summaryrefslogtreecommitdiffstats
path: root/src/gui/math3d/qmatrix4x4.cpp
blob: 2297342be7c7006131b703a04fb0f255f25d3c06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qmatrix4x4.h"
#include <QtCore/qmath.h>
#include <QtCore/qvariant.h>
#include <QtGui/qtransform.h>

#include <cmath>

QT_BEGIN_NAMESPACE

#ifndef QT_NO_MATRIX4X4

/*!
    \class QMatrix4x4
    \brief The QMatrix4x4 class represents a 4x4 transformation matrix in 3D space.
    \since 4.6
    \ingroup painting-3D
    \inmodule QtGui

    The QMatrix4x4 class in general is treated as a row-major matrix, in that the
    constructors and operator() functions take data in row-major format, as is
    familiar in C-style usage.

    Internally the data is stored as column-major format, so as to be optimal for
    passing to OpenGL functions, which expect column-major data.

    When using these functions be aware that they return data in \b{column-major}
    format:
    \list
    \li data()
    \li constData()
    \endlist

    \sa QVector3D, QGenericMatrix
*/

static const float inv_dist_to_plane = 1.0f / 1024.0f;

/*!
    \fn QMatrix4x4::QMatrix4x4()

    Constructs an identity matrix.
*/

/*!
    \fn QMatrix4x4::QMatrix4x4(Qt::Initialization)
    \since 5.5
    \internal

    Constructs a matrix without initializing the contents.
*/

/*!
    Constructs a matrix from the given 16 floating-point \a values.
    The contents of the array \a values is assumed to be in
    row-major order.

    If the matrix has a special type (identity, translate, scale, etc),
    the programmer should follow this constructor with a call to
    optimize() if they wish QMatrix4x4 to optimize further
    calls to translate(), scale(), etc.

    \sa copyDataTo(), optimize()
*/
QMatrix4x4::QMatrix4x4(const float *values)
{
    for (int row = 0; row < 4; ++row)
        for (int col = 0; col < 4; ++col)
            m[col][row] = values[row * 4 + col];
}

/*!
    \fn QMatrix4x4::QMatrix4x4(float m11, float m12, float m13, float m14, float m21, float m22, float m23, float m24, float m31, float m32, float m33, float m34, float m41, float m42, float m43, float m44)

    Constructs a matrix from the 16 elements \a m11, \a m12, \a m13, \a m14,
    \a m21, \a m22, \a m23, \a m24, \a m31, \a m32, \a m33, \a m34,
    \a m41, \a m42, \a m43, and \a m44.  The elements are specified in
    row-major order.

    If the matrix has a special type (identity, translate, scale, etc),
    the programmer should follow this constructor with a call to
    optimize() if they wish QMatrix4x4 to optimize further
    calls to translate(), scale(), etc.

    \sa optimize()
*/

/*!
    \fn template <int N, int M> QMatrix4x4::QMatrix4x4(const QGenericMatrix<N, M, float>& matrix)

    Constructs a 4x4 matrix from the left-most 4 columns and top-most
    4 rows of \a matrix.  If \a matrix has less than 4 columns or rows,
    the remaining elements are filled with elements from the identity
    matrix.

    \sa toGenericMatrix()
*/

/*!
    \fn QGenericMatrix<N, M, float> QMatrix4x4::toGenericMatrix() const

    Constructs a NxM generic matrix from the left-most N columns and
    top-most M rows of this 4x4 matrix.  If N or M is greater than 4,
    then the remaining elements are filled with elements from the
    identity matrix.
*/

/*!
    \fn template <int N, int M> QMatrix4x4 qGenericMatrixToMatrix4x4(const QGenericMatrix<N, M, float>& matrix)
    \relates QMatrix4x4
    \obsolete

    Returns a 4x4 matrix constructed from the left-most 4 columns and
    top-most 4 rows of \a matrix.  If \a matrix has less than 4 columns
    or rows, the remaining elements are filled with elements from the
    identity matrix.
*/

/*!
    \fn QGenericMatrix<N, M, float> qGenericMatrixFromMatrix4x4(const QMatrix4x4& matrix)
    \relates QMatrix4x4
    \obsolete

    Returns a NxM generic matrix constructed from the left-most N columns
    and top-most M rows of \a matrix.  If N or M is greater than 4,
    then the remaining elements are filled with elements from the
    identity matrix.

    \sa QMatrix4x4::toGenericMatrix()
*/

/*!
    \internal
*/
QMatrix4x4::QMatrix4x4(const float *values, int cols, int rows)
{
    for (int col = 0; col < 4; ++col) {
        for (int row = 0; row < 4; ++row) {
            if (col < cols && row < rows)
                m[col][row] = values[col * rows + row];
            else if (col == row)
                m[col][row] = 1.0f;
            else
                m[col][row] = 0.0f;
        }
    }
}

/*!
    Constructs a 4x4 matrix from the conventional Qt 2D
    transformation matrix \a transform.

    If \a transform has a special type (identity, translate, scale, etc),
    the programmer should follow this constructor with a call to
    optimize() if they wish QMatrix4x4 to optimize further
    calls to translate(), scale(), etc.

    \sa toTransform(), optimize()
*/
QMatrix4x4::QMatrix4x4(const QTransform& transform)
{
    m[0][0] = transform.m11();
    m[0][1] = transform.m12();
    m[0][2] = 0.0f;
    m[0][3] = transform.m13();
    m[1][0] = transform.m21();
    m[1][1] = transform.m22();
    m[1][2] = 0.0f;
    m[1][3] = transform.m23();
    m[2][0] = 0.0f;
    m[2][1] = 0.0f;
    m[2][2] = 1.0f;
    m[2][3] = 0.0f;
    m[3][0] = transform.dx();
    m[3][1] = transform.dy();
    m[3][2] = 0.0f;
    m[3][3] = transform.m33();
}

/*!
    \fn const float& QMatrix4x4::operator()(int row, int column) const

    Returns a constant reference to the element at position
    (\a row, \a column) in this matrix.

    \sa column(), row()
*/

/*!
    \fn float& QMatrix4x4::operator()(int row, int column)

    Returns a reference to the element at position (\a row, \a column)
    in this matrix so that the element can be assigned to.

    \sa optimize(), setColumn(), setRow()
*/

/*!
    \fn QVector4D QMatrix4x4::column(int index) const

    Returns the elements of column \a index as a 4D vector.

    \sa setColumn(), row()
*/

/*!
    \fn void QMatrix4x4::setColumn(int index, const QVector4D& value)

    Sets the elements of column \a index to the components of \a value.

    \sa column(), setRow()
*/

/*!
    \fn QVector4D QMatrix4x4::row(int index) const

    Returns the elements of row \a index as a 4D vector.

    \sa setRow(), column()
*/

/*!
    \fn void QMatrix4x4::setRow(int index, const QVector4D& value)

    Sets the elements of row \a index to the components of \a value.

    \sa row(), setColumn()
*/

/*!
    \fn bool QMatrix4x4::isAffine() const
    \since 5.5

    Returns \c true if this matrix is affine matrix; false otherwise.

