summaryrefslogtreecommitdiffstats
path: root/src/corelib/kernel/qobjectdefs_impl.h
blob: 29ab77b26955010ae59ee61a6062637ff6cd7a7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2013 Olivier Goffart <ogoffart@woboq.com>
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef Q_QDOC

#ifndef QOBJECTDEFS_H
#error Do not include qobjectdefs_impl.h directly
#include <QtCore/qnamespace.h>
#endif

#if 0
#pragma qt_sync_skip_header_check
#pragma qt_sync_stop_processing
#endif

QT_BEGIN_NAMESPACE


namespace QtPrivate {
    template <typename T> struct RemoveRef { typedef T Type; };
    template <typename T> struct RemoveRef<T&> { typedef T Type; };
    template <typename T> struct RemoveConstRef { typedef T Type; };
    template <typename T> struct RemoveConstRef<const T&> { typedef T Type; };

    /*
       The following List classes are used to help to handle the list of arguments.
       It follow the same principles as the lisp lists.
       List_Left<L,N> take a list and a number as a parameter and returns (via the Value typedef,
       the list composed of the first N element of the list
     */
    // With variadic template, lists are represented using a variadic template argument instead of the lisp way
    template <typename...> struct List {};
    template <typename Head, typename... Tail> struct List<Head, Tail...> { typedef Head Car; typedef List<Tail...> Cdr; };
    template <typename, typename> struct List_Append;
    template <typename... L1, typename...L2> struct List_Append<List<L1...>, List<L2...>> { typedef List<L1..., L2...> Value; };
    template <typename L, int N> struct List_Left {
        typedef typename List_Append<List<typename L::Car>,typename List_Left<typename L::Cdr, N - 1>::Value>::Value Value;
    };
    template <typename L> struct List_Left<L, 0> { typedef List<> Value; };
    // List_Select<L,N> returns (via typedef Value) the Nth element of the list L
    template <typename L, int N> struct List_Select { typedef typename List_Select<typename L::Cdr, N - 1>::Value Value; };
    template <typename L> struct List_Select<L,0> { typedef typename L::Car Value; };

    /*
       trick to set the return value of a slot that works even if the signal or the slot returns void
       to be used like     function(), ApplyReturnValue<ReturnType>(&return_value)
       if function() returns a value, the operator,(T, ApplyReturnValue<ReturnType>) is called, but if it
       returns void, the builtin one is used without an error.
    */
    template <typename T>
    struct ApplyReturnValue {
        void *data;
        explicit ApplyReturnValue(void *data_) : data(data_) {}
    };
    template<typename T, typename U>
    void operator,(T &&value, const ApplyReturnValue<U> &container) {
        if (container.data)
            *reinterpret_cast<U *>(container.data) = std::forward<T>(value);
    }
    template<typename T>
    void operator,(T, const ApplyReturnValue<void> &) {}


    /*
      The FunctionPointer<Func> struct is a type trait for function pointer.
        - ArgumentCount  is the number of argument, or -1 if it is unknown
        - the Object typedef is the Object of a pointer to member function
        - the Arguments typedef is the list of argument (in a QtPrivate::List)
        - the Function typedef is an alias to the template parameter Func
        - the call<Args, R>(f,o,args) method is used to call that slot
            Args is the list of argument of the signal
            R is the return type of the signal
            f is the function pointer
            o is the receiver object
            and args is the array of pointer to arguments, as used in qt_metacall

       The Functor<Func,N> struct is the helper to call a functor of N argument.
       its call function is the same as the FunctionPointer::call function.
     */
    template <int...> struct IndexesList {};
    template <typename IndexList, int Right> struct IndexesAppend;
    template <int... Left, int Right> struct IndexesAppend<IndexesList<Left...>, Right>
    { typedef IndexesList<Left..., Right> Value; };
    template <int N> struct Indexes
    { typedef typename IndexesAppend<typename Indexes<N - 1>::Value, N - 1>::Value Value; };
    template <> struct Indexes<0> { typedef IndexesList<> Value; };
    template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1, IsPointerToMemberFunction = false}; };

