summaryrefslogtreecommitdiffstats
path: root/src/gui/painting/qdrawhelper_avx2.cpp
blob: 2619539788388b6e6c0155c11e0749f674223d32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qdrawhelper_p.h"
#include "qdrawingprimitive_sse2_p.h"

#if defined(QT_COMPILER_SUPPORTS_AVX2)

QT_BEGIN_NAMESPACE

static Q_CONSTEXPR int BufferSize = 2048;

enum {
    FixedScale = 1 << 16,
    HalfPoint = 1 << 15
};

// Vectorized blend functions:

// See BYTE_MUL_SSE2 for details.
inline static void BYTE_MUL_AVX2(__m256i &pixelVector, const __m256i &alphaChannel, const __m256i &colorMask, const __m256i &half)
{
    __m256i pixelVectorAG = _mm256_srli_epi16(pixelVector, 8);
    __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask);

    pixelVectorAG = _mm256_mullo_epi16(pixelVectorAG, alphaChannel);
    pixelVectorRB = _mm256_mullo_epi16(pixelVectorRB, alphaChannel);

    pixelVectorRB = _mm256_add_epi16(pixelVectorRB, _mm256_srli_epi16(pixelVectorRB, 8));
    pixelVectorAG = _mm256_add_epi16(pixelVectorAG, _mm256_srli_epi16(pixelVectorAG, 8));
    pixelVectorRB = _mm256_add_epi16(pixelVectorRB, half);
    pixelVectorAG = _mm256_add_epi16(pixelVectorAG, half);

    pixelVectorRB = _mm256_srli_epi16(pixelVectorRB, 8);
    pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG);

    pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB);
}

// See INTERPOLATE_PIXEL_255_SSE2 for details.
inline static void INTERPOLATE_PIXEL_255_AVX2(const __m256i &srcVector, __m256i &dstVector, const __m256i &alphaChannel, const __m256i &oneMinusAlphaChannel, const __m256i &colorMask, const __m256i &half)
{
    const __m256i srcVectorAG = _mm256_srli_epi16(srcVector, 8);
    const __m256i dstVectorAG = _mm256_srli_epi16(dstVector, 8);
    const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask);
    const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask);
    const __m256i srcVectorAGalpha = _mm256_mullo_epi16(srcVectorAG, alphaChannel);
    const __m256i srcVectorRBalpha = _mm256_mullo_epi16(srcVectorRB, alphaChannel);
    const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(dstVectorAG, oneMinusAlphaChannel);
    const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(dstVectorRB, oneMinusAlphaChannel);
    __m256i finalAG = _mm256_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlpha);
    __m256i finalRB = _mm256_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlpha);
    finalAG = _mm256_add_epi16(finalAG, _mm256_srli_epi16(finalAG, 8));
    finalRB = _mm256_add_epi16(finalRB, _mm256_srli_epi16(finalRB, 8));
    finalAG = _mm256_add_epi16(finalAG, half);
    finalRB = _mm256_add_epi16(finalRB, half);
    finalAG = _mm256_andnot_si256(colorMask, finalAG);
    finalRB = _mm256_srli_epi16(finalRB, 8);

    dstVector = _mm256_or_si256(finalAG, finalRB);
}

// See BLEND_SOURCE_OVER_ARGB32_SSE2 for details.
inline static void BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length)
{
    const __m256i half = _mm256_set1_epi16(0x80);
    const __m256i one = _mm256_set1_epi16(0xff);
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
    const __m256i alphaMask = _mm256_set1_epi32(0xff000000);
    const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
    const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3,
                                                     char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3);

    const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast<quintptr>(dst) >> 2) & 0x7;

    int x = 0;
    // Prologue to handle all pixels until dst is 32-byte aligned in one step.
    if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) {
        const __m256i prologueMask = _mm256_sub_epi32(_mm256_set1_epi32(minusOffsetToAlignDstOn32Bytes - 1), offsetMask);
        const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x - minusOffsetToAlignDstOn32Bytes], prologueMask);
        const __m256i prologueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, prologueMask);
        if (!_mm256_testz_si256(srcVector, prologueAlphaMask)) {
            if (_mm256_testc_si256(srcVector, prologueAlphaMask)) {
                _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, srcVector);
            } else {
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
                alphaChannel = _mm256_sub_epi16(one, alphaChannel);
                __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask);
                BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
                dstVector = _mm256_add_epi8(dstVector, srcVector);
                _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, dstVector);
            }
        }
        x += (8 - minusOffsetToAlignDstOn32Bytes);
    }