    An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
    e.g. no projective coefficients.

    \sa isIdentity()
*/

/*!
    \fn bool QMatrix4x4::isIdentity() const

    Returns \c true if this matrix is the identity; false otherwise.

    \sa setToIdentity()
*/

/*!
    \fn void QMatrix4x4::setToIdentity()

    Sets this matrix to the identity.

    \sa isIdentity()
*/

/*!
    \fn void QMatrix4x4::fill(float value)

    Fills all elements of this matrx with \a value.
*/

static inline double matrixDet2(const double m[4][4], int col0, int col1, int row0, int row1)
{
    return m[col0][row0] * m[col1][row1] - m[col0][row1] * m[col1][row0];
}


// The 4x4 matrix inverse algorithm is based on that described at:
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q24
// Some optimization has been done to avoid making copies of 3x3
// sub-matrices and to unroll the loops.

// Calculate the determinant of a 3x3 sub-matrix.
//     | A B C |
// M = | D E F |   det(M) = A * (EI - HF) - B * (DI - GF) + C * (DH - GE)
//     | G H I |
static inline double matrixDet3
    (const double m[4][4], int col0, int col1, int col2,
     int row0, int row1, int row2)
{
    return m[col0][row0] * matrixDet2(m, col1, col2, row1, row2)
            - m[col1][row0] * matrixDet2(m, col0, col2, row1, row2)
            + m[col2][row0] * matrixDet2(m, col0, col1, row1, row2);
}

// Calculate the determinant of a 4x4 matrix.
static inline double matrixDet4(const double m[4][4])
{
    double det;
    det  = m[0][0] * matrixDet3(m, 1, 2, 3, 1, 2, 3);
    det -= m[1][0] * matrixDet3(m, 0, 2, 3, 1, 2, 3);
    det += m[2][0] * matrixDet3(m, 0, 1, 3, 1, 2, 3);
    det -= m[3][0] * matrixDet3(m, 0, 1, 2, 1, 2, 3);
    return det;
}

static inline void copyToDoubles(const float m[4][4], double mm[4][4])
{
    for (int i = 0; i < 4; ++i)
        for (int j = 0; j < 4; ++j)
            mm[i][j] = double(m[i][j]);
}

/*!
    Returns the determinant of this matrix.
*/
double QMatrix4x4::determinant() const
{
    if (isIdentity())
        return 1.0;

    double mm[4][4];
    copyToDoubles(m, mm);
    return matrixDet4(mm);
}

/*!
    Returns the inverse of this matrix.  Returns the identity if
    this matrix cannot be inverted; i.e. determinant() is zero.
    If \a invertible is not null, then true will be written to
    that location if the matrix can be inverted; false otherwise.

    If the matrix is recognized as the identity or an orthonormal
    matrix, then this function will quickly invert the matrix
    using optimized routines.

    \sa determinant(), normalMatrix()
*/
QMatrix4x4 QMatrix4x4::inverted(bool *invertible) const
{
    // Handle some of the easy cases first.
    if (isIdentity()) {
        if (invertible)
            *invertible = true;
        return QMatrix4x4();
    }

    QMatrix4x4 inv(1); // The "1" says to not load the identity.

    double mm[4][4];
    copyToDoubles(m, mm);

    double det = matrixDet4(mm);
    if (det == 0.0f) {
        if (invertible)
            *invertible = false;
        return QMatrix4x4();
    }
    det = 1.0f / det;

    inv.m[0][0] =  matrixDet3(mm, 1, 2, 3, 1, 2, 3) * det;
    inv.m[0][1] = -matrixDet3(mm, 0, 2, 3, 1, 2, 3) * det;
    inv.m[0][2] =  matrixDet3(mm, 0, 1, 3, 1, 2, 3) * det;
    inv.m[0][3] = -matrixDet3(mm, 0, 1, 2, 1, 2, 3) * det;
    inv.m[1][0] = -matrixDet3(mm, 1, 2, 3, 0, 2, 3) * det;
    inv.m[1][1] =  matrixDet3(mm, 0, 2, 3, 0, 2, 3) * det;
    inv.m[1][2] = -matrixDet3(mm, 0, 1, 3, 0, 2, 3) * det;
    inv.m[1][3] =  matrixDet3(mm, 0, 1, 2, 0, 2, 3) * det;
    inv.m[2][0] =  matrixDet3(mm, 1, 2, 3, 0, 1, 3) * det;
    inv.m[2][1] = -matrixDet3(mm, 0, 2, 3, 0, 1, 3) * det;
    inv.m[2][2] =  matrixDet3(mm, 0, 1, 3, 0, 1, 3) * det;
    inv.m[2][3] = -matrixDet3(mm, 0, 1, 2, 0, 1, 3) * det;
    inv.m[3][0] = -matrixDet3(mm, 1, 2, 3, 0, 1, 2) * det;
    inv.m[3][1] =  matrixDet3(mm, 0, 2, 3, 0, 1, 2) * det;
    inv.m[3][2] = -matrixDet3(mm, 0, 1, 3, 0, 1, 2) * det;
    inv.m[3][3] =  matrixDet3(mm, 0, 1, 2, 0, 1, 2) * det;

    if (invertible)
        *invertible = true;
    return inv;
}

/*!
    Returns the normal matrix corresponding to this 4x4 transformation.
    The normal matrix is the transpose of the inverse of the top-left
    3x3 part of this 4x4 matrix.  If the 3x3 sub-matrix is not invertible,
    this function returns the identity.

    \sa inverted()
*/
QMatrix3x3 QMatrix4x4::normalMatrix() const
{
    QMatrix3x3 inv;

    double mm[4][4];
    copyToDoubles(m, mm);
    double det = matrixDet3(mm, 0, 1, 2, 0, 1, 2);
    if (det == 0.0f)
        return inv;
    det = 1.0f / det;

    float *invm = inv.data();

    // Invert and transpose in a single step.
    invm[0 + 0 * 3] =  (mm[1][1] * mm[2][2] - mm[2][1] * mm[1][2]) * det;
    invm[1 + 0 * 3] = -(mm[1][0] * mm[2][2] - mm[1][2] * mm[2][0]) * det;
    invm[2 + 0 * 3] =  (mm[1][0] * mm[2][1] - mm[1][1] * mm[2][0]) * det;
    invm[0 + 1 * 3] = -(mm[0][1] * mm[2][2] - mm[2][1] * mm[0][2]) * det;
    invm[1 + 1 * 3] =  (mm[0][0] * mm[2][2] - mm[0][2] * mm[2][0]) * det;
    invm[2 + 1 * 3] = -(mm[0][0] * mm[2][1] - mm[0][1] * mm[2][0]) * det;
    invm[0 + 2 * 3] =  (mm[0][1] * mm[1][2] - mm[0][2] * mm[1][1]) * det;
    invm[1 + 2 * 3] = -(mm[0][0] * mm[1][2] - mm[0][2] * mm[1][0]) * det;
    invm[2 + 2 * 3] =  (mm[0][0] * mm[1][1] - mm[1][0] * mm[0][1]) * det;

    return inv;
}

/*!
    Returns this matrix, transposed about its diagonal.
*/
QMatrix4x4 QMatrix4x4::transposed() const
{
    QMatrix4x4 result(1); // The "1" says to not load the identity.
    for (int row = 0; row < 4; ++row) {
        for (int col = 0; col < 4; ++col) {
            result.m[col][row] = m[row][col];
        }
    }
    return result;
}

