summaryrefslogtreecommitdiffstats
path: root/src/gui/doc/src/paintsystem.qdoc
blob: 7857a160acfa9a452ee9b47dca941be5e69c66a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/****************************************************************************
**
** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the documentation of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:FDL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia.  For licensing terms and
** conditions see http://qt.digia.com/licensing.  For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Free Documentation License Usage
** Alternatively, this file may be used under the terms of the GNU Free
** Documentation License version 1.3 as published by the Free Software
** Foundation and appearing in the file included in the packaging of
** this file.  Please review the following information to ensure
** the GNU Free Documentation License version 1.3 requirements
** will be met: http://www.gnu.org/copyleft/fdl.html.
** $QT_END_LICENSE$
**
****************************************************************************/

/*!
    \group painting
    \title Painting Classes
    \ingroup groups

    \brief Classes that provide support for painting.

    See also this introduction to the \l{coordsys.html}{Qt coordinate system.}
*/

/*!
    \group painting-3D
    \title Rendering in 3D
    \ingroup groups

    \brief Classes that provide support for rendering in 3D.
*/

/*!
    \page paintsystem.html
    \title Paint System
    \brief A system for painting on the screen or on print devices using the same API
    \ingroup qt-graphics
    \ingroup frameworks-technologies
    \ingroup qt-basic-concepts
	

    Qt's paint system enables painting on screen and print devices
    using the same API, and is primarily based on the QPainter,
    QPaintDevice, and QPaintEngine classes.

    QPainter is used to perform drawing operations, QPaintDevice is an
    abstraction of a two-dimensional space that can be painted on
    using a QPainter, and QPaintEngine provides the interface that the
    painter uses to draw onto different types of devices. The
    QPaintEngine class is used internally by QPainter and
    QPaintDevice, and is hidden from application programmers unless
    they create their own device type.

    \image paintsystem-core.png

    The main benefit of this approach is that all painting follows the
    same painting pipeline making it easy to add support for new
    features and providing default implementations for unsupported
    ones.
    
    \section1 Topics
    \list
        \li \l{Classes for Painting}
        \li \l{Paint Devices and Backends}
        \li \l{Drawing and Filling}
        \li \l{Coordinate System}
        \li \l{Reading and Writing Image Files}
    \endlist

    \section1 Classes for Painting

    These classes provide support for painting onto a paint device.

    \annotatedlist painting

*/


/*!
    \page paintsystem-devices.html
    \title Paint Devices and Backends

	\contentspage The Paint System
	\nextpage Drawing and Filling

    \section1 Creating a Paint Device

    The QPaintDevice class is the base class of objects that can be
    painted, i.e. QPainter can draw on any QPaintDevice
    subclass. QPaintDevice's drawing capabilities are among others
    implemented by QWidget, QImage, QPixmap, QPicture, QPrinter, and
    QOpenGLPaintDevice.

    \table 100%

    \row \li \b Widget

    The QWidget class is the base class of user interface
    elements in the \l {Qt Widgets} module. It receives mouse, keyboard
    and other events from the window system, and paints a
    representation of itself on the screen.

    \row \li \b Image

    The QImage class provides a hardware-independent image
    representation which is designed and optimized for I/O, and for
    direct pixel access and manipulation. QImage supports several
    image formats including monochrome, 8-bit, 32-bit and
    alpha-blended images.

    One advantage of using QImage as a paint device is that it is
    possible to guarantee the pixel exactness of any drawing operation
    in a platform-independent way. Another benefit is that the
    painting can be performed in another thread than the current GUI
    thread.
    
    \row \li \b Pixmap

    The QPixmap class is an off-screen image representation which is
    designed and optimized for showing images on screen. Unlike
    QImage, the pixel data in a pixmap is internal and is managed by
    the underlying window system, i.e. pixels can only be accessed
    through QPainter functions or by converting the QPixmap to a
    QImage.

    To optimize drawing with QPixmap, Qt provides the QPixmapCache
    class which can be used to store temporary pixmaps that are
    expensive to generate without using more storage space than the
    cache limit.

    Qt also provides the QBitmap convenience class, inheriting
    QPixmap. QBitmap guarantees monochrome (1-bit depth) pixmaps, and
    is mainly used for creating custom QCursor and QBrush objects,
    constructing QRegion objects.

    \row \li \b {OpenGL Paint Device}

    As mentioned previously, Qt is offering classes that makes it easy
    to use OpenGL in Qt applications. For example, the QOpenGLPaintDevice
    enables the OpenGL API for rendering with QPainter.

    \row \li \b {Picture}

    The QPicture class is a paint device that records and replays
    QPainter commands. A picture serializes painter commands to an IO
    device in a platform-independent format. QPicture is also
    resolution independent, i.e. a QPicture can be displayed on
    different devices (for example svg, pdf, ps, printer and screen)
    looking the same.

    Qt provides the QPicture::load() and QPicture::save() functions
    as well as streaming operators for loading and saving pictures.



    \row \li \b {Custom Backends}

    Support for a new backend can be implemented by deriving from the
    QPaintDevice class and reimplementing the virtual
    QPaintDevice::paintEngine() function to tell QPainter which paint
    engine should be used to draw on this particular device. To
    actually be able to draw on the device, this paint engine must be
    a custom paint engine created by deriving from the QPaintEngine
    class.
    
