summaryrefslogtreecommitdiffstats
path: root/src/corelib/global/qnumeric_p.h
blob: 27490bce97f467b5b58024b6ada0f1bb00274e48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/****************************************************************************
**
** Copyright (C) 2019 The Qt Company Ltd.
** Copyright (C) 2018 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef QNUMERIC_P_H
#define QNUMERIC_P_H

//
//  W A R N I N G
//  -------------
//
// This file is not part of the Qt API.  It exists purely as an
// implementation detail.  This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//

#include "QtCore/private/qglobal_p.h"
#include <cmath>
#include <limits>

#if defined(Q_CC_MSVC)
#  include <intrin.h>
#  include <float.h>
#  if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64)
#    define Q_INTRINSIC_MUL_OVERFLOW64
#    define Q_UMULH(v1, v2) __umulh(v1, v2);
#    define Q_SMULH(v1, v2) __mulh(v1, v2);
#    pragma intrinsic(__umulh)
#    pragma intrinsic(__mulh)
#  endif
#endif

# if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
#include <arm64_ghs.h>
#  define Q_INTRINSIC_MUL_OVERFLOW64
#  define Q_UMULH(v1, v2) __MULUH64(v1, v2);
#  define Q_SMULH(v1, v2) __MULSH64(v1, v2);
#endif

#if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL))
#  include <math.h>
#  ifdef isnan
#    define QT_MATH_H_DEFINES_MACROS
QT_BEGIN_NAMESPACE
namespace qnumeric_std_wrapper {
// the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros.
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); }
}
QT_END_NAMESPACE
// These macros from math.h conflict with the real functions in the std namespace.
#    undef signbit
#    undef isnan
#    undef isinf
#    undef isfinite
#    undef fpclassify
#  endif // defined(isnan)
#endif

QT_BEGIN_NAMESPACE

namespace qnumeric_std_wrapper {
#if defined(QT_MATH_H_DEFINES_MACROS)
#  undef QT_MATH_H_DEFINES_MACROS
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); }
#else
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(f); }
#endif
}

Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept
{
    Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_infinity,
                      "platform has no definition for infinity for type double");
    return std::numeric_limits<double>::infinity();
}

#if QT_CONFIG(signaling_nan)
Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept
{
    Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_signaling_NaN,
                      "platform has no definition for signaling NaN for type double");
    return std::numeric_limits<double>::signaling_NaN();
}
#endif

// Quiet NaN
Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept
{
    Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_quiet_NaN,
                      "platform has no definition for quiet NaN for type double");
    return std::numeric_limits<double>::quiet_NaN();
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d)
{
    return qnumeric_std_wrapper::isinf(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d)
{
    return qnumeric_std_wrapper::isnan(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d)
{
    return qnumeric_std_wrapper::isfinite(d);
}

Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d)
{
    return qnumeric_std_wrapper::fpclassify(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f)
{
    return qnumeric_std_wrapper::isinf(f);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f)
{
    return qnumeric_std_wrapper::isnan(f);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f)
{
    return qnumeric_std_wrapper::isfinite(f);
}

Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f)
{
    return qnumeric_std_wrapper::fpclassify(f);
}

#ifndef Q_CLANG_QDOC
namespace {
/*!
    Returns true if the double \a v can be converted to type \c T, false if
    it's out of range. If the conversion is successful, the converted value is
    stored in \a value; if it was not successful, \a value will contain the
    minimum or maximum of T, depending on the sign of \a d. If \c T is
    unsigned, then \a value contains the absolute value of \a v.

    This function works for v containing infinities, but not NaN. It's the
    caller's responsibility to exclude that possibility before calling it.
*/
template <typename T> static inline bool convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true)
{
    Q_STATIC_ASSERT(std::numeric_limits<T>::is_integer);

    // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++
    // standard says only exact conversions are guaranteed. Converting
    // integrals to floating-point with loss of precision has implementation-
    // defined behavior whether the next higher or next lower is returned;
    // converting FP to integral is UB if it can't be represented.
    //
    // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be
    // correct, but Clang, ICC and MSVC don't realize that it's a constant and
    // the math call stays in the compiled code.

    double supremum;
    if (std::numeric_limits<T>::is_signed) {
        supremum = -1.0 * std::numeric_limits<T>::min();    // -1 * (-2^63) = 2^63, exact (for T = qint64)
        *value = std::numeric_limits<T>::min();
        if (v < std::numeric_limits<T>::min())
            return false;
    } else {
        using ST = typename std::make_signed<T>::type;
        supremum = -2.0 * std::numeric_limits<ST>::min();   // -2 * (-2^63) = 2^64, exact (for T = quint64)
        v = fabs(v);
    }
    if (std::is_integral<T>::value && sizeof(T) > 4 && !allow_precision_upgrade) {
        if (v > double(Q_INT64_C(1)<<53) || v < double(-((Q_INT64_C(1)<<53) + 1)))
            return false;
    }

    *value = std::numeric_limits<T>::max();
    if (v >= supremum)
        return false;

    // Now we can convert, these two conversions cannot be UB
    *value = T(v);

QT_WARNING_PUSH
QT_WARNING_DISABLE_FLOAT_COMPARE

    return *value == v;

QT_WARNING_POP
}

// Overflow math.
// This provides efficient implementations for int, unsigned, qsizetype and
// size_t. Implementations for 8- and 16-bit types will work but may not be as
// efficient. Implementations for 64-bit may be missing on 32-bit platforms.