/*!
    \fn QMatrix4x4& QMatrix4x4::operator+=(const QMatrix4x4& other)

    Adds the contents of \a other to this matrix.
*/

/*!
    \fn QMatrix4x4& QMatrix4x4::operator-=(const QMatrix4x4& other)

    Subtracts the contents of \a other from this matrix.
*/

/*!
    \fn QMatrix4x4& QMatrix4x4::operator*=(const QMatrix4x4& other)

    Multiplies the contents of \a other by this matrix.
*/

/*!
    \fn QMatrix4x4& QMatrix4x4::operator*=(float factor)
    \overload

    Multiplies all elements of this matrix by \a factor.
*/

/*!
    \overload

    Divides all elements of this matrix by \a divisor.
*/
QMatrix4x4& QMatrix4x4::operator/=(float divisor)
{
    m[0][0] /= divisor;
    m[0][1] /= divisor;
    m[0][2] /= divisor;
    m[0][3] /= divisor;
    m[1][0] /= divisor;
    m[1][1] /= divisor;
    m[1][2] /= divisor;
    m[1][3] /= divisor;
    m[2][0] /= divisor;
    m[2][1] /= divisor;
    m[2][2] /= divisor;
    m[2][3] /= divisor;
    m[3][0] /= divisor;
    m[3][1] /= divisor;
    m[3][2] /= divisor;
    m[3][3] /= divisor;
    return *this;
}

/*!
    \fn bool QMatrix4x4::operator==(const QMatrix4x4& other) const

    Returns \c true if this matrix is identical to \a other; false otherwise.
    This operator uses an exact floating-point comparison.
*/

/*!
    \fn bool QMatrix4x4::operator!=(const QMatrix4x4& other) const

    Returns \c true if this matrix is not identical to \a other; false otherwise.
    This operator uses an exact floating-point comparison.
*/

/*!
    \fn QMatrix4x4 operator+(const QMatrix4x4& m1, const QMatrix4x4& m2)
    \relates QMatrix4x4

    Returns the sum of \a m1 and \a m2.
*/

/*!
    \fn QMatrix4x4 operator-(const QMatrix4x4& m1, const QMatrix4x4& m2)
    \relates QMatrix4x4

    Returns the difference of \a m1 and \a m2.
*/

/*!
    \fn QMatrix4x4 operator*(const QMatrix4x4& m1, const QMatrix4x4& m2)
    \relates QMatrix4x4

    Returns the product of \a m1 and \a m2.
*/

#ifndef QT_NO_VECTOR3D

/*!
    \fn QVector3D operator*(const QVector3D& vector, const QMatrix4x4& matrix)
    \relates QMatrix4x4

    Returns the result of transforming \a vector according to \a matrix,
    with the matrix applied post-vector.
*/

/*!
    \fn QVector3D operator*(const QMatrix4x4& matrix, const QVector3D& vector)
    \relates QMatrix4x4

    Returns the result of transforming \a vector according to \a matrix,
    with the matrix applied pre-vector.
*/

#endif

#ifndef QT_NO_VECTOR4D

/*!
    \fn QVector4D operator*(const QVector4D& vector, const QMatrix4x4& matrix)
    \relates QMatrix4x4

    Returns the result of transforming \a vector according to \a matrix,
    with the matrix applied post-vector.
*/

/*!
    \fn QVector4D operator*(const QMatrix4x4& matrix, const QVector4D& vector)
    \relates QMatrix4x4

    Returns the result of transforming \a vector according to \a matrix,
    with the matrix applied pre-vector.
*/

#endif

/*!
    \fn QPoint operator*(const QPoint& point, const QMatrix4x4& matrix)
    \relates QMatrix4x4

    Returns the result of transforming \a point according to \a matrix,
    with the matrix applied post-point.
*/

/*!
    \fn QPointF operator*(const QPointF& point, const QMatrix4x4& matrix)
    \relates QMatrix4x4

    Returns the result of transforming \a point according to \a matrix,
    with the matrix applied post-point.
*/

/*!
    \fn QPoint operator*(const QMatrix4x4& matrix, const QPoint& point)
    \relates QMatrix4x4

    Returns the result of transforming \a point according to \a matrix,
    with the matrix applied pre-point.
*/

/*!
    \fn QPointF operator*(const QMatrix4x4& matrix, const QPointF& point)
    \relates QMatrix4x4

    Returns the result of transforming \a point according to \a matrix,
    with the matrix applied pre-point.
*/

/*!
    \fn QMatrix4x4 operator-(const QMatrix4x4& matrix)
    \overload
    \relates QMatrix4x4

    Returns the negation of \a matrix.
*/

/*!
    \fn QMatrix4x4 operator*(float factor, const QMatrix4x4& matrix)
    \relates QMatrix4x4

    Returns the result of multiplying all elements of \a matrix by \a factor.
*/

/*!
    \fn QMatrix4x4 operator*(const QMatrix4x4& matrix, float factor)
    \relates QMatrix4x4

    Returns the result of multiplying all elements of \a matrix by \a factor.
*/

/*!
    \relates QMatrix4x4

    Returns the result of dividing all elements of \a matrix by \a divisor.
*/
QMatrix4x4 operator/(const QMatrix4x4& matrix, float divisor)
{
    QMatrix4x4 m(1); // The "1" says to not load the identity.
    m.m[0][0] = matrix.m[0][0] / divisor;
    m.m[0][1] = matrix.m[0][1] / divisor;
    m.m[0][2] = matrix.m[0][2] / divisor;
    m.m[0][3] = matrix.m[0][3] / divisor;
    m.m[1][0] = matrix.m[1][0] / divisor;
    m.m[1][1] = matrix.m[1][1] / divisor;
    m.m[1][2] = matrix.m[1][2] / divisor;
    m.m[1][3] = matrix.m[1][3] / divisor;
    m.m[2][0] = matrix.m[2][0] / divisor;
    m.m[2][1] = matrix.m[2][1] / divisor;
    m.m[2][2] = matrix.m[2][2] / divisor;
    m.m[2][3] = matrix.m[2][3] / divisor;
    m.m[3][0] = matrix.m[3][0] / divisor;
    m.m[3][1] = matrix.m[3][1] / divisor;
    m.m[3][2] = matrix.m[3][2] / divisor;
    m.m[3][3] = matrix.m[3][3] / divisor;
    return m;
}

/*!
    \fn bool qFuzzyCompare(const QMatrix4x4& m1, const QMatrix4x4& m2)
    \relates QMatrix4x4

    Returns \c true if \a m1 and \a m2 are equal, allowing for a small
    fuzziness factor for floating-point comparisons; false otherwise.
*/

#ifndef QT_NO_VECTOR3D

/*!
    Multiplies this matrix by another that scales coordinates by
    the components of \a vector.

