        constexpr T Lowest = std::numeric_limits<T>::min() / V2;
        if constexpr (Highest > Lowest) {
            if (v1 > Highest || v1 < Lowest)
                return true;
        } else {
            // this can only happen if V2 < 0
            static_assert(V2 < 0);
            if (v1 > Lowest || v1 < Highest)
                return true;
        }

        *r = v1 * V2;
        return false;
    }
}

template <auto V2, typename T> bool qMulOverflow(T v1, T *r)
{
    return qMulOverflow(v1, std::integral_constant<T, V2>{}, r);
}

QT_END_NAMESPACE

#endif // QNUMERIC_H