summaryrefslogtreecommitdiffstats
path: root/src/corelib/global/qrandom.cpp
blob: daa9f25122bdcbd5fd7ba7c6396c1c27bae2f77e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/****************************************************************************
**
** Copyright (C) 2017 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

// for rand_s
#define _CRT_RAND_S

#include "qrandom.h"
#include "qrandom_p.h"
#include <qobjectdefs.h>
#include <qthreadstorage.h>
#include <private/qsimd_p.h>

#include <errno.h>

#if QT_CONFIG(getentropy)
#  include <sys/random.h>
#else
#  if QT_CONFIG(cxx11_random)
#    include <random>
#    include "qdeadlinetimer.h"
#    include "qhashfunctions.h"
#  endif

#  if QT_CONFIG(sys_auxv)
#    include <sys/auxv.h>
#  endif
#endif // !QT_CONFIG(getentropy)

#ifdef Q_OS_UNIX
#  include <fcntl.h>
#  include <private/qcore_unix_p.h>
#else
#  include <qt_windows.h>

// RtlGenRandom is not exported by its name in advapi32.dll, but as SystemFunction036
// See https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694(v=vs.85).aspx
// Implementation inspired on https://hg.mozilla.org/mozilla-central/file/722fdbff1efc/security/nss/lib/freebl/win_rand.c#l146
// Argument why this is safe to use: https://bugzilla.mozilla.org/show_bug.cgi?id=504270
extern "C" {
DECLSPEC_IMPORT BOOLEAN WINAPI SystemFunction036(PVOID RandomBuffer, ULONG RandomBufferLength);
}
#endif

#if defined(Q_OS_ANDROID)
#  include <private/qjni_p.h>
#endif

QT_BEGIN_NAMESPACE

#if defined(Q_PROCESSOR_X86) && QT_COMPILER_SUPPORTS_HERE(RDRND)
static qssize_t qt_random_cpu(void *buffer, qssize_t count);

#  ifdef Q_PROCESSOR_X86_64
#    define _rdrandXX_step _rdrand64_step
#  else
#    define _rdrandXX_step _rdrand32_step
#  endif

static QT_FUNCTION_TARGET(RDRND) qssize_t qt_random_cpu(void *buffer, qssize_t count)
{
    unsigned *ptr = reinterpret_cast<unsigned *>(buffer);
    unsigned *end = ptr + count;

    while (ptr + sizeof(qregisteruint)/sizeof(*ptr) <= end) {
        if (_rdrandXX_step(reinterpret_cast<qregisteruint *>(ptr)) == 0)
            goto out;
        ptr += sizeof(qregisteruint)/sizeof(*ptr);
    }

    if (sizeof(*ptr) != sizeof(qregisteruint) && ptr != end) {
        if (_rdrand32_step(ptr))
            goto out;
        ++ptr;
    }

out:
    return ptr - reinterpret_cast<unsigned *>(buffer);
}
#endif

namespace {
#if QT_CONFIG(getentropy)
class SystemRandom
{
public:
    enum { EfficientBufferFill = true };
    static qssize_t fillBuffer(void *buffer, qssize_t count) Q_DECL_NOTHROW
    {
        // getentropy can read at most 256 bytes, so break the reading
        qssize_t read = 0;
        while (count - read > 256) {
            // getentropy can't fail under normal circumstances
            read += getentropy(reinterpret_cast<uchar *>(buffer) + read, 256);
        }

        getentropy(reinterpret_cast<uchar *>(buffer) + read, count - read);
        return count;
    }
};

#elif defined(Q_OS_UNIX)
class SystemRandom
{
    static QBasicAtomicInt s_fdp1;  // "file descriptor plus 1"
    static int openDevice();
    SystemRandom() {}
    ~SystemRandom();
public:
    enum { EfficientBufferFill = true };
    static qssize_t fillBuffer(void *buffer, qssize_t count);
};
QBasicAtomicInt SystemRandom::s_fdp1 = Q_BASIC_ATOMIC_INITIALIZER(0);