#if ((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \
     && Q_CC_GNU >= 500) || __has_builtin(__builtin_add_overflow)
// GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows

template <typename T> inline
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
add_overflow(T v1, T v2, T *r)
{ return __builtin_add_overflow(v1, v2, r); }

template <typename T> inline
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
sub_overflow(T v1, T v2, T *r)
{ return __builtin_sub_overflow(v1, v2, r); }

template <typename T> inline
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
mul_overflow(T v1, T v2, T *r)
{ return __builtin_mul_overflow(v1, v2, r); }

#else
// Generic implementations

template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type
add_overflow(T v1, T v2, T *r)
{
    // unsigned additions are well-defined
    *r = v1 + v2;
    return v1 > T(v1 + v2);
}

template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type
add_overflow(T v1, T v2, T *r)
{
    // Here's how we calculate the overflow:
    // 1) unsigned addition is well-defined, so we can always execute it
    // 2) conversion from unsigned back to signed is implementation-
    //    defined and in the implementations we use, it's a no-op.
    // 3) signed integer overflow happens if the sign of the two input operands
    //    is the same but the sign of the result is different. In other words,
    //    the sign of the result must be the same as the sign of either
    //    operand.

    using U = typename std::make_unsigned<T>::type;
    *r = T(U(v1) + U(v2));

    // If int is two's complement, assume all integer types are too.
    if (std::is_same<int32_t, int>::value) {
        // Two's complement equivalent (generates slightly shorter code):
        //  x ^ y             is negative if x and y have different signs
        //  x & y             is negative if x and y are negative
        // (x ^ z) & (y ^ z)  is negative if x and z have different signs
        //                    AND y and z have different signs
        return ((v1 ^ *r) & (v2 ^ *r)) < 0;
    }

    bool s1 = (v1 < 0);
    bool s2 = (v2 < 0);
    bool sr = (*r < 0);
    return s1 != sr && s2 != sr;
    // also: return s1 == s2 && s1 != sr;
}

template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type
sub_overflow(T v1, T v2, T *r)
{
    // unsigned subtractions are well-defined
    *r = v1 - v2;
    return v1 < v2;
}

template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type
sub_overflow(T v1, T v2, T *r)
{
    // See above for explanation. This is the same with some signs reversed.
    // We can't use add_overflow(v1, -v2, r) because it would be UB if
    // v2 == std::numeric_limits<T>::min().

    using U = typename std::make_unsigned<T>::type;
    *r = T(U(v1) - U(v2));

    if (std::is_same<int32_t, int>::value)
        return ((v1 ^ *r) & (~v2 ^ *r)) < 0;

    bool s1 = (v1 < 0);
    bool s2 = !(v2 < 0);
    bool sr = (*r < 0);
    return s1 != sr && s2 != sr;
    // also: return s1 == s2 && s1 != sr;
}

template <typename T> inline
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
mul_overflow(T v1, T v2, T *r)
{
    // use the next biggest type
    // Note: for 64-bit systems where __int128 isn't supported, this will cause an error.
    using LargerInt = QIntegerForSize<sizeof(T) * 2>;
    using Larger = typename std::conditional<std::is_signed<T>::value,
            typename LargerInt::Signed, typename LargerInt::Unsigned>::type;
    Larger lr = Larger(v1) * Larger(v2);
    *r = T(lr);
    return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min();
}

# if defined(Q_INTRINSIC_MUL_OVERFLOW64)
template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r)
{
    *r = v1 * v2;
    return Q_UMULH(v1, v2);
}
template <> inline bool mul_overflow(qint64 v1, qint64 v2, qint64 *r)
{
    // This is slightly more complex than the unsigned case above: the sign bit
    // of 'low' must be replicated as the entire 'high', so the only valid
    // values for 'high' are 0 and -1. Use unsigned multiply since it's the same
    // as signed for the low bits and use a signed right shift to verify that
    // 'high' is nothing but sign bits that match the sign of 'low'.

    qint64 high = Q_SMULH(v1, v2);
    *r = qint64(quint64(v1) * quint64(v2));
    return (*r >> 63) != high;
}

#   if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
template <> inline bool mul_overflow(uint64_t v1, uint64_t v2, uint64_t *r)
{
    return mul_overflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r));
}

template <> inline bool mul_overflow(int64_t v1, int64_t v2, int64_t *r)
{
    return mul_overflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r));
}
#    endif // OS_INTEGRITY ARM64
#  endif // Q_INTRINSIC_MUL_OVERFLOW64

#  if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86)
// We can use intrinsics for the unsigned operations with MSVC
template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r)
{ return _addcarry_u32(0, v1, v2, r); }

// 32-bit mul_overflow is fine with the generic code above

template <> inline bool add_overflow(quint64 v1, quint64 v2, quint64 *r)
{
#    if defined(Q_PROCESSOR_X86_64)
    return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r));
#    else
    uint low, high;
    uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low);
    carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high);
    *r = (quint64(high) << 32) | low;
    return carry;
#    endif // !x86-64
}
#  endif // MSVC X86
#endif // !GCC
}
#endif // Q_CLANG_QDOC

QT_END_NAMESPACE

#endif // QNUMERIC_P_H