summaryrefslogtreecommitdiffstats
path: root/src/gui/rhi/qrhi.cpp
blob: d7c1607e576fe9500b7e75f653b39ea845c54df0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
/****************************************************************************
**
** Copyright (C) 2019 The Qt Company Ltd.
** Contact: http://www.qt.io/licensing/
**
** This file is part of the Qt Gui module
**
** $QT_BEGIN_LICENSE:LGPL3$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPLv3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or later as published by the Free
** Software Foundation and appearing in the file LICENSE.GPL included in
** the packaging of this file. Please review the following information to
** ensure the GNU General Public License version 2.0 requirements will be
** met: http://www.gnu.org/licenses/gpl-2.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qrhi_p_p.h"
#include <qmath.h>

#include "qrhinull_p_p.h"
#ifndef QT_NO_OPENGL
#include "qrhigles2_p_p.h"
#endif
#if QT_CONFIG(vulkan)
#include "qrhivulkan_p_p.h"
#endif
#ifdef Q_OS_WIN
#include "qrhid3d11_p_p.h"
#endif
//#ifdef Q_OS_DARWIN
#ifdef Q_OS_MACOS
#include "qrhimetal_p_p.h"
#endif

QT_BEGIN_NAMESPACE

/*!
    \class QRhi
    \inmodule QtRhi

    \brief Accelerated 2D/3D graphics API abstraction.

    The Qt Rendering Hardware Interface is an abstraction for hardware accelerated
    graphics APIs, such as, \l{https://www.khronos.org/opengl/}{OpenGL},
    \l{https://www.khronos.org/opengles/}{OpenGL ES},
    \l{https://docs.microsoft.com/en-us/windows/desktop/direct3d}{Direct3D},
    \l{https://developer.apple.com/metal/}{Metal}, and
    \l{https://www.khronos.org/vulkan/}{Vulkan}.

    Some of the main design goals are:

    \list

    \li Simple, minimal, understandable, extensible. Follow the proven path of the
    Qt Quick scenegraph.

    \li Aim to be a product - and in the bigger picture, part of a product (Qt) -
    that is usable out of the box both by internal (such as, Qt Quick) and,
    eventually, external users.

    \li Not a complete 1:1 wrapper for any of the underlying APIs. The feature set
    is tuned towards the needs of Qt's 2D and 3D offering (QPainter, Qt Quick, Qt
    3D Studio). Iterate and evolve in a sustainable manner.

    \li Intrinsically cross-platform, without reinventing: abstracting
    cross-platform aspects of certain APIs (such as, OpenGL context creation and
    windowing system interfaces, Vulkan instance and surface management) is not in
    scope here. These are delegated to the existing QtGui facilities (QWindow,
    QOpenGLContext, QVulkanInstance) and its backing QPA architecture.

    \endlist

    Each QRhi instance is backed by a backend for a specific graphics API. The
    selection of the backend is a run time choice and is up to the application
    or library that creates the QRhi instance. Some backends are available on
    multiple platforms (OpenGL, Vulkan, Null), while APIs specific to a given
    platform are only available when running on the platform in question (Metal
    on macOS/iOS/tvOS, Direct3D on Windows).

    The available backends currently are:

    \list

    \li OpenGL 2.1 or OpenGL ES 2.0 or newer. Some extensions are utilized when
    present, for example to enable multisample framebuffers.

    \li Direct3D 11.1

    \li Metal

    \li Vulkan 1.0, optionally with some extensions that are part of Vulkan 1.1

    \li Null - A "dummy" backend that issues no graphics calls at all.

    \endlist

    In order to allow shader code to be written once in Qt applications and
    libraries, all shaders are expected to be written in a single language
    which is then compiled into SPIR-V. Versions for various shading language
    are then generated from that, together with reflection information (inputs,
    outputs, shader resources). This is then packed into easily and efficiently
    serializable QShader instances. The compilers and tools to generate such
    shaders are not part of QRhi, but the core classes for using such shaders,
    QShader and QShaderDescription, are.

    \section2 Design Fundamentals

    A QRhi cannot be instantiated directly. Instead, use the create()
    function. Delete the QRhi instance normally to release the graphics device.

    \section3 Resources

    Instances of classes deriving from QRhiResource, such as, QRhiBuffer,
    QRhiTexture, etc., encapsulate zero, one, or more native graphics
    resources. Instances of such classes are always created via the \c new
    functions of the QRhi, such as, newBuffer(), newTexture(),
    newTextureRenderTarget(), newSwapChain().

    \badcode
        vbuf = rhi->newBuffer(QRhiBuffer::Immutable, QRhiBuffer::VertexBuffer, sizeof(vertexData));
        if (!vbuf->build()) { error }
        ...
        delete vbuf;
    \endcode

    \list

    \li The returned value from both create() and functions like newBuffer() is
    owned by the caller.