    for (; x < (length - 7); x += 8) {
        const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
        if (!_mm256_testz_si256(srcVector, alphaMask)) {
            if (_mm256_testc_si256(srcVector, alphaMask)) {
                _mm256_store_si256((__m256i *)&dst[x], srcVector);
            } else {
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
                alphaChannel = _mm256_sub_epi16(one, alphaChannel);
                __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
                 BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
                dstVector = _mm256_add_epi8(dstVector, srcVector);
                _mm256_store_si256((__m256i *)&dst[x], dstVector);
            }
        }
    }

    // Epilogue to handle all remaining pixels in one step.
    if (x < length) {
        const __m256i epilogueMask = _mm256_add_epi32(offsetMask, _mm256_set1_epi32(x - length));
        const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x], epilogueMask);
        const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask);
        if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) {
            if (_mm256_testc_si256(srcVector, epilogueAlphaMask)) {
                _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, srcVector);
            } else {
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
                alphaChannel = _mm256_sub_epi16(one, alphaChannel);
                __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x], epilogueMask);
                BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
                dstVector = _mm256_add_epi8(dstVector, srcVector);
                _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, dstVector);
            }
        }
    }
}


// See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details.
inline static void BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha)
{
    int x = 0;

    ALIGNMENT_PROLOGUE_32BYTES(dst, x, length)
        blend_pixel(dst[x], src[x], const_alpha);

    const __m256i half = _mm256_set1_epi16(0x80);
    const __m256i one = _mm256_set1_epi16(0xff);
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
    const __m256i alphaMask = _mm256_set1_epi32(0xff000000);
    const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3,
                                                     char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3);
    const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha);
    for (; x < (length - 7); x += 8) {
        __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
        if (!_mm256_testz_si256(srcVector, alphaMask)) {
            BYTE_MUL_AVX2(srcVector, constAlphaVector, colorMask, half);

            __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
            alphaChannel = _mm256_sub_epi16(one, alphaChannel);
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
            BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
            dstVector = _mm256_add_epi8(dstVector, srcVector);
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
        }
    }
    SIMD_EPILOGUE(x, length, 7)
        blend_pixel(dst[x], src[x], const_alpha);
}

void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl,
                                    const uchar *srcPixels, int sbpl,
                                    int w, int h,
                                    int const_alpha)
{
    if (const_alpha == 256) {
        for (int y = 0; y < h; ++y) {
            const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
            quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
            BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, w);
            destPixels += dbpl;
            srcPixels += sbpl;
        }
    } else if (const_alpha != 0) {
        const_alpha = (const_alpha * 255) >> 8;
        for (int y = 0; y < h; ++y) {
            const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
            quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
            BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, w, const_alpha);
            destPixels += dbpl;
            srcPixels += sbpl;
        }
    }
}

void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl,
                                   const uchar *srcPixels, int sbpl,
                                   int w, int h,
                                   int const_alpha)
{
    if (const_alpha == 256) {
        for (int y = 0; y < h; ++y) {
            const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
            quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
            ::memcpy(dst, src, w * sizeof(uint));
            srcPixels += sbpl;
            destPixels += dbpl;
        }
        return;
    }
    if (const_alpha == 0)
        return;

    const __m256i half = _mm256_set1_epi16(0x80);
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);

    const_alpha = (const_alpha * 255) >> 8;
    int one_minus_const_alpha = 255 - const_alpha;
    const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha);
    const __m256i oneMinusConstAlpha =  _mm256_set1_epi16(one_minus_const_alpha);
    for (int y = 0; y < h; ++y) {
        const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
        quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
        int x = 0;

        // First, align dest to 32 bytes:
        ALIGNMENT_PROLOGUE_32BYTES(dst, x, w)
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);

        // 2) interpolate pixels with AVX2
        for (; x < (w - 7); x += 8) {
            const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
            INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half);
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
        }