SystemRandom::~SystemRandom()
{
    int fd = s_fdp1.loadAcquire() - 1;
    if (fd >= 0)
        qt_safe_close(fd);
}

int SystemRandom::openDevice()
{
    int fd = s_fdp1.loadAcquire() - 1;
    if (fd != -1)
        return fd;

    fd = qt_safe_open("/dev/urandom", O_RDONLY);
    if (fd == -1)
        fd = qt_safe_open("/dev/random", O_RDONLY | O_NONBLOCK);
    if (fd == -1) {
        // failed on both, set to -2 so we won't try again
        fd = -2;
    }

    int opened_fdp1;
    if (s_fdp1.testAndSetOrdered(0, fd + 1, opened_fdp1)) {
        if (fd >= 0) {
            static const SystemRandom closer;
            Q_UNUSED(closer);
        }
        return fd;
    }

    // failed, another thread has opened the file descriptor
    if (fd >= 0)
        qt_safe_close(fd);
    return opened_fdp1 - 1;
}

qssize_t SystemRandom::fillBuffer(void *buffer, qssize_t count)
{
    int fd = openDevice();
    if (Q_UNLIKELY(fd < 0))
        return 0;

    qint64 n = qt_safe_read(fd, buffer, count);
    return qMax<qssize_t>(n, 0);        // ignore any errors
}
#endif // Q_OS_UNIX

#if defined(Q_OS_WIN) && !defined(Q_OS_WINRT)
class SystemRandom
{
public:
    enum { EfficientBufferFill = true };
    static qssize_t fillBuffer(void *buffer, qssize_t count)
    {
        auto RtlGenRandom = SystemFunction036;
        return RtlGenRandom(buffer, ULONG(count)) ? count: 0;
    }
};
#elif defined(Q_OS_WINRT)
class SystemRandom
{
public:
    enum { EfficientBufferFill = false };
    static qssize_t fillBuffer(void *, qssize_t)
    {
        // always use the fallback
        return 0;
    }
};
#endif // Q_OS_WINRT
} // unnamed namespace

#if defined(Q_OS_WIN)
static void fallback_update_seed(unsigned) {}
static void fallback_fill(quint32 *ptr, qssize_t left) Q_DECL_NOTHROW
{
    // on Windows, rand_s is a high-quality random number generator
    // and it requires no seeding
    std::generate(ptr, ptr + left, []() {
        unsigned value;
        rand_s(&value);
        return value;
    });
}
#elif QT_CONFIG(getentropy)
static void fallback_update_seed(unsigned) {}
static void fallback_fill(quint32 *, qssize_t) Q_DECL_NOTHROW
{
    // no fallback necessary, getentropy cannot fail under normal circumstances
}
#elif defined(Q_OS_BSD4)
static void fallback_update_seed(unsigned) {}
static void fallback_fill(quint32 *ptr, qssize_t left) Q_DECL_NOTHROW
{
    // BSDs have arc4random(4) and these work even in chroot(2)
    arc4random_buf(ptr, left * sizeof(*ptr));
}
#elif QT_CONFIG(cxx11_random)
static QBasicAtomicInteger<unsigned> seed = Q_BASIC_ATOMIC_INITIALIZER(0U);
static void fallback_update_seed(unsigned value)
{
    // Update the seed to be used for the fallback mechansim, if we need to.
    // We can't use QtPrivate::QHashCombine here because that is not an atomic
    // operation. A simple XOR will have to do then.
    seed.fetchAndXorRelaxed(value);
}

Q_NEVER_INLINE
#ifdef Q_CC_GNU
__attribute__((cold))   // this function is pretty big, so optimize for size
#endif
static void fallback_fill(quint32 *ptr, qssize_t left) Q_DECL_NOTHROW
{
    quint32 scratch[12];    // see element count below
    quint32 *end = scratch;

    auto foldPointer = [](quintptr v) {
        if (sizeof(quintptr) == sizeof(quint32)) {
            // For 32-bit systems, we simply return the pointer.
            return quint32(v);
        } else {
            // For 64-bit systems, we try to return the variable part of the
            // pointer. On current x86-64 and AArch64, the top 17 bits are
            // architecturally required to be the same, but in reality the top
            // 24 bits on Linux are likely to be the same for all processes.
            return quint32(v >> (32 - 24));
        }
    };

    Q_ASSERT(left);