    \li Just creating a QRhiResource subclass never allocates or initializes any
    native resources. That is only done when calling the \c build function of a
    subclass, for example, QRhiBuffer::build() or QRhiTexture::build().

    \li The exception is
    QRhiTextureRenderTarget::newCompatibleRenderPassDescriptor() and
    QRhiSwapChain::newCompatibleRenderPassDescriptor(). There is no \c build
    operation for these and the returned object is immediately active.

    \li The resource objects themselves are treated as immutable: once a
    resource is built, changing any parameters via the setters, such as,
    QRhiTexture::setPixelSize(), has no effect, unless the underlying native
    resource is released and \c build is called again. See more about resource
    reuse in the sections below.

    \li The underlying native resources are scheduled for releasing by the
    QRhiResource destructor, or by calling QRhiResource::release(). Backends
    often queue release requests and defer executing them to an unspecified
    time, this is hidden from the applications. This way applications do not
    have to worry about releasing native resources that may still be in use by
    an in-flight frame.

    \li Note that this does not mean that a QRhiResource can freely be
    destroyed or release()'d within a frame (that is, in a
    \l{QRhiCommandBuffer::beginFrame()}{beginFrame()} -
    \l{QRhiCommandBuffer::endFrame()}{endFrame()} section). As a general rule,
    all referenced QRhiResource objects must stay unchanged until the frame is
    submitted by calling \l{QRhiCommandBuffer::endFrame()}{endFrame()}. To ease
    this, QRhiResource::releaseAndDestroyLater() is provided as a convenience.

    \endlist

    \section3 Command buffers and deferred command execution

    Regardless of the design and capabilities of the underlying graphics API,
    all QRhi backends implement some level of command buffers. No
    QRhiCommandBuffer function issues any native bind or draw command (such as,
    \c glDrawElements) directly. Commands are always recorded in a queue,
    either native or provided by the QRhi backend. The command buffer is
    submitted, and so execution starts only upon QRhi::endFrame() or
    QRhi::finish().

    The deferred nature has consequences for some types of objects. For example,
    writing to a dynamic buffer multiple times within a frame, in case such
    buffers are backed by host-visible memory, will result in making the
    results of all writes are visible to all draw calls in the command buffer
    of the frame, regardless of when the dynamic buffer update was recorded
    relative to a draw call.

    Furthermore, instances of QRhiResource subclasses must be treated immutable
    within a frame in which they are referenced in any way. Create or rebuild
    all resources upfront, before starting to record commands for the next
    frame. Reusing a QRhiResource instance within a frame (by rebuilding it and
    then referencing it again in the same \c{beginFrame - endFrame} section)
    should be avoided as it may lead to unexpected results, depending on the
    backend.

    As a general rule, all referenced QRhiResource objects must stay valid and
    unmodified until the frame is submitted by calling
    \l{QRhiCommandBuffer::endFrame()}{endFrame()}. On the other hand, calling
    \l{QRhiResource::release()}{release()} or destroying the QRhiResource are
    always safe once the frame is submitted, regardless of the status of the
    underlying native resources (which may still be in use by the GPU - but
    that is taken care of internally).

    Unlike APIs like OpenGL, upload and copy type of commands cannot be mixed
    with draw commands. The typical renderer will involve a sequence similar to
    the following: \c{(re)build resources} - \c{begin frame} - \c{record
    uploads and copies} - \c{start renderpass} - \c{record draw calls} - \c{end
    renderpass} - \c{end frame}. Recording copy type of operations happens via
    QRhiResourceUpdateBatch. Such operations are committed typically on
    \l{QRhiCommandBuffer::beginPass()}{beginPass()}.

    When working with legacy rendering engines designed for OpenGL, the
    migration to QRhi often involves redesigning from having a single \c render
    step (that performs copies and uploads, clears buffers, and issues draw
    calls, all mixed together) to a clearly separated, two phase \c prepare -
    \c render setup where the \c render step only starts a renderpass and
    records draw calls, while all resource creation and queuing of updates,
    uploads and copies happens beforehand, in the \c prepare step.

    QRhi does not at the moment allow freely creating and submitting command
    buffers. This may be lifted in the future to some extent, in particular if
    compute support is introduced, but the model of well defined
    \c{frame-start} and \c{frame-end} points, combined with a dedicated,
    "frame" command buffer, where \c{frame-end} implies presenting, is going to
    remain the primary way of operating since this is what fits Qt's various UI
    technologies best.

    \section3 Threading

    A QRhi instance and the associated resources can be created and used on any
    thread but all usage must be limited to that one single thread. When
    rendering to multiple QWindows in an application, having a dedicated thread
    and QRhi instance for each window is often advisable, as this can eliminate
    issues with unexpected throttling caused by presenting to multiple windows.
    Conceptually that is then the same as how Qt Quick scene graph's threaded
    render loop operates when working directly with OpenGL: one thread for each
    window, one QOpenGLContext for each thread. When moving onto QRhi,
    QOpenGLContext is replaced by QRhi, making the migration straightforward.