        // 3) Epilogue
        SIMD_EPILOGUE(x, w, 7)
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);

        srcPixels += sbpl;
        destPixels += dbpl;
    }
}

void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha)
{
    Q_ASSERT(const_alpha < 256);

    const quint32 *src = (const quint32 *) srcPixels;
    quint32 *dst = (quint32 *) destPixels;

    if (const_alpha == 255)
        BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length);
    else
        BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha);
}

void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha)
{
    if (const_alpha == 255) {
        ::memcpy(dst, src, length * sizeof(uint));
    } else {
        const int ialpha = 255 - const_alpha;

        int x = 0;

        // 1) prologue, align on 32 bytes
        ALIGNMENT_PROLOGUE_32BYTES(dst, x, length)
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha);

        // 2) interpolate pixels with AVX2
        const __m256i half = _mm256_set1_epi16(0x80);
        const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
        const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha);
        const __m256i oneMinusConstAlpha =  _mm256_set1_epi16(ialpha);
        for (; x < length - 7; x += 8) {
            const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
            INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half);
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
        }

        // 3) Epilogue
        SIMD_EPILOGUE(x, length, 7)
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha);
    }
}

void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha)
{
    if ((const_alpha & qAlpha(color)) == 255) {
        qt_memfill32(destPixels, color, length);
    } else {
        if (const_alpha != 255)
            color = BYTE_MUL(color, const_alpha);

        const quint32 minusAlphaOfColor = qAlpha(~color);
        int x = 0;

        quint32 *dst = (quint32 *) destPixels;
        const __m256i colorVector = _mm256_set1_epi32(color);
        const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
        const __m256i half = _mm256_set1_epi16(0x80);
        const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(minusAlphaOfColor);

        ALIGNMENT_PROLOGUE_32BYTES(dst, x, length)
            destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);

        for (; x < length - 7; x += 8) {
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
            BYTE_MUL_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half);
            dstVector = _mm256_add_epi8(colorVector, dstVector);
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
        }
        SIMD_EPILOGUE(x, length, 7)
            destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);
    }
}

#define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b)  \
{ \
    /* Correct for later unpack */ \
    const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \
    const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \
    \
    __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \
    const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \
    const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \
    __m256i idxidy =  _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \
    __m256i dxidy =  _mm256_sub_epi16(distx_, dxdy); \
    __m256i idxdy =  _mm256_sub_epi16(disty_, dxdy); \
 \
    __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \
    __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \
    __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \
    __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \
    __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \
    __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \
    __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \
    __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \
 \
    __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \
    __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \
    tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \
    tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \
    tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \
    tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \
    __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \
    __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \
    blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \
    blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \
    blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \
    blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \
 \
    /* Add the values, and shift to only keep 8 significant bits per colors */ \
    __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \
    __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \
    __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \
    __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \
    __m256i rAG = _mm256_add_epi16(topAG, botAG); \
    __m256i rRB = _mm256_add_epi16(topRB, botRB); \
    rRB = _mm256_srli_epi16(rRB, 8); \
    /* Correct for hadd */ \
    rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \
    rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \
    _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \
}

inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2)
{
    if (v1 < l1)
        v2 = v1 = l1;
    else if (v1 >= l2)
        v2 = v1 = l2;
    else
        v2 = v1 + 1;
    Q_ASSERT(v1 >= l1 && v1 <= l2);
    Q_ASSERT(v2 >= l1 && v2 <= l2);
}

void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_upscale_helper_avx2(uint *b, uint *end, const QTextureData &image,
                                                                             int &fx, int &fy, int fdx, int /*fdy*/)
{
    int y1 = (fy >> 16);
    int y2;
    fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
    const uint *s1 = (const uint *)image.scanLine(y1);
    const uint *s2 = (const uint *)image.scanLine(y2);

    const int disty = (fy & 0x0000ffff) >> 8;
    const int idisty = 256 - disty;
    const int length = end - b;

    // The intermediate buffer is generated in the positive direction
    const int adjust = (fdx < 0) ? fdx * length : 0;
    const int offset = (fx + adjust) >> 16;
    int x = offset;

    // The idea is first to do the interpolation between the row s1 and the row s2
    // into an intermediate buffer, then we interpolate between two pixel of this buffer.