    *end++ = foldPointer(quintptr(&seed));          // 1: variable in this library/executable's .data
    *end++ = foldPointer(quintptr(&scratch));       // 2: variable in the stack
    *end++ = foldPointer(quintptr(&errno));         // 3: veriable either in libc or thread-specific
    *end++ = foldPointer(quintptr(reinterpret_cast<void*>(strerror)));   // 4: function in libc (and unlikely to be a macro)

#ifndef QT_BOOTSTRAPPED
    quint64 nsecs = QDeadlineTimer::current(Qt::PreciseTimer).deadline();
    *end++ = quint32(nsecs);    // 5
#endif

    if (quint32 v = seed.load())
        *end++ = v; // 6

#if QT_CONFIG(sys_auxv)
    // works on Linux -- all modern libc have getauxval
#  ifdef AT_RANDOM
    // ELF's auxv AT_RANDOM has 16 random bytes
    // (other ELF-based systems don't seem to have AT_RANDOM)
    ulong auxvSeed = getauxval(AT_RANDOM);
    if (auxvSeed) {
        memcpy(scratch, reinterpret_cast<void *>(auxvSeed), 16);
        end += 4;   // 7 to 10
    }
#  endif

    // Both AT_BASE and AT_SYSINFO_EHDR have some randomness in them due to the
    // system's ASLR, even if many bits are the same. They also have randomness
    // between them.
#  ifdef AT_BASE
    // present at least on the BSDs too, indicates the address of the loader
    ulong base = getauxval(AT_BASE);
    if (base)
        *end++ = foldPointer(base); // 11
#  endif
#  ifdef AT_SYSINFO_EHDR
    // seems to be Linux-only, indicates the global page of the sysinfo
    ulong sysinfo_ehdr = getauxval(AT_SYSINFO_EHDR);
    if (sysinfo_ehdr)
        *end++ = foldPointer(sysinfo_ehdr); // 12
#  endif
#endif

    Q_ASSERT(end <= std::end(scratch));

    // this is highly inefficient, we should save the generator across calls...
    std::seed_seq sseq(scratch, end);
    std::mt19937 generator(sseq);
    std::generate(ptr, ptr + left, generator);

    fallback_update_seed(*ptr);
}
#else
static void fallback_update_seed(unsigned) {}
static Q_NORETURN void fallback_fill(quint32 *, qssize_t)
{
    qFatal("Random number generator failed and no high-quality backup available");
}
#endif

static qssize_t fill_cpu(quint32 *buffer, qssize_t count)
{
#if defined(Q_PROCESSOR_X86) && QT_COMPILER_SUPPORTS_HERE(RDRND)
    if (qCpuHasFeature(RDRND) && (uint(qt_randomdevice_control) & SkipHWRNG) == 0)
        return qt_random_cpu(buffer, count);
#else
    Q_UNUSED(buffer);
    Q_UNUSED(count);
#endif
    return 0;
}

static void fill_internal(quint32 *buffer, qssize_t count)
{
    if (Q_UNLIKELY(uint(qt_randomdevice_control) & SetRandomData)) {
        uint value = uint(qt_randomdevice_control) & RandomDataMask;
        std::fill_n(buffer, count, value);
        return;
    }

    qssize_t filled = fill_cpu(buffer, count);
    if (filled != count && (uint(qt_randomdevice_control) & SkipSystemRNG) == 0) {
        qssize_t bytesFilled =
                SystemRandom::fillBuffer(buffer + filled, (count - filled) * qssize_t(sizeof(*buffer)));
        filled += bytesFilled / qssize_t(sizeof(*buffer));
    }
    if (filled)
        fallback_update_seed(*buffer);

    if (Q_UNLIKELY(filled != count)) {
        // failed to fill the entire buffer, try the faillback mechanism
        fallback_fill(buffer + filled, count - filled);
    }
}

static Q_NEVER_INLINE void fill(void *buffer, void *bufferEnd)
{
    struct ThreadState {
        enum {
            DesiredBufferByteSize = 32,
            BufferCount = DesiredBufferByteSize / sizeof(quint32)
        };
        quint32 buffer[BufferCount];
        int idx = BufferCount;
    };