    When it comes to externally created native objects, such as OpenGL contexts
    passed in via QRhiGles2NativeHandles, it is up to the application to ensure
    they are not misused by other threads.

    Resources are not shareable between QRhi instances. This is an intentional
    choice since QRhi hides most queue, command buffer, and resource
    synchronization related tasks, and provides no API for them. Safe and
    efficient concurrent use of graphics resources from multiple threads is
    tied to those concepts, however, and is thus a topic that is currently out
    of scope, but may be introduced in the future.

    \section3 Resource synchronization

    QRhi does not expose APIs for resource barriers or image layout
    transitions. Such synchronization is done implicitly by the backends, where
    applicable (for example, Vulkan), by tracking resource usage as necessary.

    \note Resources within a render or compute pass are expected to be bound to
    a single usage during that pass. For example, a buffer can be used as
    vertex, index, uniform, or storage buffer, but not a combination of them
    within a single pass. However, it is perfectly fine to use a buffer as a
    storage buffer in a compute pass, and then as a vertex buffer in a render
    pass, for example, assuming the buffer declared both usages upon creation.

    \note Textures have this rule relaxed in certain cases, because using two
    subresources (typically two different mip levels) of the same texture for
    different access (one for load, one for store) is supported even within the
    same pass.

    \section3 Resource reuse

    From the user's point of view a QRhiResource is reusable immediately after
    calling QRhiResource::release(). With the exception of swapchains, calling
    \c build() on an already built object does an implicit \c release(). This
    provides a handy shortcut to reuse a QRhiResource instance with different
    parameters, with a new native graphics object underneath.

    The importance of reusing the same object lies in the fact that some
    objects reference other objects: for example, a QRhiShaderResourceBindings
    can reference QRhiBuffer, QRhiTexture, and QRhiSampler instances. If in a
    later frame one of these buffers need to be resized or a sampler parameter
    needs changing, destroying and creating a whole new QRhiBuffer or
    QRhiSampler would invalidate all references to the old instance. By just
    changing the appropriate parameters via QRhiBuffer::setSize() or similar
    and then calling QRhiBuffer::build(), everything works as expected and
    there is no need to touch the QRhiShaderResourceBindings at all, even
    though there is a good chance that under the hood the QRhiBuffer is now
    backed by a whole new native buffer.

    \badcode
        ubuf = rhi->newBuffer(QRhiBuffer::Dynamic, QRhiBuffer::UniformBuffer, 256);
        ubuf->build();

        srb = rhi->newShaderResourceBindings()
        srb->setBindings({
            QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage | QRhiShaderResourceBinding::FragmentStage, ubuf)
        });
        srb->build();

        ...

        // now in a later frame we need to grow the buffer to a larger size
        ubuf->setSize(512);
        ubuf->build(); // same as ubuf->release(); ubuf->build();

        // that's it, srb needs no changes whatsoever
    \endcode

    \section3 Pooled objects

    In addition to resources, there are pooled objects as well, such as,
    QRhiResourceUpdateBatch. An instance is retrieved via a \c next function,
    such as, nextResourceUpdateBatch(). The caller does not own the returned
    instance in this case. The only valid way of operating here is calling
    functions on the QRhiResourceUpdateBatch and then passing it to
    QRhiCommandBuffer::beginPass() or QRhiCommandBuffer::endPass(). These
    functions take care of returning the batch to the pool. Alternatively, a
    batch can be "canceled" and returned to the pool without processing by
    calling QRhiResourceUpdateBatch::release().

    A typical pattern is thus:

    \badcode
        QRhiResourceUpdateBatch *resUpdates = rhi->nextResourceUpdateBatch();
        ...
        resUpdates->updateDynamicBuffer(ubuf, 0, 64, mvp.constData());
        if (!image.isNull()) {
            resUpdates->uploadTexture(texture, image);
            image = QImage();
        }
        ...
        QRhiCommandBuffer *cb = m_sc->currentFrameCommandBuffer();
        cb->beginPass(swapchain->currentFrameRenderTarget(), clearCol, clearDs, resUpdates);
    \endcode

    \section3 Swapchain specifics

    QRhiSwapChain features some special semantics due to the peculiar nature of
    swapchains.

    \list

    \li It has no \c build but rather a QRhiSwapChain::buildOrResize().
    Repeatedly calling this function is \b not the same as calling
    QRhiSwapChain::release() followed by QRhiSwapChain::buildOrResize(). This
    is because swapchains often have ways to handle the case where buffers need
    to be resized in a manner that is more efficient than a brute force
    destroying and recreating from scratch.