    // intermediate_buffer[0] is a buffer of red-blue component of the pixel, in the form 0x00RR00BB
    // intermediate_buffer[1] is the alpha-green component of the pixel, in the form 0x00AA00GG
    // +1 for the last pixel to interpolate with, and +1 for rounding errors.
    quint32 intermediate_buffer[2][BufferSize + 2];
    // count is the size used in the intermediate_buffer.
    int count = (qint64(length) * qAbs(fdx) + FixedScale - 1) / FixedScale + 2;
    Q_ASSERT(count <= BufferSize + 2); //length is supposed to be <= buffer_size and data->m11 < 1 in this case
    int f = 0;
    int lim = qMin(count, image.x2 - x);
    if (x < image.x1) {
        Q_ASSERT(x < image.x2);
        uint t = s1[image.x1];
        uint b = s2[image.x1];
        quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff;
        quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff;
        do {
            intermediate_buffer[0][f] = rb;
            intermediate_buffer[1][f] = ag;
            f++;
            x++;
        } while (x < image.x1 && f < lim);
    }

    const __m256i disty_ = _mm256_set1_epi16(disty);
    const __m256i idisty_ = _mm256_set1_epi16(idisty);
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);

    lim -= 7;
    for (; f < lim; x += 8, f += 8) {
        // Load 8 pixels from s1, and split the alpha-green and red-blue component
        __m256i top = _mm256_loadu_si256((const __m256i*)((const uint *)(s1)+x));
        __m256i topAG = _mm256_srli_epi16(top, 8);
        __m256i topRB = _mm256_and_si256(top, colorMask);
        // Multiplies each color component by idisty
        topAG = _mm256_mullo_epi16 (topAG, idisty_);
        topRB = _mm256_mullo_epi16 (topRB, idisty_);

        // Same for the s2 vector
        __m256i bottom = _mm256_loadu_si256((const __m256i*)((const uint *)(s2)+x));
        __m256i bottomAG = _mm256_srli_epi16(bottom, 8);
        __m256i bottomRB = _mm256_and_si256(bottom, colorMask);
        bottomAG = _mm256_mullo_epi16 (bottomAG, disty_);
        bottomRB = _mm256_mullo_epi16 (bottomRB, disty_);

        // Add the values, and shift to only keep 8 significant bits per colors
        __m256i rAG =_mm256_add_epi16(topAG, bottomAG);
        rAG = _mm256_srli_epi16(rAG, 8);
        _mm256_storeu_si256((__m256i*)(&intermediate_buffer[1][f]), rAG);
        __m256i rRB =_mm256_add_epi16(topRB, bottomRB);
        rRB = _mm256_srli_epi16(rRB, 8);
        _mm256_storeu_si256((__m256i*)(&intermediate_buffer[0][f]), rRB);
    }

    for (; f < count; f++) { // Same as above but without simd
        x = qMin(x, image.x2 - 1);

        uint t = s1[x];
        uint b = s2[x];

        intermediate_buffer[0][f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff;
        intermediate_buffer[1][f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff;
        x++;
    }
    // Now interpolate the values from the intermediate_buffer to get the final result.
    fx -= offset * FixedScale;

    const __m128i v_fdx = _mm_set1_epi32(fdx * 4);
    const __m128i v_blend = _mm_set1_epi32(0x00800080);
    __m128i v_fx = _mm_setr_epi32(fx, fx + fdx, fx + fdx + fdx, fx + fdx + fdx + fdx);

    while (b < end - 3) {
        const __m128i offset = _mm_srli_epi32(v_fx, 16);
        __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate_buffer[0], offset, 4);
        __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate_buffer[1], offset, 4);

        __m128i vdx = _mm_and_si128(v_fx, _mm_set1_epi32(0x0000ffff));
        vdx = _mm_srli_epi16(vdx, 8);
        __m128i vidx = _mm_sub_epi32(_mm_set1_epi32(256), vdx);
        __m256i vmulx = _mm256_castsi128_si256(_mm_unpacklo_epi32(vidx, vdx));
        vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1);

        vrb = _mm256_mullo_epi32(vrb, vmulx);
        vag = _mm256_mullo_epi32(vag, vmulx);

        __m256i vrbag = _mm256_hadd_epi32(vrb, vag);
        vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0));

        __m128i rb = _mm256_castsi256_si128(vrbag);
        __m128i ag = _mm256_extracti128_si256(vrbag, 1);
        rb = _mm_srli_epi16(rb, 8);