    // Verify that the pointers are properly aligned for 32-bit
    Q_ASSERT(quintptr(buffer) % sizeof(quint32) == 0);
    Q_ASSERT(quintptr(bufferEnd) % sizeof(quint32) == 0);

    quint32 *ptr = reinterpret_cast<quint32 *>(buffer);
    quint32 * const end = reinterpret_cast<quint32 *>(bufferEnd);

#if defined(Q_COMPILER_THREAD_LOCAL) && !defined(QT_BOOTSTRAPPED)
    if (SystemRandom::EfficientBufferFill && (end - ptr) < ThreadState::BufferCount
            && uint(qt_randomdevice_control) == 0) {
        thread_local ThreadState state;
        qssize_t itemsAvailable = ThreadState::BufferCount - state.idx;

        // copy as much as we already have
        qssize_t itemsToCopy = qMin(qssize_t(end - ptr), itemsAvailable);
        memcpy(ptr, state.buffer + state.idx, size_t(itemsToCopy) * sizeof(*ptr));
        ptr += itemsToCopy;

        if (ptr != end) {
            // refill the buffer and try again
            fill_internal(state.buffer, ThreadState::BufferCount);
            state.idx = 0;

            itemsToCopy = end - ptr;
            memcpy(ptr, state.buffer + state.idx, size_t(itemsToCopy) * sizeof(*ptr));
            ptr = end;
        }

        // erase what we copied and advance
#  ifdef Q_OS_WIN
        // Microsoft recommends this
        SecureZeroMemory(state.buffer + state.idx, size_t(itemsToCopy) * sizeof(*ptr));
#  else
        // We're quite confident the compiler will not optimize this out because
        // we're writing to a thread-local buffer
        memset(state.buffer + state.idx, 0, size_t(itemsToCopy) * sizeof(*ptr));
#  endif
        state.idx += itemsToCopy;
    }
#endif // Q_COMPILER_THREAD_LOCAL && !QT_BOOTSTRAPPED

    if (ptr != end) {
        // fill directly in the user buffer
        fill_internal(ptr, end - ptr);
    }
}

/*!
    \class QRandomGenerator
    \inmodule QtCore
    \since 5.10

    \brief The QRandomGenerator class allows one to obtain random values from a
    high-quality, seed-less Random Number Generator.

    QRandomGenerator may be used to generate random values from a high-quality
    random number generator. Unlike qrand(), QRandomGenerator does not need to be
    seeded. That also means it is not possible to force it to produce a
    reliable sequence, which may be needed for debugging.

    The class can generate 32-bit or 64-bit quantities, or fill an array of
    those. The most common way of generating new values is to call the get32(),
    get64() or fillRange() functions. One would use it as:

    \code
        quint32 value = QRandomGenerator::get32();
    \endcode

    Additionally, it provides a floating-point function getReal() that returns
    a number in the range [0, 1) (that is, inclusive of zero and exclusive of
    1). There's also a set of convenience functions that facilitate obtaininga
    random number in a bounded, integral range.

    \section1 Frequency and entropy exhaustion

    QRandomGenerator does not need to be seeded and instead uses operating system
    or hardware facilities to generate random numbers. On some systems and with
    certain hardware, those facilities are true Random Number Generators.
    However, if they are true RNGs, those facilities have finite entropy source
    and thus may fail to produce any results if the entropy pool is exhausted.

    If that happens, first the operating system then QRandomGenerator will fall
    back to Pseudo Random Number Generators of decreasing qualities (Qt's
    fallback generator being the simplest). Therefore, QRandomGenerator should
    not be used for high-frequency random number generation, lest the entropy
    pool become empty. As a rule of thumb, this class should not be called upon
    to generate more than a kilobyte per second of random data (note: this may
    vary from system to system).

    If an application needs true RNG data in bulk, it should use the operating
    system facilities (such as \c{/dev/random} on Unix systems) directly and
    wait for entropy to become available. If true RNG is not required,
    applications should instead use a PRNG engines and can use QRandomGenerator to
    seed those.

    \section1 Standard C++ Library compatibility

    QRandomGenerator is modeled after
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/random_device}{std::random_device}}
    and may be used in almost all contexts that the Standard Library can.
    QRandomGenerator attempts to use either the same engine that backs
    \c{std::random_device} or a better one. Note that \c{std::random_device} is
    also allowed to fail if the source entropy pool becomes exhausted, in which
    case it will throw an exception. QRandomGenerator never throws, but may abort
    program execution instead.