    \li An active QRhiSwapChain must be released by calling
    \l{QRhiSwapChain::release()}{release()}, or by destroying the object, before
    the QWindow's underlying QPlatformWindow, and so the associated native
    window object, is destroyed. It should not be postponed because releasing
    the swapchain may become problematic (and with some APIs, like Vulkan, is
    explicitly disallowed) when the native window is not around anymore, for
    example because the QPlatformWindow got destroyed upon getting a
    QWindow::close(). Therefore, releasing the swapchain must happen whenever
    the targeted QWindow sends the
    QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed event. If the event does
    not arrive before the destruction of the QWindow - this can happen when
    using QCoreApplication::quit() -, then check QWindow::handle() after the
    event loop exits and invoke the swapchain release when non-null (meaning
    the underlying native window is still around).

    \endlist

    \section3 Ownership

    The general rule is no ownership transfer. Creating a QRhi with an already
    existing graphics device does not mean the QRhi takes ownership of the
    device object. Similarly, ownership is not given away when a device or
    texture object is "exported" via QRhi::nativeHandles() or
    QRhiTexture::nativeHandles(). Most importantly, passing pointers in structs
    and via setters does not transfer ownership.
 */

/*!
    \enum QRhi::Implementation
    Describes which graphics API-specific backend gets used by a QRhi instance.

    \value Null
    \value Vulkan
    \value OpenGLES2
    \value D3D11
    \value Metal
 */

/*!
    \enum QRhi::Flag
    Describes what special features to enable.

    \value EnableProfiling Enables gathering timing (CPU, GPU) and resource
    (QRhiBuffer, QRhiTexture, etc.) information and additional metadata. See
    QRhiProfiler. Avoid enabling in production builds as it may involve a
    performance penalty.

    \value EnableDebugMarkers Enables debug marker groups. Without this frame
    debugging features like making debug groups and custom resource name
    visible in external GPU debugging tools will not be available and functions
    like QRhiCommandBuffer::debugMarkBegin() will become a no-op. Avoid
    enabling in production builds as it may involve a performance penalty.
 */

/*!
    \enum QRhi::FrameOpResult
    Describes the result of operations that can have a soft failure.

    \value FrameOpSuccess Success

    \value FrameOpError Unspecified error

    \value FrameOpSwapChainOutOfDate The swapchain is in an inconsistent state
    internally. This can be recoverable by attempting to repeat the operation
    (such as, beginFrame()) later.

    \value FrameOpDeviceLost The graphics device was lost. This can be
    recoverable by attempting to repeat the operation (such as, beginFrame())
    and releasing and reinitializing all objects backed by native graphics
    resources.
 */

/*!
    \enum QRhi::Feature
    Flag values to indicate what features are supported by the backend currently in use.

    \value MultisampleTexture Indicates that textures with a sample count larger
    than 1 are supported.

    \value MultisampleRenderBuffer Indicates that renderbuffers with a sample
    count larger than 1 are supported.

    \value DebugMarkers Indicates that debug marker groups (and so
    QRhiCommandBuffer::debugMarkBegin()) are supported.

    \value Timestamps Indicates that command buffer timestamps are supported.
    Relevant for QRhiProfiler::gpuFrameTimes().

    \value Instancing Indicates that instanced drawing is supported.

    \value CustomInstanceStepRate Indicates that instance step rates other than
    1 are supported.

    \value PrimitiveRestart Indicates that restarting the assembly of
    primitives when encountering an index value of 0xFFFF
    (\l{QRhiCommandBuffer::IndexUInt16}{IndexUInt16}) or 0xFFFFFFFF
    (\l{QRhiCommandBuffer::IndexUInt32}{IndexUInt32}) is enabled, for certain
    primitive topologies at least. QRhi will try to enable this with all
    backends, but in some cases it will not be supported. Dynamically
    controlling primitive restart is not possible since with some APIs
    primitive restart with a fixed index is always on. Applications must assume
    that whenever this feature is reported as supported, the above mentioned
    index values \c may be treated specially, depending on the topology. The
    only two topologies where primitive restart is guaranteed to behave
    identically across backends, as long as this feature is reported as
    supported, are \l{QRhiGraphicsPipeline::LineStrip}{LineStrip} and
    \l{QRhiGraphicsPipeline::TriangleStrip}{TriangleStrip}.

    \value NonDynamicUniformBuffers Indicates that creating buffers with the
    usage \l{QRhiBuffer::UniformBuffer}{UniformBuffer} and the types
    \l{QRhiBuffer::Immutable}{Immutable} or \l{QRhiBuffer::Static}{Static} is
    supported. When reported as unsupported, uniform (constant) buffers must be
    created as \l{QRhiBuffer::Dynamic}{Dynamic}. (which is recommended
    regardless)

    \value NonFourAlignedEffectiveIndexBufferOffset Indicates that effective
    index buffer offsets (\c{indexOffset + firstIndex * indexComponentSize})
    that are not 4 byte aligned are supported. When not supported, attempting
    to issue a \l{QRhiCommandBuffer::drawIndexed()}{drawIndexed()} with a
    non-aligned effective offset may lead to unspecified behavior.