        _mm_storeu_si128((__m128i*)b, _mm_blendv_epi8(ag, rb, v_blend));

        b += 4;
        fx += 4 * fdx;
        v_fx = _mm_add_epi32(v_fx, v_fdx);
    }
    while (b < end) {
        int x = (fx >> 16);

        uint distx = (fx & 0x0000ffff) >> 8;
        uint idistx = 256 - distx;

        uint rb = ((intermediate_buffer[0][x] * idistx + intermediate_buffer[0][x + 1] * distx) >> 8) & 0xff00ff;
        uint ag = (intermediate_buffer[1][x] * idistx + intermediate_buffer[1][x + 1] * distx) & 0xff00ff00;
        *b = rb | ag;
        b++;
        fx += fdx;
    }
}

void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image,
                                                                        int &fx, int &fy, int fdx, int /*fdy*/)
{
    int y1 = (fy >> 16);
    int y2;
    fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
    const uint *s1 = (const uint *)image.scanLine(y1);
    const uint *s2 = (const uint *)image.scanLine(y2);
    const int disty8 = (fy & 0x0000ffff) >> 8;
    const int disty4 = (disty8 + 0x08) >> 4;

    const qint64 min_fx = qint64(image.x1) * FixedScale;
    const qint64 max_fx = qint64(image.x2 - 1) * FixedScale;
    while (b < end) {
        int x1 = (fx >> 16);
        int x2;
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
        if (x1 != x2)
            break;
        uint top = s1[x1];
        uint bot = s2[x1];
        *b = INTERPOLATE_PIXEL_256(top, 256 - disty8, bot, disty8);
        fx += fdx;
        ++b;
    }
    uint *boundedEnd = end;
    if (fdx > 0)
        boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx);
    else if (fdx < 0)
        boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx);

    // A fast middle part without boundary checks
    const __m256i vdistShuffle =
        _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80),
                         0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80));
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
    const __m256i v_256 = _mm256_set1_epi16(256);
    const __m256i v_disty = _mm256_set1_epi16(disty4);
    const __m256i v_fdx = _mm256_set1_epi32(fdx * 8);
    const __m256i v_fx_r = _mm256_set1_epi32(0x08);
    const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
    __m256i v_fx = _mm256_set1_epi32(fx);
    v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index));

    while (b < boundedEnd - 7) {
        const __m256i offset = _mm256_srli_epi32(v_fx, 16);
        const __m128i offsetLo = _mm256_castsi256_si128(offset);
        const __m128i offsetHi = _mm256_extracti128_si256(offset, 1);
        const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4);
        const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4);
        const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4);
        const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4);

        __m256i v_distx = _mm256_srli_epi16(v_fx, 8);
        v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fx_r), 4);
        v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle);

        interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b);
        b += 8;
        v_fx = _mm256_add_epi32(v_fx, v_fdx);
    }
    fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0);

    while (b < boundedEnd) {
        int x = (fx >> 16);
        int distx8 = (fx & 0x0000ffff) >> 8;
        *b = interpolate_4_pixels(s1 + x, s2 + x, distx8, disty8);
        fx += fdx;
        ++b;
    }

    while (b < end) {
        int x1 = (fx >> 16);
        int x2;
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
        uint tl = s1[x1];
        uint tr = s1[x2];
        uint bl = s2[x1];
        uint br = s2[x2];
        int distx8 = (fx & 0x0000ffff) >> 8;
        *b = interpolate_4_pixels(tl, tr, bl, br, distx8, disty8);
        fx += fdx;
        ++b;
    }
}

void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image,
                                                                          int &fx, int &fy, int fdx, int fdy)
{
    const qint64 min_fx = qint64(image.x1) * FixedScale;
    const qint64 max_fx = qint64(image.x2 - 1) * FixedScale;
    const qint64 min_fy = qint64(image.y1) * FixedScale;
    const qint64 max_fy = qint64(image.y2 - 1) * FixedScale;
    // first handle the possibly bounded part in the beginning
    while (b < end) {
        int x1 = (fx >> 16);
        int x2;
        int y1 = (fy >> 16);
        int y2;
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
        fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
        if (x1 != x2 && y1 != y2)
            break;
        const uint *s1 = (const uint *)image.scanLine(y1);
        const uint *s2 = (const uint *)image.scanLine(y2);
        uint tl = s1[x1];
        uint tr = s1[x2];
        uint bl = s2[x1];
        uint br = s2[x2];
        int distx = (fx & 0x0000ffff) >> 8;
        int disty = (fy & 0x0000ffff) >> 8;
        *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty);
        fx += fdx;
        fy += fdy;
        ++b;
    }
    uint *boundedEnd = end;
    if (fdx > 0)
        boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx);
    else if (fdx < 0)
        boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx);
    if (fdy > 0)
        boundedEnd = qMin(boundedEnd, b + (max_fy - fy) / fdy);
    else if (fdy < 0)
        boundedEnd = qMin(boundedEnd, b + (min_fy - fy) / fdy);