    Like the Standard Library class, QRandomGenerator can be used to seed Standard
    Library deterministic random engines from \c{<random>}, such as the
    Mersenne Twister. Unlike \c{std::random_device}, QRandomGenerator also
    implements the API of
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/seed_seq}{std::seed_seq}},
    allowing it to seed the deterministic engines directly.

    The following code can be used to create and seed the
    implementation-defined default deterministic PRNG, then use it to fill a
    block range:

    \code
        QRandomGenerator rd;
        std::default_random_engine rng(rd);
        std::generate(block.begin(), block.end(), rng);

        // equivalent to:
        for (auto &v : block)
            v = rng();
    \endcode

    QRandomGenerator is also compatible with the uniform distribution classes
    \c{std::uniform_int_distribution} and \c{std:uniform_real_distribution}, as
    well as the free function \c{std::generate_canonical}. For example, the
    following code may be used to generate a floating-point number in the range
    [1, 2.5):

    \code
        QRandomGenerator64 rd;
        std::uniform_real_distribution dist(1, 2.5);
        return dist(rd);
    \endcode

    Note the use of the QRandomGenerator64 class instead of QRandomGenerator to
    obtain 64 bits of random data in a single call, though it is not required
    to make the algorithm work (the Standard Library functions will make as
    many calls as required to obtain enough bits of random data for the desired
    range).

    \sa QRandomGenerator64, qrand()
 */

/*!
    \fn QRandomGenerator::QRandomGenerator()
    \internal
    Defaulted constructor, does nothing.
 */

/*!
    \typedef QRandomGenerator::result_type

    A typedef to the type that operator()() returns. That is, quint32.

    \sa operator()()
 */

/*!
    \fn result_type QRandomGenerator::operator()()

    Generates a 32-bit random quantity and returns it.

    \sa QRandomGenerator::get32(), QRandomGenerator::get64()
 */

/*!
    \fn double QRandomGenerator::entropy() const

    Returns the estimate of the entropy in the random generator source.

    This function exists to comply with the Standard Library requirements for
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/random_device}{std::random_device}}
    but it does not and cannot ever work. It is not possible to obtain a
    reliable entropy value in a shared entropy pool in a multi-tasking system,
    as other processes or threads may use that entropy. Any value non-zero
    value that this function could return would be obsolete by the time the
    user code reached it.

    Since QRandomGenerator attempts to use a hardware Random Number Generator,
    this function always returns 0.0.
 */

/*!
    \fn result_type QRandomGenerator::min()

    Returns the minimum value that QRandomGenerator may ever generate. That is, 0.

    \sa max(), QRandomGenerator64::max()
 */

/*!
    \fn result_type QRandomGenerator::max()

    Returns the maximum value that QRandomGenerator may ever generate. That is,
    \c {std::numeric_limits<result_type>::max()}.

    \sa min(), QRandomGenerator64::max()
 */

/*!
    \fn void QRandomGenerator::generate(ForwardIterator begin, ForwardIterator end)

    Generates 32-bit quantities and stores them in the range between \a begin
    and \a end. This function is equivalent to (and is implemented as):

    \code
        std::generate(begin, end, []() { return get32(); });
    \endcode

    This function complies with the requirements for the function
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/seed_seq/generate}{std::seed_seq::generate}},
    which requires unsigned 32-bit integer values.

    Note that if the [begin, end) range refers to an area that can store more
    than 32 bits per element, the elements will still be initialized with only
    32 bits of data. Any other bits will be zero. To fill the range with 64 bit
    quantities, one can write:

    \code
        std::generate(begin, end, []() { return get64(); });
    \endcode

    If the range refers to contiguous memory (such as an array or the data from
    a QVector), the fillRange() function may be used too.