    \value NPOTTextureRepeat Indicates that the \l{QRhiSampler::Repeat}{Repeat}
    mode is supported for textures with a non-power-of-two size.

    \value RedOrAlpha8IsRed Indicates that the
    \l{QRhiTexture::RED_OR_ALPHA8}{RED_OR_ALPHA8} format maps to a one
    component 8-bit \c red format. This is the case for all backends except
    OpenGL, where \c{GL_ALPHA}, a one component 8-bit \c alpha format, is used
    instead. This is relevant for shader code that samples from the texture.

    \value ElementIndexUint Indicates that 32-bit unsigned integer elements are
    supported in the index buffer. In practice this is true everywhere except
    when running on plain OpenGL ES 2.0 implementations without the necessary
    extension. When false, only 16-bit unsigned elements are supported in the
    index buffer.

    \value Compute Indicates that compute shaders, image load/store, and
    storage buffers are supported.

    \value WideLines Indicates that lines with a width other than 1 are
    supported. When reported as not supported, the line width set on the
    graphics pipeline state is ignored. This can always be false with some
    backends (D3D11, Metal). With Vulkan, the value depends on the
    implementation.

    \value VertexShaderPointSize Indicates that the size of rasterized points
    set via \c{gl_PointSize} in the vertex shader is taken into account. When
    reported as not supported, drawing points with a size other than 1 is not
    supported. Setting \c{gl_PointSize} in the shader is still valid then, but
    is ignored. (for example, when generating HLSL, the assignment is silently
    dropped from the generated code) Note that some APIs (Metal, Vulkan)
    require the point size to be set in the shader explicitly whenever drawing
    points, even when the size is 1, as they do not automatically default to 1.

    \value BaseVertex Indicates that \l{QRhiCommandBuffer::drawIndexed()}{drawIndexed()}
    supports the \c vertexOffset argument. When reported as not supported, the
    vertexOffset value in an indexed draw is ignored.

    \value BaseInstance Indicates that instanced draw commands support the \c
    firstInstance argument. When reported as not supported, the firstInstance
    value is ignored and the instance ID starts from 0.
 */

/*!
    \enum QRhi::BeginFrameFlag
    Flag values for QRhi::beginFrame()
 */

/*!
    \enum QRhi::EndFrameFlag
    Flag values for QRhi::endFrame()

    \value SkipPresent Specifies that no present command is to be queued or no
    swapBuffers call is to be made. This way no image is presented. Generating
    multiple frames with all having this flag set is not recommended (except,
    for example, for benchmarking purposes - but keep in mind that backends may
    behave differently when it comes to waiting for command completion without
    presenting so the results are not comparable between them)
 */

/*!
    \enum QRhi::ResourceLimit
    Describes the resource limit to query.

    \value TextureSizeMin Minimum texture width and height. This is typically
    1. The minimum texture size is handled gracefully, meaning attempting to
    create a texture with an empty size will instead create a texture with the
    minimum size.

    \value TextureSizeMax Maximum texture width and height. This depends on the
    graphics API and sometimes the platform or implementation as well.
    Typically the value is in the range 4096 - 16384. Attempting to create
    textures larger than this is expected to fail.

    \value MaxColorAttachments The maximum number of color attachments for a
    QRhiTextureRenderTarget, in case multiple render targets are supported. When
    MRT is not supported, the value is 1. Otherwise this is typically 8, but
    watch out for the fact that OpenGL only mandates 4 as the minimum, and that
    is what some OpenGL ES implementations provide.

    \value FramesInFlight The number of frames the backend may keep "in
    flight". The value has no relevance, and is unspecified, with backends like
    OpenGL and Direct3D 11. With backends like Vulkan or Metal, it is the
    responsibility of QRhi to block whenever starting a new frame and finding
    the CPU is already \c{N - 1} frames ahead of the GPU (because the command
    buffer submitted in frame no. \c{current} - \c{N} has not yet completed).
    The value N is what is returned from here, and is typically 2. This can be
    relevant to applications that integrate rendering done directly with the
    graphics API, as such rendering code may want to perform double (if the
    value is 2) buffering for resources, such as, buffers, similarly to the
    QRhi backends themselves. The current frame slot index (a value running 0,
    1, .., N-1, then wrapping around) is retrievable from
    QRhi::currentFrameSlot().
 */

/*!
    \class QRhiInitParams
    \inmodule QtRhi
    \brief Base class for backend-specific initialization parameters.

    Contains fields that are relevant to all backends.
 */

/*!
    \class QRhiDepthStencilClearValue
    \inmodule QtRhi
    \brief Specifies clear values for a depth or stencil buffer.
 */

/*!
    \fn QRhiDepthStencilClearValue::QRhiDepthStencilClearValue()

    Constructs a depth/stencil clear value with depth clear value 1.0f and
    stencil clear value 0.
 */

/*!
    Constructs a depth/stencil clear value with depth clear value \a d and
    stencil clear value \a s.
 */
QRhiDepthStencilClearValue::QRhiDepthStencilClearValue(float d, quint32 s)
    : m_d(d),
      m_s(s)
{
}

/*!
    \return \c true if the values in the two QRhiDepthStencilClearValue objects
    \a a and \a b are equal.