    \endtable

*/

/*!
    \page paintsystem-drawing.html
    \title Drawing and Filling
    
    \previouspage Paint Devices and Backends
    \contentspage The Paint System
    \nextpage Coordinate System

    \section1 Drawing

    QPainter provides highly optimized functions to do most of the
    drawing GUI programs require. It can draw everything from simple
    graphical primitives (represented by the QPoint, QLine, QRect,
    QRegion and QPolygon classes) to complex shapes like vector
    paths. In Qt vector paths are represented by the QPainterPath
    class. QPainterPath provides a container for painting operations,
    enabling graphical shapes to be constructed and reused.

    \table 100%
    \row
    \li \image paintsystem-painterpath.png
    \li \b QPainterPath

    A painter path is an object composed of lines and curves. For
    example, a rectangle is composed by lines and an ellipse is
    composed by curves.

    The main advantage of painter paths over normal drawing operations
    is that complex shapes only need to be created once; then they can
    be drawn many times using only calls to the QPainter::drawPath()
    function.

    A QPainterPath object can be used for filling, outlining, and
    clipping. To generate fillable outlines for a given painter path,
    use the QPainterPathStroker class.

    \endtable

    Lines and outlines are drawn using the QPen class. A pen is
    defined by its style (i.e. its line-type), width, brush, how the
    endpoints are drawn (cap-style) and how joins between two
    connected lines are drawn (join-style). The pen's brush is a
    QBrush object used to fill strokes generated with the pen,
    i.e. the QBrush class defines the fill pattern.

    QPainter can also draw aligned text and pixmaps.

    When drawing text, the font is specified using the QFont class. Qt
    will use the font with the specified attributes, or if no matching
    font exists, Qt will use the closest matching installed font. The
    attributes of the font that is actually used can be retrieved
    using the QFontInfo class. In addition, the QFontMetrics class
    provides the font measurements, and the QFontDatabase class
    provides information about the fonts available in the underlying
    window system.

    Normally, QPainter draws in a "natural" coordinate system, but it
    is able to perform view and world transformations using the
    QTransform class. For more information, see \l {Coordinate
    System}, which also describes the rendering process, i.e. the
    relation between the logical representation and the rendered
    pixels, and the benefits of anti-aliased painting.

    \table 100%
    \row \li
    \b {Anti-Aliased Painting}

    When drawing, the pixel rendering is controlled by the
    QPainter::Antialiasing render hint. The QPainter::RenderHint enum
    is used to specify flags to QPainter that may or may not be
    respected by any given engine.

    The QPainter::Antialiasing value indicates that the engine should
    antialias edges of primitives if possible, i.e. smoothing the
    edges by using different color intensities.

    \li \image paintsystem-antialiasing.png

    \endtable

    \section1 Filling

    Shapes are filled using the QBrush class. A brush is defined
    by its color and its style (i.e. its fill pattern).

    Any color in Qt is represented by the QColor class which supports
    the RGB, HSV and CMYK color models. QColor also support
    alpha-blended outlining and filling (specifying the transparency
    effect), and the class is platform and device independent (the
    colors are mapped to hardware using the QColormap class). For more
    information, see the QColor class documentation.

    The available fill patterns are described by the Qt::BrushStyle
    enum. These include basic patterns spanning from uniform color to
    very sparse pattern, various line combinations, gradient fills and
    textures. Qt provides the QGradient class to define custom
    gradient fills, while texture patterns are specified using the
    QPixmap class.

    \table 100%
    \row
    \li \image paintsystem-fancygradient.png
    \li \b QGradient

    The QGradient class is used in combination with QBrush to specify
    gradient fills.

    \image paintsystem-gradients.png

    Qt currently supports three types of gradient fills: Linear
    gradients interpolate colors between start and end points, radial
    gradients interpolate colors between a focal point and end points
    on a circle surrounding it, and conical gradients interpolate
    colors around a center point.

    \endtable
*/

/*!
    \page paintsystem-images.html
    \title Reading and Writing Image Files

    \previouspage Coordinate System
    \contentspage The Paint System

    The most common way to read images is through QImage and QPixmap's
    constructors, or by calling the QImage::load() and QPixmap::load()
    functions. In addition, Qt provides the QImageReader class which
    gives more control over the process. Depending on the underlying
    support in the image format, the functions provided by the class
    can save memory and speed up loading of images.

    Likewise, Qt provides the QImageWriter class which supports
    setting format specific options, such as the gamma level,
    compression level and quality, prior to storing the image. If you
    do not need such options, you can use QImage::save() or
    QPixmap::save() instead.

    \table 100%
    \row
    \li \b QMovie

    QMovie is a convenience class for displaying animations, using the
    QImageReader class internally.  Once created, the QMovie class
    provides various functions for both running and controlling the
    given animation.

    \li \image paintsystem-movie.png
    \endtable

    The QImageReader and QImageWriter classes rely on the
    QImageIOHandler class which is the common image I/O interface for
    all image formats in Qt. QImageIOHandler objects are used
    internally by QImageReader and QImageWriter to add support for
    different image formats to Qt.

    A list of the supported file formats are available through the
    QImageReader::supportedImageFormats() and
    QImageWriter::supportedImageFormats() functions. Qt supports
    several file formats by default, and in addition new formats can
    be added as plugins. The currently supported formats are listed in
    the QImageReader and QImageWriter class documentation.

    Qt's plugin mechanism can also be used to write a custom image
    format handler. This is done by deriving from the QImageIOHandler
    class, and creating a QImageIOPlugin object which is a factory for
    creating QImageIOHandler objects. When the plugin is installed,
    QImageReader and QImageWriter will automatically load the plugin
    and start using it.
*/