    template <typename, typename, typename, typename> struct FunctorCall;
    template <int... II, typename... SignalArgs, typename R, typename Function>
    struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, Function> {
        static void call(Function &f, void **arg) {
            f((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
        }
    };
    template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
    struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...)> {
        static void call(SlotRet (Obj::*f)(SlotArgs...), Obj *o, void **arg) {
            (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
        }
    };
    template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
    struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const> {
        static void call(SlotRet (Obj::*f)(SlotArgs...) const, Obj *o, void **arg) {
            (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
        }
    };
#if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510
    template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
    struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) noexcept> {
        static void call(SlotRet (Obj::*f)(SlotArgs...) noexcept, Obj *o, void **arg) {
            (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
        }
    };
    template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
    struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const noexcept> {
        static void call(SlotRet (Obj::*f)(SlotArgs...) const noexcept, Obj *o, void **arg) {
            (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
        }
    };
#endif

    template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...)>
    {
        typedef Obj Object;
        typedef List<Args...>  Arguments;
        typedef Ret ReturnType;
        typedef Ret (Obj::*Function) (Args...);
        enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
        template <typename SignalArgs, typename R>
        static void call(Function f, Obj *o, void **arg) {
            FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
        }
    };
    template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const>
    {
        typedef Obj Object;
        typedef List<Args...>  Arguments;
        typedef Ret ReturnType;
        typedef Ret (Obj::*Function) (Args...) const;
        enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
        template <typename SignalArgs, typename R>
        static void call(Function f, Obj *o, void **arg) {
            FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
        }
    };

    template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...)>
    {
        typedef List<Args...> Arguments;
        typedef Ret ReturnType;
        typedef Ret (*Function) (Args...);
        enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false};
        template <typename SignalArgs, typename R>
        static void call(Function f, void *, void **arg) {
            FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
        }
    };

#if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510
    template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) noexcept>
    {
        typedef Obj Object;
        typedef List<Args...>  Arguments;
        typedef Ret ReturnType;
        typedef Ret (Obj::*Function) (Args...) noexcept;
        enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
        template <typename SignalArgs, typename R>
        static void call(Function f, Obj *o, void **arg) {
            FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
        }
    };
    template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const noexcept>
    {
        typedef Obj Object;
        typedef List<Args...>  Arguments;
        typedef Ret ReturnType;
        typedef Ret (Obj::*Function) (Args...) const noexcept;
        enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
        template <typename SignalArgs, typename R>
        static void call(Function f, Obj *o, void **arg) {
            FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
        }
    };

    template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...) noexcept>
    {
        typedef List<Args...> Arguments;
        typedef Ret ReturnType;
        typedef Ret (*Function) (Args...) noexcept;
        enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false};
        template <typename SignalArgs, typename R>
        static void call(Function f, void *, void **arg) {
            FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
        }
    };
#endif

    template<typename Function, int N> struct Functor
    {
        template <typename SignalArgs, typename R>
        static void call(Function &f, void *, void **arg) {
            FunctorCall<typename Indexes<N>::Value, SignalArgs, R, Function>::call(f, arg);
        }
    };

    /*
        Logic that checks if the underlying type of an enum is signed or not.
        Needs an external, explicit check that E is indeed an enum. Works
        around the fact that it's undefined behavior to instantiate
        std::underlying_type on non-enums (cf. §20.13.7.6 [meta.trans.other]).
    */
    template<typename E, typename Enable = void>
    struct IsEnumUnderlyingTypeSigned : std::false_type
    {
    };

    template<typename E>
    struct IsEnumUnderlyingTypeSigned<E, typename std::enable_if<std::is_enum<E>::value>::type>
            : std::integral_constant<bool, std::is_signed<typename std::underlying_type<E>::type>::value>
    {
    };

    /*
       Logic that checks if the argument of the slot does not narrow the
       argument of the signal when used in list initialization. Cf. §8.5.4.7
       [dcl.init.list] for the definition of narrowing.
       For incomplete From/To types, there's no narrowing.
    */
    template<typename From, typename To, typename Enable = void>
    struct AreArgumentsNarrowedBase : std::false_type
    {
    };