    \relates QRhiDepthStencilClearValue
 */
bool operator==(const QRhiDepthStencilClearValue &a, const QRhiDepthStencilClearValue &b) Q_DECL_NOTHROW
{
    return a.depthClearValue() == b.depthClearValue()
            && a.stencilClearValue() == b.stencilClearValue();
}

/*!
    \return \c false if the values in the two QRhiDepthStencilClearValue
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiDepthStencilClearValue
*/
bool operator!=(const QRhiDepthStencilClearValue &a, const QRhiDepthStencilClearValue &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiDepthStencilClearValue
 */
uint qHash(const QRhiDepthStencilClearValue &v, uint seed) Q_DECL_NOTHROW
{
    return seed * (qFloor(v.depthClearValue() * 100) + v.stencilClearValue());
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiDepthStencilClearValue &v)
{
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiDepthStencilClearValue(depth-clear=" << v.depthClearValue()
                  << " stencil-clear=" << v.stencilClearValue()
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiViewport
    \inmodule QtRhi
    \brief Specifies a viewport rectangle.

    Used with QRhiCommandBuffer::setViewport().

    \note QRhi assumes OpenGL-style viewport coordinates, meaning x and y are
    bottom-left.

    Typical usage is like the following:

    \badcode
      const QSize outputSizeInPixels = swapchain->currentPixelSize();
      const QRhiViewport viewport(0, 0, outputSizeInPixels.width(), outputSizeInPixels.height());
      cb->beginPass(swapchain->currentFrameRenderTarget(), { 0, 0, 0, 1 }, { 1, 0 });
      cb->setGraphicsPipeline(ps);
      cb->setViewport(viewport);
      ...
    \endcode

    \sa QRhiCommandBuffer::setViewport(), QRhi::clipSpaceCorrMatrix(), QRhiScissor
 */

/*!
    \fn QRhiViewport::QRhiViewport()

    Constructs a viewport description with an empty rectangle and a depth range
    of 0.0f - 1.0f.

    \sa QRhi::clipSpaceCorrMatrix()
 */

/*!
    Constructs a viewport description with the rectangle specified by \a x, \a
    y, \a w, \a h and the depth range \a minDepth and \a maxDepth.

    \note x and y are assumed to be the bottom-left position.

    \sa QRhi::clipSpaceCorrMatrix()
 */
QRhiViewport::QRhiViewport(float x, float y, float w, float h, float minDepth, float maxDepth)
    : m_rect { { x, y, w, h } },
      m_minDepth(minDepth),
      m_maxDepth(maxDepth)
{
}

/*!
    \return \c true if the values in the two QRhiViewport objects
    \a a and \a b are equal.

    \relates QRhiViewport
 */
bool operator==(const QRhiViewport &a, const QRhiViewport &b) Q_DECL_NOTHROW
{
    return a.viewport() == b.viewport()
            && a.minDepth() == b.minDepth()
            && a.maxDepth() == b.maxDepth();
}

/*!
    \return \c false if the values in the two QRhiViewport
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiViewport
*/
bool operator!=(const QRhiViewport &a, const QRhiViewport &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiViewport
 */
uint qHash(const QRhiViewport &v, uint seed) Q_DECL_NOTHROW
{
    const std::array<float, 4> r = v.viewport();
    return seed + r[0] + r[1] + r[2] + r[3] + qFloor(v.minDepth() * 100) + qFloor(v.maxDepth() * 100);
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiViewport &v)
{
    QDebugStateSaver saver(dbg);
    const std::array<float, 4> r = v.viewport();
    dbg.nospace() << "QRhiViewport(bottom-left-x=" << r[0]
                  << " bottom-left-y=" << r[1]
                  << " width=" << r[2]
                  << " height=" << r[3]
                  << " minDepth=" << v.minDepth()
                  << " maxDepth=" << v.maxDepth()
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiScissor
    \inmodule QtRhi
    \brief Specifies a scissor rectangle.

    Used with QRhiCommandBuffer::setScissor(). Setting a scissor rectangle is
    only possible with a QRhiGraphicsPipeline that has
    QRhiGraphicsPipeline::UsesScissor set.

    \note QRhi assumes OpenGL-style scissor coordinates, meaning x and y are
    bottom-left.

    \sa QRhiCommandBuffer::setScissor(), QRhiViewport
 */

/*!
    \fn QRhiScissor::QRhiScissor()

    Constructs an empty scissor.
 */

/*!
    Constructs a scissor with the rectangle specified by \a x, \a y, \a w, and
    \a h.