    \sa translate(), rotate()
*/
void QMatrix4x4::scale(const QVector3D& vector)
{
    const float vx = vector.x();
    const float vy = vector.y();
    const float vz = vector.z();
    m[0][0] *= vx;
    m[0][1] *= vx;
    m[0][2] *= vx;
    m[0][3] *= vx;
    m[1][0] *= vy;
    m[1][1] *= vy;
    m[1][2] *= vy;
    m[1][3] *= vy;
    m[2][0] *= vz;
    m[2][1] *= vz;
    m[2][2] *= vz;
    m[2][3] *= vz;
}

#endif

/*!
    \overload

    Multiplies this matrix by another that scales coordinates by the
    components \a x, and \a y.

    \sa translate(), rotate()
*/
void QMatrix4x4::scale(float x, float y)
{
    m[0][0] *= x;
    m[0][1] *= x;
    m[0][2] *= x;
    m[0][3] *= x;
    m[1][0] *= y;
    m[1][1] *= y;
    m[1][2] *= y;
    m[1][3] *= y;
}

/*!
    \overload

    Multiplies this matrix by another that scales coordinates by the
    components \a x, \a y, and \a z.

    \sa translate(), rotate()
*/
void QMatrix4x4::scale(float x, float y, float z)
{
    m[0][0] *= x;
    m[0][1] *= x;
    m[0][2] *= x;
    m[0][3] *= x;
    m[1][0] *= y;
    m[1][1] *= y;
    m[1][2] *= y;
    m[1][3] *= y;
    m[2][0] *= z;
    m[2][1] *= z;
    m[2][2] *= z;
    m[2][3] *= z;
}

/*!
    \overload

    Multiplies this matrix by another that scales coordinates by the
    given \a factor.

    \sa translate(), rotate()
*/
void QMatrix4x4::scale(float factor)
{
    m[0][0] *= factor;
    m[0][1] *= factor;
    m[0][2] *= factor;
    m[0][3] *= factor;
    m[1][0] *= factor;
    m[1][1] *= factor;
    m[1][2] *= factor;
    m[1][3] *= factor;
    m[2][0] *= factor;
    m[2][1] *= factor;
    m[2][2] *= factor;
    m[2][3] *= factor;
}

#ifndef QT_NO_VECTOR3D
/*!
    Multiplies this matrix by another that translates coordinates by
    the components of \a vector.

    \sa scale(), rotate()
*/

void QMatrix4x4::translate(const QVector3D& vector)
{
    const float vx = vector.x();
    const float vy = vector.y();
    const float vz = vector.z();
    m[3][0] += m[0][0] * vx + m[1][0] * vy + m[2][0] * vz;
    m[3][1] += m[0][1] * vx + m[1][1] * vy + m[2][1] * vz;
    m[3][2] += m[0][2] * vx + m[1][2] * vy + m[2][2] * vz;
    m[3][3] += m[0][3] * vx + m[1][3] * vy + m[2][3] * vz;
}
#endif

/*!
    \overload

    Multiplies this matrix by another that translates coordinates
    by the components \a x, and \a y.

    \sa scale(), rotate()
*/
void QMatrix4x4::translate(float x, float y)
{
    m[3][0] += m[0][0] * x + m[1][0] * y;
    m[3][1] += m[0][1] * x + m[1][1] * y;
    m[3][2] += m[0][2] * x + m[1][2] * y;
    m[3][3] += m[0][3] * x + m[1][3] * y;
}

/*!
    \overload

    Multiplies this matrix by another that translates coordinates
    by the components \a x, \a y, and \a z.

    \sa scale(), rotate()
*/
void QMatrix4x4::translate(float x, float y, float z)
{
    m[3][0] += m[0][0] * x + m[1][0] * y + m[2][0] * z;
    m[3][1] += m[0][1] * x + m[1][1] * y + m[2][1] * z;
    m[3][2] += m[0][2] * x + m[1][2] * y + m[2][2] * z;
    m[3][3] += m[0][3] * x + m[1][3] * y + m[2][3] * z;
}

#ifndef QT_NO_VECTOR3D
/*!
    Multiples this matrix by another that rotates coordinates through
    \a angle degrees about \a vector.

    \sa scale(), translate()
*/

void QMatrix4x4::rotate(float angle, const QVector3D& vector)
{
    rotate(angle, vector.x(), vector.y(), vector.z());
}

#endif

/*!
    \overload

    Multiplies this matrix by another that rotates coordinates through
    \a angle degrees about the vector (\a x, \a y, \a z).

    \sa scale(), translate()
*/
void QMatrix4x4::rotate(float angle, float x, float y, float z)
{
    if (angle == 0.0f)
        return;
    float c, s;
    if (angle == 90.0f || angle == -270.0f) {
        s = 1.0f;
        c = 0.0f;
    } else if (angle == -90.0f || angle == 270.0f) {
        s = -1.0f;
        c = 0.0f;
    } else if (angle == 180.0f || angle == -180.0f) {
        s = 0.0f;
        c = -1.0f;
    } else {
        float a = qDegreesToRadians(angle);
        c = std::cos(a);
        s = std::sin(a);
    }
    if (x == 0.0f) {
        if (y == 0.0f) {
            if (z != 0.0f) {
                // Rotate around the Z axis.
                if (z < 0)
                    s = -s;
                float tmp;
                m[0][0] = (tmp = m[0][0]) * c + m[1][0] * s;
                m[1][0] = m[1][0] * c - tmp * s;
                m[0][1] = (tmp = m[0][1]) * c + m[1][1] * s;
                m[1][1] = m[1][1] * c - tmp * s;
                m[0][2] = (tmp = m[0][2]) * c + m[1][2] * s;
                m[1][2] = m[1][2] * c - tmp * s;
                m[0][3] = (tmp = m[0][3]) * c + m[1][3] * s;
                m[1][3] = m[1][3] * c - tmp * s;

                return;
            }
        } else if (z == 0.0f) {
            // Rotate around the Y axis.
            if (y < 0)
                s = -s;
            float tmp;
            m[2][0] = (tmp = m[2][0]) * c + m[0][0] * s;
            m[0][0] = m[0][0] * c - tmp * s;
            m[2][1] = (tmp = m[2][1]) * c + m[0][1] * s;
            m[0][1] = m[0][1] * c - tmp * s;
            m[2][2] = (tmp = m[2][2]) * c + m[0][2] * s;
            m[0][2] = m[0][2] * c - tmp * s;
            m[2][3] = (tmp = m[2][3]) * c + m[0][3] * s;
            m[0][3] = m[0][3] * c - tmp * s;

            return;
        }
    } else if (y == 0.0f && z == 0.0f) {
        // Rotate around the X axis.
        if (x < 0)
            s = -s;
        float tmp;
        m[1][0] = (tmp = m[1][0]) * c + m[2][0] * s;
        m[2][0] = m[2][0] * c - tmp * s;
        m[1][1] = (tmp = m[1][1]) * c + m[2][1] * s;
        m[2][1] = m[2][1] * c - tmp * s;
        m[1][2] = (tmp = m[1][2]) * c + m[2][2] * s;
        m[2][2] = m[2][2] * c - tmp * s;
        m[1][3] = (tmp = m[1][3]) * c + m[2][3] * s;
        m[2][3] = m[2][3] * c - tmp * s;