    \sa fillRange()
 */

/*!
    \fn void QRandomGenerator::generate(quint32 *begin, quint32 *end)
    \overload
    \internal

    Same as the other overload, but more efficiently fills \a begin to \a end.
 */

/*!
    \fn void QRandomGenerator::fillRange(UInt *buffer, qssize_t count)

    Generates \a count 32- or 64-bit quantities (depending on the type \c UInt)
    and stores them in the buffer pointed by \a buffer. This is the most
    efficient way to obtain more than one quantity at a time, as it reduces the
    number of calls into the Random Number Generator source.

    For example, to fill a vector of 16 entries with random values, one may
    write:

    \code
        QVector<quint32> vector;
        vector.resize(16);
        QRandomGenerator::fillRange(vector.data(), vector.size());
    \endcode

    \sa generate()
 */

/*!
    \fn void QRandomGenerator::fillRange(UInt (&buffer)[N})

    Generates \c N 32- or 64-bit quantities (depending on the type \c UInt) and
    stores them in the \a buffer array. This is the most efficient way to
    obtain more than one quantity at a time, as it reduces the number of calls
    into the Random Number Generator source.

    For example, to fill generate two 32-bit quantities, one may write:

    \code
        quint32 array[2];
        QRandomGenerator::fillRange(array);
    \endcode

    It would have also been possible to make one call to get64() and then split
    the two halves of the 64-bit value.

    \sa generate()
 */

/*!
    \fn qreal QRandomGenerator::getReal()

    Generates one random qreal in the canonical range [0, 1) (that is,
    inclusive of zero and exclusive of 1).

    This function is equivalent to:
    \code
        QRandomGenerator64 rd;
        return std::generate_canonical<qreal, std::numeric_limits<qreal>::digits>(rd);
    \endcode

    The same may also be obtained by using
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution}{std::uniform_real_distribution}}
    with parameters 0 and 1.

    \sa get32(), get64(), bounded()
 */

/*!
    \fn qreal QRandomGenerator::bounded(qreal sup)

    Generates one random qreal in the range between 0 (inclusive) and \a
    sup (exclusive). This function is equivalent to and is implemented as:

    \code
        return getReal() * sup;
    \endcode

    \sa getReal(), bounded()
 */

/*!
    \fn quint32 QRandomGenerator::bounded(quint32 sup)
    \overload

    Generates one random 32-bit quantity in the range between 0 (inclusive) and
    \a sup (exclusive). The same result may also be obtained by using
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution}{std::uniform_int_distribution}}
    with parameters 0 and \c{sup - 1}. That class can also be used to obtain
    quantities larger than 32 bits.

    For example, to obtain a value between 0 and 255 (inclusive), one would write:

    \code
        quint32 v = QRandomGenerator::bounded(256);
    \endcode

    Naturally, the same could also be obtained by masking the result of get32()
    to only the lower 8 bits. Either solution is as efficient.

    Note that this function cannot be used to obtain values in the full 32-bit
    range of quint32. Instead, use get32().

    \sa get32(), get64(), getReal()
 */

/*!
    \fn quint32 QRandomGenerator::bounded(int sup)
    \overload

    Generates one random 32-bit quantity in the range between 0 (inclusive) and
    \a sup (exclusive). \a sup must not be negative.

    Note that this function cannot be used to obtain values in the full 32-bit
    range of int. Instead, use get32() and cast to int.

    \sa get32(), get64(), getReal()
 */

/*!
    \fn quint32 QRandomGenerator::bounded(quint32 min, quint32 sup)
    \overload

    Generates one random 32-bit quantity in the range between \a min (inclusive)
    and \a sup (exclusive). The same result may also be obtained by using
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution}{std::uniform_int_distribution}}
    with parameters \a min and \c{\a sup - 1}. That class can also be used to
    obtain quantities larger than 32 bits.

    For example, to obtain a value between 1000 (incl.) and 2000 (excl.), one
    would write:

    \code
        quint32 v = QRandomGenerator::bounded(1000, 2000);
    \endcode


    Note that this function cannot be used to obtain values in the full 32-bit
    range of quint32. Instead, use get32().

    \sa get32(), get64(), getReal()
 */

/*!
    \fn quint32 QRandomGenerator::bounded(int min, int sup)
    \overload

    Generates one random 32-bit quantity in the range between \a min
    (inclusive) and \a sup (exclusive), both of which may be negative.

    Note that this function cannot be used to obtain values in the full 32-bit
    range of int. Instead, use get32() and cast to int.