    \note x and y are assumed to be the bottom-left position.
 */
QRhiScissor::QRhiScissor(int x, int y, int w, int h)
    : m_rect { { x, y, w, h } }
{
}

/*!
    \return \c true if the values in the two QRhiScissor objects
    \a a and \a b are equal.

    \relates QRhiScissor
 */
bool operator==(const QRhiScissor &a, const QRhiScissor &b) Q_DECL_NOTHROW
{
    return a.scissor() == b.scissor();
}

/*!
    \return \c false if the values in the two QRhiScissor
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiScissor
*/
bool operator!=(const QRhiScissor &a, const QRhiScissor &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiScissor
 */
uint qHash(const QRhiScissor &v, uint seed) Q_DECL_NOTHROW
{
    const std::array<int, 4> r = v.scissor();
    return seed + r[0] + r[1] + r[2] + r[3];
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiScissor &s)
{
    QDebugStateSaver saver(dbg);
    const std::array<int, 4> r = s.scissor();
    dbg.nospace() << "QRhiScissor(bottom-left-x=" << r[0]
                  << " bottom-left-y=" << r[1]
                  << " width=" << r[2]
                  << " height=" << r[3]
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiVertexInputBinding
    \inmodule QtRhi
    \brief Describes a vertex input binding.

    Specifies the stride (in bytes, must be a multiple of 4), the
    classification and optionally the instance step rate.

    As an example, assume a vertex shader with the following inputs:

    \badcode
        layout(location = 0) in vec4 position;
        layout(location = 1) in vec2 texcoord;
    \endcode

    Now let's assume also that 3 component vertex positions \c{(x, y, z)} and 2
    component texture coordinates \c{(u, v)} are provided in a non-interleaved
    format in a buffer (or separate buffers even). Definining two bindings
    could then be done like this:

    \badcode
        QRhiVertexInputLayout inputLayout;
        inputLayout.setBindings({
            { 3 * sizeof(float) },
            { 2 * sizeof(float) }
        });
    \endcode

    Only the stride is interesting here since instancing is not used. The
    binding number is given by the index of the QRhiVertexInputBinding
    element in the bindings vector of the QRhiVertexInputLayout.

    Once a graphics pipeline with this vertex input layout is bound, the vertex
    inputs could be set up like the following for drawing a cube with 36
    vertices, assuming we have a single buffer with first the positions and
    then the texture coordinates:

    \badcode
        const QRhiCommandBuffer::VertexInput vbufBindings[] = {
            { cubeBuf, 0 },
            { cubeBuf, 36 * 3 * sizeof(float) }
        };
        cb->setVertexInput(0, 2, vbufBindings);
    \endcode

    Note how the index defined by \c {startBinding + i}, where \c i is the
    index in the second argument of
    \l{QRhiCommandBuffer::setVertexInput()}{setVertexInput()}, matches the
    index of the corresponding entry in the \c bindings vector of the
    QRhiVertexInputLayout.

    \note the stride must always be a multiple of 4.

    \sa QRhiCommandBuffer::setVertexInput()
 */

/*!
    \enum QRhiVertexInputBinding::Classification
    Describes the input data classification.

    \value PerVertex Data is per-vertex
    \value PerInstance Data is per-instance
 */

/*!
    \fn QRhiVertexInputBinding::QRhiVertexInputBinding()

    Constructs a default vertex input binding description.
 */

/*!
    Constructs a vertex input binding description with the specified \a stride,
    classification \a cls, and instance step rate \a stepRate.

    \note \a stepRate other than 1 is only supported when
    QRhi::CustomInstanceStepRate is reported to be supported.
 */
QRhiVertexInputBinding::QRhiVertexInputBinding(quint32 stride, Classification cls, int stepRate)
    : m_stride(stride),
      m_classification(cls),
      m_instanceStepRate(stepRate)
{
}

/*!
    \return \c true if the values in the two QRhiVertexInputBinding objects
    \a a and \a b are equal.

    \relates QRhiVertexInputBinding
 */
bool operator==(const QRhiVertexInputBinding &a, const QRhiVertexInputBinding &b) Q_DECL_NOTHROW
{
    return a.stride() == b.stride()
            && a.classification() == b.classification()
            && a.instanceStepRate() == b.instanceStepRate();
}

/*!
    \return \c false if the values in the two QRhiVertexInputBinding
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiVertexInputBinding
*/
bool operator!=(const QRhiVertexInputBinding &a, const QRhiVertexInputBinding &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiVertexInputBinding
 */
uint qHash(const QRhiVertexInputBinding &v, uint seed) Q_DECL_NOTHROW
{
    return seed + v.stride() + v.classification();
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiVertexInputBinding &b)
{
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiVertexInputBinding(stride=" << b.stride()
                  << " cls=" << b.classification()
                  << " step-rate=" << b.instanceStepRate()
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiVertexInputAttribute
    \inmodule QtRhi
    \brief Describes a single vertex input element.

    The members specify the binding number, location, format, and offset for a
    single vertex input element.