        return;
    }

    double len = double(x) * double(x) +
                 double(y) * double(y) +
                 double(z) * double(z);
    if (!qFuzzyCompare(len, 1.0) && !qFuzzyIsNull(len)) {
        len = std::sqrt(len);
        x = float(double(x) / len);
        y = float(double(y) / len);
        z = float(double(z) / len);
    }
    float ic = 1.0f - c;
    QMatrix4x4 rot(1); // The "1" says to not load the identity.
    rot.m[0][0] = x * x * ic + c;
    rot.m[1][0] = x * y * ic - z * s;
    rot.m[2][0] = x * z * ic + y * s;
    rot.m[3][0] = 0.0f;
    rot.m[0][1] = y * x * ic + z * s;
    rot.m[1][1] = y * y * ic + c;
    rot.m[2][1] = y * z * ic - x * s;
    rot.m[3][1] = 0.0f;
    rot.m[0][2] = x * z * ic - y * s;
    rot.m[1][2] = y * z * ic + x * s;
    rot.m[2][2] = z * z * ic + c;
    rot.m[3][2] = 0.0f;
    rot.m[0][3] = 0.0f;
    rot.m[1][3] = 0.0f;
    rot.m[2][3] = 0.0f;
    rot.m[3][3] = 1.0f;
    *this *= rot;
}

/*!
    \internal
*/
void QMatrix4x4::projectedRotate(float angle, float x, float y, float z)
{
    // Used by QGraphicsRotation::applyTo() to perform a rotation
    // and projection back to 2D in a single step.
    if (angle == 0.0f)
        return;
    float c, s;
    if (angle == 90.0f || angle == -270.0f) {
        s = 1.0f;
        c = 0.0f;
    } else if (angle == -90.0f || angle == 270.0f) {
        s = -1.0f;
        c = 0.0f;
    } else if (angle == 180.0f || angle == -180.0f) {
        s = 0.0f;
        c = -1.0f;
    } else {
        const float a = qDegreesToRadians(angle);
        c = std::cos(a);
        s = std::sin(a);
    }
    if (x == 0.0f) {
        if (y == 0.0f) {
            if (z != 0.0f) {
                // Rotate around the Z axis.
                if (z < 0)
                    s = -s;
                float tmp;
                m[0][0] = (tmp = m[0][0]) * c + m[1][0] * s;
                m[1][0] = m[1][0] * c - tmp * s;
                m[0][1] = (tmp = m[0][1]) * c + m[1][1] * s;
                m[1][1] = m[1][1] * c - tmp * s;
                m[0][2] = (tmp = m[0][2]) * c + m[1][2] * s;
                m[1][2] = m[1][2] * c - tmp * s;
                m[0][3] = (tmp = m[0][3]) * c + m[1][3] * s;
                m[1][3] = m[1][3] * c - tmp * s;

                return;
            }
        } else if (z == 0.0f) {
            // Rotate around the Y axis.
            if (y < 0)
                s = -s;
            m[0][0] = m[0][0] * c + m[3][0] * s * inv_dist_to_plane;
            m[0][1] = m[0][1] * c + m[3][1] * s * inv_dist_to_plane;
            m[0][2] = m[0][2] * c + m[3][2] * s * inv_dist_to_plane;
            m[0][3] = m[0][3] * c + m[3][3] * s * inv_dist_to_plane;
            return;
        }
    } else if (y == 0.0f && z == 0.0f) {
        // Rotate around the X axis.
        if (x < 0)
            s = -s;
        m[1][0] = m[1][0] * c - m[3][0] * s * inv_dist_to_plane;
        m[1][1] = m[1][1] * c - m[3][1] * s * inv_dist_to_plane;
        m[1][2] = m[1][2] * c - m[3][2] * s * inv_dist_to_plane;
        m[1][3] = m[1][3] * c - m[3][3] * s * inv_dist_to_plane;
        return;
    }
    double len = double(x) * double(x) +
                 double(y) * double(y) +
                 double(z) * double(z);
    if (!qFuzzyCompare(len, 1.0) && !qFuzzyIsNull(len)) {
        len = std::sqrt(len);
        x = float(double(x) / len);
        y = float(double(y) / len);
        z = float(double(z) / len);
    }
    const float ic = 1.0f - c;
    QMatrix4x4 rot(1); // The "1" says to not load the identity.
    rot.m[0][0] = x * x * ic + c;
    rot.m[1][0] = x * y * ic - z * s;
    rot.m[2][0] = 0.0f;
    rot.m[3][0] = 0.0f;
    rot.m[0][1] = y * x * ic + z * s;
    rot.m[1][1] = y * y * ic + c;
    rot.m[2][1] = 0.0f;
    rot.m[3][1] = 0.0f;
    rot.m[0][2] = 0.0f;
    rot.m[1][2] = 0.0f;
    rot.m[2][2] = 1.0f;
    rot.m[3][2] = 0.0f;
    rot.m[0][3] = (x * z * ic - y * s) * -inv_dist_to_plane;
    rot.m[1][3] = (y * z * ic + x * s) * -inv_dist_to_plane;
    rot.m[2][3] = 0.0f;
    rot.m[3][3] = 1.0f;
    *this *= rot;
}

#ifndef QT_NO_QUATERNION

/*!
    Multiples this matrix by another that rotates coordinates according
    to a specified \a quaternion.  The \a quaternion is assumed to have
    been normalized.

    \sa scale(), translate(), QQuaternion
*/
void QMatrix4x4::rotate(const QQuaternion& quaternion)
{
    // Algorithm from:
    // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54

    QMatrix4x4 m(Qt::Uninitialized);

    const float f2x = quaternion.x() + quaternion.x();
    const float f2y = quaternion.y() + quaternion.y();
    const float f2z = quaternion.z() + quaternion.z();
    const float f2xw = f2x * quaternion.scalar();
    const float f2yw = f2y * quaternion.scalar();
    const float f2zw = f2z * quaternion.scalar();
    const float f2xx = f2x * quaternion.x();
    const float f2xy = f2x * quaternion.y();
    const float f2xz = f2x * quaternion.z();
    const float f2yy = f2y * quaternion.y();
    const float f2yz = f2y * quaternion.z();
    const float f2zz = f2z * quaternion.z();

    m.m[0][0] = 1.0f - (f2yy + f2zz);
    m.m[1][0] =         f2xy - f2zw;
    m.m[2][0] =         f2xz + f2yw;
    m.m[3][0] = 0.0f;
    m.m[0][1] =         f2xy + f2zw;
    m.m[1][1] = 1.0f - (f2xx + f2zz);
    m.m[2][1] =         f2yz - f2xw;
    m.m[3][1] = 0.0f;
    m.m[0][2] =         f2xz - f2yw;
    m.m[1][2] =         f2yz + f2xw;
    m.m[2][2] = 1.0f - (f2xx + f2yy);
    m.m[3][2] = 0.0f;
    m.m[0][3] = 0.0f;
    m.m[1][3] = 0.0f;
    m.m[2][3] = 0.0f;
    m.m[3][3] = 1.0f;
    *this *= m;
}

#endif

/*!
    \overload

    Multiplies this matrix by another that applies an orthographic
    projection for a window with boundaries specified by \a rect.
    The near and far clipping planes will be -1 and 1 respectively.