    \sa get32(), get64(), getReal()
 */

/*!
    \class QRandomGenerator64
    \inmodule QtCore
    \since 5.10

    \brief The QRandomGenerator64 class allows one to obtain 64-bit random values
    from a high-quality, seed-less Random Number Generator.

    QRandomGenerator64 is a simple adaptor class around QRandomGenerator, making the
    QRandomGenerator::get64() function the default for operator()(), instead of the
    function that returns 32-bit quantities. This class is intended to be used
    in conjunction with Standard Library algorithms that need 64-bit quantities
    instead of 32-bit ones.

    In all other aspects, the class is the same. Please refer to
    QRandomGenerator's documentation for more information.

    \sa QRandomGenerator
*/

/*!
    \fn QRandomGenerator64::QRandomGenerator64()
    \internal
    Defaulted constructor, does nothing.
 */

/*!
    \typedef QRandomGenerator64::result_type

    A typedef to the type that operator()() returns. That is, quint64.

    \sa operator()()
 */

/*!
    \fn result_type QRandomGenerator64::operator()()

    Generates a 64-bit random quantity and returns it.

    \sa QRandomGenerator::get32(), QRandomGenerator::get64()
 */

/*!
    \fn double QRandomGenerator64::entropy() const

    Returns the estimate of the entropy in the random generator source.

    This function exists to comply with the Standard Library requirements for
    \c{\l{http://en.cppreference.com/w/cpp/numeric/random/random_device}{std::random_device}}
    but it does not and cannot ever work. It is not possible to obtain a
    reliable entropy value in a shared entropy pool in a multi-tasking system,
    as other processes or threads may use that entropy. Any value non-zero
    value that this function could return would be obsolete by the time the
    user code reached it.

    Since QRandomGenerator64 attempts to use a hardware Random Number Generator,
    this function always returns 0.0.
 */

/*!
    \fn result_type QRandomGenerator64::min()

    Returns the minimum value that QRandomGenerator64 may ever generate. That is, 0.

    \sa max(), QRandomGenerator::max()
 */

/*!
    \fn result_type QRandomGenerator64::max()

    Returns the maximum value that QRandomGenerator64 may ever generate. That is,
    \c {std::numeric_limits<result_type>::max()}.

    \sa min(), QRandomGenerator::max()
 */

/*!
    Generates one 32-bit random value and returns it.

    Note about casting to a signed integer: all bits returned by this function
    are random, so there's a 50% chance that the most significant bit will be
    set. If you wish to cast the returned value to int and keep it positive,
    you should mask the sign bit off:

    \code
        int value = QRandomGenerator::get32() & std::numeric_limits<int>::max();
    \endcode

    \sa get64(), getReal()
 */
quint32 QRandomGenerator::get32()
{
    quint32 ret;
    fill(&ret, &ret + 1);
    return ret;
}

/*!
    Generates one 64-bit random value and returns it.

    Note about casting to a signed integer: all bits returned by this function
    are random, so there's a 50% chance that the most significant bit will be
    set. If you wish to cast the returned value to qint64 and keep it positive,
    you should mask the sign bit off:

    \code
        qint64 value = QRandomGenerator::get64() & std::numeric_limits<qint64>::max();
    \endcode

    \sa get32(), getReal(), QRandomGenerator64
 */
quint64 QRandomGenerator::get64()
{
    quint64 ret;
    fill(&ret, &ret + 1);
    return ret;
}

/*!
    \internal

    Fills the range pointed by \a buffer and \a bufferEnd with 32-bit random
    values. The buffer must be correctly aligned.
 */
void QRandomGenerator::fillRange_helper(void *buffer, void *bufferEnd)
{
    fill(buffer, bufferEnd);
}

#if defined(Q_OS_UNIX) && !defined(QT_NO_THREAD) && defined(_POSIX_THREAD_SAFE_FUNCTIONS) && (_POSIX_THREAD_SAFE_FUNCTIONS - 0 > 0)
using SeedStorageType = QtPrivate::FunctionPointer<decltype(&srand)>::Arguments::Car;

typedef QThreadStorage<SeedStorageType *> SeedStorage;
Q_GLOBAL_STATIC(SeedStorage, randTLS)  // Thread Local Storage for seed value

#elif defined(Q_OS_ANDROID)
typedef QThreadStorage<QJNIObjectPrivate> AndroidRandomStorage;
Q_GLOBAL_STATIC(AndroidRandomStorage, randomTLS)
#endif

/*!
    \relates <QtGlobal>
    \since 4.2

    Thread-safe version of the standard C++ \c srand() function.