    template<typename From, typename To>
    struct AreArgumentsNarrowedBase<From, To, typename std::enable_if<sizeof(From) && sizeof(To)>::type>
        : std::integral_constant<bool,
              (std::is_floating_point<From>::value && std::is_integral<To>::value) ||
              (std::is_floating_point<From>::value && std::is_floating_point<To>::value && sizeof(From) > sizeof(To)) ||
              ((std::is_integral<From>::value || std::is_enum<From>::value) && std::is_floating_point<To>::value) ||
              (std::is_integral<From>::value && std::is_integral<To>::value
               && (sizeof(From) > sizeof(To)
                   || (std::is_signed<From>::value ? !std::is_signed<To>::value
                       : (std::is_signed<To>::value && sizeof(From) == sizeof(To))))) ||
              (std::is_enum<From>::value && std::is_integral<To>::value
               && (sizeof(From) > sizeof(To)
                   || (IsEnumUnderlyingTypeSigned<From>::value ? !std::is_signed<To>::value
                       : (std::is_signed<To>::value && sizeof(From) == sizeof(To)))))
              >
    {
    };

    /*
       Logic that check if the arguments of the slot matches the argument of the signal.
       To be used like this:
       Q_STATIC_ASSERT(CheckCompatibleArguments<FunctionPointer<Signal>::Arguments, FunctionPointer<Slot>::Arguments>::value)
    */
    template<typename A1, typename A2> struct AreArgumentsCompatible {
        static int test(const typename RemoveRef<A2>::Type&);
        static char test(...);
        static const typename RemoveRef<A1>::Type &dummy();
        enum { value = sizeof(test(dummy())) == sizeof(int) };
#ifdef QT_NO_NARROWING_CONVERSIONS_IN_CONNECT
        using AreArgumentsNarrowed = AreArgumentsNarrowedBase<typename RemoveRef<A1>::Type, typename RemoveRef<A2>::Type>;
        Q_STATIC_ASSERT_X(!AreArgumentsNarrowed::value, "Signal and slot arguments are not compatible (narrowing)");
#endif
    };
    template<typename A1, typename A2> struct AreArgumentsCompatible<A1, A2&> { enum { value = false }; };
    template<typename A> struct AreArgumentsCompatible<A&, A&> { enum { value = true }; };
    // void as a return value
    template<typename A> struct AreArgumentsCompatible<void, A> { enum { value = true }; };
    template<typename A> struct AreArgumentsCompatible<A, void> { enum { value = true }; };
    template<> struct AreArgumentsCompatible<void, void> { enum { value = true }; };

    template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
    template <> struct CheckCompatibleArguments<List<>, List<>> { enum { value = true }; };
    template <typename List1> struct CheckCompatibleArguments<List1, List<>> { enum { value = true }; };
    template <typename Arg1, typename Arg2, typename... Tail1, typename... Tail2>
    struct CheckCompatibleArguments<List<Arg1, Tail1...>, List<Arg2, Tail2...>>
    {
        enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
                    && CheckCompatibleArguments<List<Tail1...>, List<Tail2...>>::value };
    };

    /*
       Find the maximum number of arguments a functor object can take and be still compatible with
       the arguments from the signal.
       Value is the number of arguments, or -1 if nothing matches.
     */
    template <typename Functor, typename ArgList> struct ComputeFunctorArgumentCount;

    template <typename Functor, typename ArgList, bool Done> struct ComputeFunctorArgumentCountHelper
    { enum { Value = -1 }; };
    template <typename Functor, typename First, typename... ArgList>
    struct ComputeFunctorArgumentCountHelper<Functor, List<First, ArgList...>, false>
        : ComputeFunctorArgumentCount<Functor,
            typename List_Left<List<First, ArgList...>, sizeof...(ArgList)>::Value> {};

    template <typename Functor, typename... ArgList> struct ComputeFunctorArgumentCount<Functor, List<ArgList...>>
    {
        template <typename D> static D dummy();
        template <typename F> static auto test(F f) -> decltype(((f.operator()((dummy<ArgList>())...)), int()));
        static char test(...);
        enum {
            Ok = sizeof(test(dummy<Functor>())) == sizeof(int),
            Value = Ok ? int(sizeof...(ArgList)) : int(ComputeFunctorArgumentCountHelper<Functor, List<ArgList...>, Ok>::Value)
        };
    };

    /* get the return type of a functor, given the signal argument list  */
    template <typename Functor, typename ArgList> struct FunctorReturnType;
    template <typename Functor, typename ... ArgList> struct FunctorReturnType<Functor, List<ArgList...>> {
        template <typename D> static D dummy();
        typedef decltype(dummy<Functor>().operator()((dummy<ArgList>())...)) Value;
    };
}

QT_END_NAMESPACE

#endif