    \sa frustum(), perspective()
*/
void QMatrix4x4::ortho(const QRect& rect)
{
    // Note: rect.right() and rect.bottom() subtract 1 in QRect,
    // which gives the location of a pixel within the rectangle,
    // instead of the extent of the rectangle.  We want the extent.
    // QRectF expresses the extent properly.
    ortho(rect.x(), rect.x() + rect.width(), rect.y() + rect.height(), rect.y(), -1.0f, 1.0f);
}

/*!
    \overload

    Multiplies this matrix by another that applies an orthographic
    projection for a window with boundaries specified by \a rect.
    The near and far clipping planes will be -1 and 1 respectively.

    \sa frustum(), perspective()
*/
void QMatrix4x4::ortho(const QRectF& rect)
{
    ortho(rect.left(), rect.right(), rect.bottom(), rect.top(), -1.0f, 1.0f);
}

/*!
    Multiplies this matrix by another that applies an orthographic
    projection for a window with lower-left corner (\a left, \a bottom),
    upper-right corner (\a right, \a top), and the specified \a nearPlane
    and \a farPlane clipping planes.

    \sa frustum(), perspective()
*/
void QMatrix4x4::ortho(float left, float right, float bottom, float top, float nearPlane, float farPlane)
{
    // Bail out if the projection volume is zero-sized.
    if (left == right || bottom == top || nearPlane == farPlane)
        return;

    // Construct the projection.
    const float width = right - left;
    const float invheight = top - bottom;
    const float clip = farPlane - nearPlane;
    QMatrix4x4 m(1);
    m.m[0][0] = 2.0f / width;
    m.m[1][0] = 0.0f;
    m.m[2][0] = 0.0f;
    m.m[3][0] = -(left + right) / width;
    m.m[0][1] = 0.0f;
    m.m[1][1] = 2.0f / invheight;
    m.m[2][1] = 0.0f;
    m.m[3][1] = -(top + bottom) / invheight;
    m.m[0][2] = 0.0f;
    m.m[1][2] = 0.0f;
    m.m[2][2] = -2.0f / clip;
    m.m[3][2] = -(nearPlane + farPlane) / clip;
    m.m[0][3] = 0.0f;
    m.m[1][3] = 0.0f;
    m.m[2][3] = 0.0f;
    m.m[3][3] = 1.0f;

    // Apply the projection.
    *this *= m;
}

/*!
    Multiplies this matrix by another that applies a perspective
    frustum projection for a window with lower-left corner (\a left, \a bottom),
    upper-right corner (\a right, \a top), and the specified \a nearPlane
    and \a farPlane clipping planes.

    \sa ortho(), perspective()
*/
void QMatrix4x4::frustum(float left, float right, float bottom, float top, float nearPlane, float farPlane)
{
    // Bail out if the projection volume is zero-sized.
    if (left == right || bottom == top || nearPlane == farPlane)
        return;

    // Construct the projection.
    QMatrix4x4 m(1);
    const float width = right - left;
    const float invheight = top - bottom;
    const float clip = farPlane - nearPlane;
    m.m[0][0] = 2.0f * nearPlane / width;
    m.m[1][0] = 0.0f;
    m.m[2][0] = (left + right) / width;
    m.m[3][0] = 0.0f;
    m.m[0][1] = 0.0f;
    m.m[1][1] = 2.0f * nearPlane / invheight;
    m.m[2][1] = (top + bottom) / invheight;
    m.m[3][1] = 0.0f;
    m.m[0][2] = 0.0f;
    m.m[1][2] = 0.0f;
    m.m[2][2] = -(nearPlane + farPlane) / clip;
    m.m[3][2] = -2.0f * nearPlane * farPlane / clip;
    m.m[0][3] = 0.0f;
    m.m[1][3] = 0.0f;
    m.m[2][3] = -1.0f;
    m.m[3][3] = 0.0f;

    // Apply the projection.
    *this *= m;
}

/*!
    Multiplies this matrix by another that applies a perspective
    projection. The vertical field of view will be \a verticalAngle degrees
    within a window with a given \a aspectRatio that determines the horizontal
    field of view.
    The projection will have the specified \a nearPlane and \a farPlane clipping
    planes which are the distances from the viewer to the corresponding planes.

    \sa ortho(), frustum()
*/
void QMatrix4x4::perspective(float verticalAngle, float aspectRatio, float nearPlane, float farPlane)
{
    // Bail out if the projection volume is zero-sized.
    if (nearPlane == farPlane || aspectRatio == 0.0f)
        return;

    // Construct the projection.
    QMatrix4x4 m(1);
    const float radians = qDegreesToRadians(verticalAngle / 2.0f);
    const float sine = std::sin(radians);
    if (sine == 0.0f)
        return;
    const float cotan = std::cos(radians) / sine;
    const float clip = farPlane - nearPlane;
    m.m[0][0] = cotan / aspectRatio;
    m.m[1][0] = 0.0f;
    m.m[2][0] = 0.0f;
    m.m[3][0] = 0.0f;
    m.m[0][1] = 0.0f;
    m.m[1][1] = cotan;
    m.m[2][1] = 0.0f;
    m.m[3][1] = 0.0f;
    m.m[0][2] = 0.0f;
    m.m[1][2] = 0.0f;
    m.m[2][2] = -(nearPlane + farPlane) / clip;
    m.m[3][2] = -(2.0f * nearPlane * farPlane) / clip;
    m.m[0][3] = 0.0f;
    m.m[1][3] = 0.0f;
    m.m[2][3] = -1.0f;
    m.m[3][3] = 0.0f;

    // Apply the projection.
    *this *= m;
}

#ifndef QT_NO_VECTOR3D

/*!
    Multiplies this matrix by a viewing matrix derived from an eye
    point. The \a center value indicates the center of the view that
    the \a eye is looking at.  The \a up value indicates which direction
    should be considered up with respect to the \a eye.