    Sets the argument \a seed to be used to generate a new random number sequence of
    pseudo random integers to be returned by qrand().

    The sequence of random numbers generated is deterministic per thread. For example,
    if two threads call qsrand(1) and subsequently call qrand(), the threads will get
    the same random number sequence.

    \sa qrand(), QRandomGenerator
*/
void qsrand(uint seed)
{
#if defined(Q_OS_UNIX) && !defined(QT_NO_THREAD) && defined(_POSIX_THREAD_SAFE_FUNCTIONS) && (_POSIX_THREAD_SAFE_FUNCTIONS - 0 > 0)
    SeedStorage *seedStorage = randTLS();
    if (seedStorage) {
        SeedStorageType *pseed = seedStorage->localData();
        if (!pseed)
            seedStorage->setLocalData(pseed = new SeedStorageType);
        *pseed = seed;
    } else {
        //global static seed storage should always exist,
        //except after being deleted by QGlobalStaticDeleter.
        //But since it still can be called from destructor of another
        //global static object, fallback to srand(seed)
        srand(seed);
    }
#elif defined(Q_OS_ANDROID)
    if (randomTLS->hasLocalData()) {
        randomTLS->localData().callMethod<void>("setSeed", "(J)V", jlong(seed));
        return;
    }

    QJNIObjectPrivate random("java/util/Random",
                             "(J)V",
                             jlong(seed));
    if (!random.isValid()) {
        srand(seed);
        return;
    }

    randomTLS->setLocalData(random);
#else
    // On Windows srand() and rand() already use Thread-Local-Storage
    // to store the seed between calls
    // this is also valid for QT_NO_THREAD
    srand(seed);
#endif
}

/*!
    \relates <QtGlobal>
    \since 4.2

    Thread-safe version of the standard C++ \c rand() function.

    Returns a value between 0 and \c RAND_MAX (defined in \c <cstdlib> and
    \c <stdlib.h>), the next number in the current sequence of pseudo-random
    integers.

    Use \c qsrand() to initialize the pseudo-random number generator with a
    seed value. Seeding must be performed at least once on each thread. If that
    step is skipped, then the sequence will be pre-seeded with a constant
    value.

    \sa qsrand(), QRandomGenerator
*/
int qrand()
{
#if defined(Q_OS_UNIX) && !defined(QT_NO_THREAD) && defined(_POSIX_THREAD_SAFE_FUNCTIONS) && (_POSIX_THREAD_SAFE_FUNCTIONS - 0 > 0)
    SeedStorage *seedStorage = randTLS();
    if (seedStorage) {
        SeedStorageType *pseed = seedStorage->localData();
        if (!pseed) {
            seedStorage->setLocalData(pseed = new SeedStorageType);
            *pseed = 1;
        }
        return rand_r(pseed);
    } else {
        //global static seed storage should always exist,
        //except after being deleted by QGlobalStaticDeleter.
        //But since it still can be called from destructor of another
        //global static object, fallback to rand()
        return rand();
    }
#elif defined(Q_OS_ANDROID)
    AndroidRandomStorage *randomStorage = randomTLS();
    if (!randomStorage)
        return rand();

    if (randomStorage->hasLocalData()) {
        return randomStorage->localData().callMethod<jint>("nextInt",
                                                           "(I)I",
                                                           RAND_MAX);
    }

    QJNIObjectPrivate random("java/util/Random",
                             "(J)V",
                             jlong(1));

    if (!random.isValid())
        return rand();

    randomStorage->setLocalData(random);
    return random.callMethod<jint>("nextInt", "(I)I", RAND_MAX);
#else
    // On Windows srand() and rand() already use Thread-Local-Storage
    // to store the seed between calls
    // this is also valid for QT_NO_THREAD
    return rand();
#endif
}

QT_END_NAMESPACE