    // until boundedEnd we can now have a fast middle part without boundary checks
    const __m256i vdistShuffle =
        _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80),
                         0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80));
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
    const __m256i v_256 = _mm256_set1_epi16(256);
    const __m256i v_fdx = _mm256_set1_epi32(fdx * 8);
    const __m256i v_fdy = _mm256_set1_epi32(fdy * 8);
    const __m256i v_fxy_r = _mm256_set1_epi32(0x08);
    const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
    __m256i v_fx = _mm256_set1_epi32(fx);
    __m256i v_fy = _mm256_set1_epi32(fy);
    v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index));
    v_fy = _mm256_add_epi32(v_fy, _mm256_mullo_epi32(_mm256_set1_epi32(fdy), v_index));

    const uchar *textureData = image.imageData;
    const qsizetype bytesPerLine = image.bytesPerLine;
    const __m256i vbpl = _mm256_set1_epi16(bytesPerLine/4);

    while (b < boundedEnd - 7) {
        const __m256i vy = _mm256_packs_epi32(_mm256_srli_epi32(v_fy, 16), _mm256_setzero_si256());
        // 8x16bit * 8x16bit -> 8x32bit
        __m256i offset = _mm256_unpacklo_epi16(_mm256_mullo_epi16(vy, vbpl), _mm256_mulhi_epi16(vy, vbpl));
        offset = _mm256_add_epi32(offset, _mm256_srli_epi32(v_fx, 16));
        const __m128i offsetLo = _mm256_castsi256_si128(offset);
        const __m128i offsetHi = _mm256_extracti128_si256(offset, 1);
        const uint *topData = (const uint *)(textureData);
        const uint *botData = (const uint *)(textureData + bytesPerLine);
        const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4);
        const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4);
        const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4);
        const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4);

        __m256i v_distx = _mm256_srli_epi16(v_fx, 8);
        __m256i v_disty = _mm256_srli_epi16(v_fy, 8);
        v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fxy_r), 4);
        v_disty = _mm256_srli_epi16(_mm256_add_epi32(v_disty, v_fxy_r), 4);
        v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle);
        v_disty = _mm256_shuffle_epi8(v_disty, vdistShuffle);

        interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b);
        b += 8;
        v_fx = _mm256_add_epi32(v_fx, v_fdx);
        v_fy = _mm256_add_epi32(v_fy, v_fdy);
    }
    fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0);
    fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0);

    while (b < boundedEnd) {
        int x = (fx >> 16);
        int y = (fy >> 16);

        const uint *s1 = (const uint *)image.scanLine(y);
        const uint *s2 = (const uint *)image.scanLine(y + 1);

        int distx = (fx & 0x0000ffff) >> 8;
        int disty = (fy & 0x0000ffff) >> 8;
        *b = interpolate_4_pixels(s1 + x, s2 + x, distx, disty);

        fx += fdx;
        fy += fdy;
        ++b;
    }

    while (b < end) {
        int x1 = (fx >> 16);
        int x2;
        int y1 = (fy >> 16);
        int y2;

        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
        fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);

        const uint *s1 = (const uint *)image.scanLine(y1);
        const uint *s2 = (const uint *)image.scanLine(y2);

        uint tl = s1[x1];
        uint tr = s1[x2];
        uint bl = s2[x1];
        uint br = s2[x2];

        int distx = (fx & 0x0000ffff) >> 8;
        int disty = (fy & 0x0000ffff) >> 8;
        *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty);

        fx += fdx;
        fy += fdy;
        ++b;
    }
}

QT_END_NAMESPACE

#endif