    \note The \a up vector must not be parallel to the line of sight
    from \a eye to \a center.
*/
void QMatrix4x4::lookAt(const QVector3D& eye, const QVector3D& center, const QVector3D& up)
{
    QVector3D forward = center - eye;
    if (qFuzzyIsNull(forward.x()) && qFuzzyIsNull(forward.y()) && qFuzzyIsNull(forward.z()))
        return;

    forward.normalize();
    QVector3D side = QVector3D::crossProduct(forward, up).normalized();
    QVector3D upVector = QVector3D::crossProduct(side, forward);

    QMatrix4x4 m(1);
    m.m[0][0] = side.x();
    m.m[1][0] = side.y();
    m.m[2][0] = side.z();
    m.m[3][0] = 0.0f;
    m.m[0][1] = upVector.x();
    m.m[1][1] = upVector.y();
    m.m[2][1] = upVector.z();
    m.m[3][1] = 0.0f;
    m.m[0][2] = -forward.x();
    m.m[1][2] = -forward.y();
    m.m[2][2] = -forward.z();
    m.m[3][2] = 0.0f;
    m.m[0][3] = 0.0f;
    m.m[1][3] = 0.0f;
    m.m[2][3] = 0.0f;
    m.m[3][3] = 1.0f;

    *this *= m;
    translate(-eye);
}

#endif

/*!
    \fn void QMatrix4x4::viewport(const QRectF &rect)
    \overload

    Sets up viewport transform for viewport bounded by \a rect and with near and far set
    to 0 and 1 respectively.
*/

/*!
    Multiplies this matrix by another that performs the scale and bias
    transformation used by OpenGL to transform from normalized device
    coordinates (NDC) to viewport (window) coordinates. That is it maps
    points from the cube ranging over [-1, 1] in each dimension to the
    viewport with it's near-lower-left corner at (\a left, \a bottom, \a nearPlane)
    and with size (\a width, \a height, \a farPlane - \a nearPlane).

    This matches the transform used by the fixed function OpenGL viewport
    transform controlled by the functions glViewport() and glDepthRange().
 */
void QMatrix4x4::viewport(float left, float bottom, float width, float height, float nearPlane, float farPlane)
{
    const float w2 = width / 2.0f;
    const float h2 = height / 2.0f;

    QMatrix4x4 m(1);
    m.m[0][0] = w2;
    m.m[1][0] = 0.0f;
    m.m[2][0] = 0.0f;
    m.m[3][0] = left + w2;
    m.m[0][1] = 0.0f;
    m.m[1][1] = h2;
    m.m[2][1] = 0.0f;
    m.m[3][1] = bottom + h2;
    m.m[0][2] = 0.0f;
    m.m[1][2] = 0.0f;
    m.m[2][2] = (farPlane - nearPlane) / 2.0f;
    m.m[3][2] = (nearPlane + farPlane) / 2.0f;
    m.m[0][3] = 0.0f;
    m.m[1][3] = 0.0f;
    m.m[2][3] = 0.0f;
    m.m[3][3] = 1.0f;

    *this *= m;
}

/*!
    \deprecated

    Flips between right-handed and left-handed coordinate systems
    by multiplying the y and z co-ordinates by -1.  This is normally
    used to create a left-handed orthographic view without scaling
    the viewport as ortho() does.

    \sa ortho()
*/
void QMatrix4x4::flipCoordinates()
{
    // Multiplying the y and z coordinates with -1 does NOT flip between right-handed and
    // left-handed coordinate systems, it just rotates 180 degrees around the x axis, so
    // I'm deprecating this function.
    m[1][0] = -m[1][0];
    m[1][1] = -m[1][1];
    m[1][2] = -m[1][2];
    m[1][3] = -m[1][3];
    m[2][0] = -m[2][0];
    m[2][1] = -m[2][1];
    m[2][2] = -m[2][2];
    m[2][3] = -m[2][3];
}

/*!
    Retrieves the 16 items in this matrix and copies them to \a values
    in row-major order.
*/
void QMatrix4x4::copyDataTo(float *values) const
{
    for (int row = 0; row < 4; ++row)
        for (int col = 0; col < 4; ++col)
            values[row * 4 + col] = float(m[col][row]);
}

/*!
    Returns the conventional Qt 2D transformation matrix that
    corresponds to this matrix.

    The returned QTransform is formed by simply dropping the
    third row and third column of the QMatrix4x4.  This is suitable
    for implementing orthographic projections where the z co-ordinate
    should be dropped rather than projected.

    \sa toAffine()
*/
QTransform QMatrix4x4::toTransform() const
{
    return QTransform(m[0][0], m[0][1], m[0][3],
                      m[1][0], m[1][1], m[1][3],
                      m[3][0], m[3][1], m[3][3]);
}

/*!
    Returns the conventional Qt 2D transformation matrix that
    corresponds to this matrix.

    If \a distanceToPlane is non-zero, it indicates a projection
    factor to use to adjust for the z co-ordinate.  The value of
    1024 corresponds to the projection factor used
    by QTransform::rotate() for the x and y axes.

    If \a distanceToPlane is zero, then the returned QTransform
    is formed by simply dropping the third row and third column
    of the QMatrix4x4.  This is suitable for implementing
    orthographic projections where the z co-ordinate should
    be dropped rather than projected.

    \sa toAffine()
*/
QTransform QMatrix4x4::toTransform(float distanceToPlane) const
{
    if (distanceToPlane == 1024.0f) {
        // Optimize the common case with constants.
        return QTransform(m[0][0], m[0][1], m[0][3] - m[0][2] * inv_dist_to_plane,
                          m[1][0], m[1][1], m[1][3] - m[1][2] * inv_dist_to_plane,
                          m[3][0], m[3][1], m[3][3] - m[3][2] * inv_dist_to_plane);
    } else if (distanceToPlane != 0.0f) {
        // The following projection matrix is pre-multiplied with "matrix":
        //      | 1 0 0 0 |
        //      | 0 1 0 0 |
        //      | 0 0 1 0 |
        //      | 0 0 d 1 |
        // where d = -1 / distanceToPlane.  After projection, row 3 and
        // column 3 are dropped to form the final QTransform.
        const float d = 1.0f / distanceToPlane;
        return QTransform(m[0][0], m[0][1], m[0][3] - m[0][2] * d,
                          m[1][0], m[1][1], m[1][3] - m[1][2] * d,
                          m[3][0], m[3][1], m[3][3] - m[3][2] * d);
    } else {
        // Orthographic projection: drop row 3 and column 3.
        return QTransform(m[0][0], m[0][1], m[0][3],
                          m[1][0], m[1][1], m[1][3],
                          m[3][0], m[3][1], m[3][3]);
    }
}

/*!
    \fn QPoint QMatrix4x4::map(const QPoint& point) const

    Maps \a point by multiplying this matrix by \a point.

    \sa mapRect()
*/

/*!
    \fn QPointF QMatrix4x4::map(const QPointF& point) const

    Maps \a point by multiplying this matrix by \a point.

    \sa mapRect()
*/

#ifndef QT_NO_VECTOR3D

/*!
    \fn QVector3D QMatrix4x4::map(const QVector3D& point) const

    Maps \a point by multiplying this matrix by \a point.

    \sa mapRect(), mapVector()
*/

/*!
    \fn QVector3D QMatrix4x4::mapVector(const QVector3D& vector) const

    Maps \a vector by multiplying the top 3x3 portion of this matrix
    by \a vector.  The translation and projection components of
    this matrix are ignored.

    \sa map()
*/

#endif

#ifndef QT_NO_VECTOR4D

/*!
    \fn QVector4D QMatrix4x4::map(const QVector4D& point) const;

    Maps \a point by multiplying this matrix by \a point.

    \sa mapRect()
*/

#endif

/*!
    Maps \a rect by multiplying this matrix by the corners
    of \a rect and then forming a new rectangle from the results.
    The returned rectangle will be an ordinary 2D rectangle
    with sides parallel to the horizontal and vertical axes.

    \sa map()
*/
QRect QMatrix4x4::mapRect(const QRect& rect) const
{
    const QPoint tl = map(rect.topLeft());
    const QPoint tr = map(QPoint(rect.x() + rect.width(), rect.y()));
    const QPoint bl = map(QPoint(rect.x(), rect.y() + rect.height()));
    const QPoint br = map(QPoint(rect.x() + rect.width(),
                                 rect.y() + rect.height()));

    const int xmin = qMin(qMin(tl.x(), tr.x()), qMin(bl.x(), br.x()));
    const int xmax = qMax(qMax(tl.x(), tr.x()), qMax(bl.x(), br.x()));
    const int ymin = qMin(qMin(tl.y(), tr.y()), qMin(bl.y(), br.y()));
    const int ymax = qMax(qMax(tl.y(), tr.y()), qMax(bl.y(), br.y()));

    return QRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

/*!
    Maps \a rect by multiplying this matrix by the corners
    of \a rect and then forming a new rectangle from the results.
    The returned rectangle will be an ordinary 2D rectangle
    with sides parallel to the horizontal and vertical axes.

    \sa map()
*/
QRectF QMatrix4x4::mapRect(const QRectF& rect) const
{
    const QPointF tl = map(rect.topLeft()); QPointF tr = map(rect.topRight());
    const QPointF bl = map(rect.bottomLeft()); QPointF br = map(rect.bottomRight());

    const float xmin = qMin(qMin(tl.x(), tr.x()), qMin(bl.x(), br.x()));
    const float xmax = qMax(qMax(tl.x(), tr.x()), qMax(bl.x(), br.x()));
    const float ymin = qMin(qMin(tl.y(), tr.y()), qMin(bl.y(), br.y()));
    const float ymax = qMax(qMax(tl.y(), tr.y()), qMax(bl.y(), br.y()));

    return QRectF(QPointF(xmin, ymin), QPointF(xmax, ymax));
}

/*!
    \fn float *QMatrix4x4::data()

    Returns a pointer to the raw data of this matrix.

    \sa constData(), optimize()
*/

/*!
    \fn const float *QMatrix4x4::data() const

    Returns a constant pointer to the raw data of this matrix.
    This raw data is stored in column-major format.

    \sa constData()
*/

/*!
    \fn const float *QMatrix4x4::constData() const

    Returns a constant pointer to the raw data of this matrix.
    This raw data is stored in column-major format.

    \sa data()
*/

// Helper routine for inverting orthonormal matrices that consist
// of just rotations and translations.
QMatrix4x4 QMatrix4x4::orthonormalInverse() const
{
    QMatrix4x4 result(1);  // The '1' says not to load identity

    result.m[0][0] = m[0][0];
    result.m[1][0] = m[0][1];
    result.m[2][0] = m[0][2];

    result.m[0][1] = m[1][0];
    result.m[1][1] = m[1][1];
    result.m[2][1] = m[1][2];

    result.m[0][2] = m[2][0];
    result.m[1][2] = m[2][1];
    result.m[2][2] = m[2][2];

    result.m[0][3] = 0.0f;
    result.m[1][3] = 0.0f;
    result.m[2][3] = 0.0f;

    result.m[3][0] = -(result.m[0][0] * m[3][0] + result.m[1][0] * m[3][1] + result.m[2][0] * m[3][2]);
    result.m[3][1] = -(result.m[0][1] * m[3][0] + result.m[1][1] * m[3][1] + result.m[2][1] * m[3][2]);
    result.m[3][2] = -(result.m[0][2] * m[3][0] + result.m[1][2] * m[3][1] + result.m[2][2] * m[3][2]);
    result.m[3][3] = 1.0f;

    return result;
}

/*!
    Optimize the usage of this matrix from its current elements.

    Some operations such as translate(), scale(), and rotate() can be
    performed more efficiently if the matrix being modified is already
    known to be the identity, a previous translate(), a previous
    scale(), etc.

    Normally the QMatrix4x4 class keeps track of this special type internally
    as operations are performed.  However, if the matrix is modified
    directly with {QLoggingCategory::operator()}{operator()()} or data(), then QMatrix4x4 will lose track of
    the special type and will revert to the safest but least efficient
    operations thereafter.

    By calling optimize() after directly modifying the matrix,
    the programmer can force QMatrix4x4 to recover the special type if
    the elements appear to conform to one of the known optimized types.

    \sa {QLoggingCategory::operator()}{operator()()}, data(), translate()
*/
void QMatrix4x4::optimize()
{
}

/*!
    Returns the matrix as a QVariant.
*/
QMatrix4x4::operator QVariant() const
{
    return QVariant(QMetaType::QMatrix4x4, this);
}

#ifndef QT_NO_DEBUG_STREAM

QDebug operator<<(QDebug dbg, const QMatrix4x4 &m)
{
    QDebugStateSaver saver(dbg);
    // Create a string that represents the matrix type.
    QByteArray bits;
    if (m.isIdentity()) {
        bits = "Identity";
    } else {
        bits = "General";
    }

    // Output in row-major order because it is more human-readable.
    dbg.nospace() << "QMatrix4x4(type:" << bits.constData() << Qt::endl
        << qSetFieldWidth(10)
        << m(0, 0) << m(0, 1) << m(0, 2) << m(0, 3) << Qt::endl
        << m(1, 0) << m(1, 1) << m(1, 2) << m(1, 3) << Qt::endl
        << m(2, 0) << m(2, 1) << m(2, 2) << m(2, 3) << Qt::endl
        << m(3, 0) << m(3, 1) << m(3, 2) << m(3, 3) << Qt::endl
        << qSetFieldWidth(0) << ')';
    return dbg;
}

#endif

#ifndef QT_NO_DATASTREAM

/*!
    \fn QDataStream &operator<<(QDataStream &stream, const QMatrix4x4 &matrix)
    \relates QMatrix4x4

    Writes the given \a matrix to the given \a stream and returns a
    reference to the stream.

    \sa {Serializing Qt Data Types}
*/

QDataStream &operator<<(QDataStream &stream, const QMatrix4x4 &matrix)
{
    for (int row = 0; row < 4; ++row)
        for (int col = 0; col < 4; ++col)
            stream << matrix(row, col);
    return stream;
}

/*!
    \fn QDataStream &operator>>(QDataStream &stream, QMatrix4x4 &matrix)
    \relates QMatrix4x4

    Reads a 4x4 matrix from the given \a stream into the given \a matrix
    and returns a reference to the stream.

    \sa {Serializing Qt Data Types}
*/

QDataStream &operator>>(QDataStream &stream, QMatrix4x4 &matrix)
{
    float x;
    for (int row = 0; row < 4; ++row) {
        for (int col = 0; col < 4; ++col) {
            stream >> x;
            matrix(row, col) = x;
        }
    }
    matrix.optimize();
    return stream;
}

#endif // QT_NO_DATASTREAM

#endif // QT_NO_MATRIX4X4

QT_END_NAMESPACE