    \note For HLSL it is assumed that the vertex shader uses
    \c{TEXCOORD<location>} as the semantic for each input. Hence no separate
    semantic name and index.

    As an example, assume a vertex shader with the following inputs:

    \badcode
        layout(location = 0) in vec4 position;
        layout(location = 1) in vec2 texcoord;
    \endcode

    Now let's assume that we have 3 component vertex positions \c{(x, y, z)}
    and 2 component texture coordinates \c{(u, v)} are provided in a
    non-interleaved format in a buffer (or separate buffers even). Once two
    bindings are defined, the attributes could be specified as:

    \badcode
        QRhiVertexInputLayout inputLayout;
        inputLayout.setBindings({
            { 3 * sizeof(float) },
            { 2 * sizeof(float) }
        });
        inputLayout.setAttributes({
            { 0, 0, QRhiVertexInputAttribute::Float3, 0 },
            { 1, 1, QRhiVertexInputAttribute::Float2, 0 }
        });
    \endcode

    Once a graphics pipeline with this vertex input layout is bound, the vertex
    inputs could be set up like the following for drawing a cube with 36
    vertices, assuming we have a single buffer with first the positions and
    then the texture coordinates:

    \badcode
        const QRhiCommandBuffer::VertexInput vbufBindings[] = {
            { cubeBuf, 0 },
            { cubeBuf, 36 * 3 * sizeof(float) }
        };
        cb->setVertexInput(0, 2, vbufBindings);
    \endcode

    When working with interleaved data, there will typically be just one
    binding, with multiple attributes referring to that same buffer binding
    point:

    \badcode
        QRhiVertexInputLayout inputLayout;
        inputLayout.setBindings({
            { 5 * sizeof(float) }
        });
        inputLayout.setAttributes({
            { 0, 0, QRhiVertexInputAttribute::Float3, 0 },
            { 0, 1, QRhiVertexInputAttribute::Float2, 3 * sizeof(float) }
        });
    \endcode

    and then:

    \badcode
        const QRhiCommandBuffer::VertexInput vbufBinding(interleavedCubeBuf, 0);
        cb->setVertexInput(0, 1, &vbufBinding);
    \endcode

    \sa QRhiCommandBuffer::setVertexInput()
 */

/*!
    \enum QRhiVertexInputAttribute::Format
    Specifies the type of the element data.

    \value Float4 Four component float vector
    \value Float3 Three component float vector
    \value Float2 Two component float vector
    \value Float Float
    \value UNormByte4 Four component normalized unsigned byte vector
    \value UNormByte2 Two component normalized unsigned byte vector
    \value UNormByte Normalized unsigned byte
 */

/*!
    \fn QRhiVertexInputAttribute::QRhiVertexInputAttribute()

    Constructs a default vertex input attribute description.
 */

/*!
    Constructs a vertex input attribute description with the specified \a
    binding number, \a location, \a format, and \a offset.
 */
QRhiVertexInputAttribute::QRhiVertexInputAttribute(int binding, int location, Format format, quint32 offset)
    : m_binding(binding),
      m_location(location),
      m_format(format),
      m_offset(offset)
{
}

/*!
    \return \c true if the values in the two QRhiVertexInputAttribute objects
    \a a and \a b are equal.

    \relates QRhiVertexInputAttribute
 */
bool operator==(const QRhiVertexInputAttribute &a, const QRhiVertexInputAttribute &b) Q_DECL_NOTHROW
{
    return a.binding() == b.binding()
            && a.location() == b.location()
            && a.format() == b.format()
            && a.offset() == b.offset();
}

/*!
    \return \c false if the values in the two QRhiVertexInputAttribute
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiVertexInputAttribute
*/
bool operator!=(const QRhiVertexInputAttribute &a, const QRhiVertexInputAttribute &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiVertexInputAttribute
 */
uint qHash(const QRhiVertexInputAttribute &v, uint seed) Q_DECL_NOTHROW
{
    return seed + v.binding() + v.location() + v.format() + v.offset();
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiVertexInputAttribute &a)
{
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiVertexInputAttribute(binding=" << a.binding()
                  << " location=" << a.location()
                  << " format=" << a.format()
                  << " offset=" << a.offset()
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiVertexInputLayout
    \inmodule QtRhi
    \brief Describes the layout of vertex inputs consumed by a vertex shader.

    The vertex input layout is defined by the collections of
    QRhiVertexInputBinding and QRhiVertexInputAttribute.
 */

/*!
    \fn QRhiVertexInputLayout::QRhiVertexInputLayout()

    Constructs an empty vertex input layout description.
 */

/*!
    \return \c true if the values in the two QRhiVertexInputLayout objects
    \a a and \a b are equal.

    \relates QRhiVertexInputLayout
 */
bool operator==(const QRhiVertexInputLayout &a, const QRhiVertexInputLayout &b) Q_DECL_NOTHROW
{
    return a.bindings() == b.bindings()
            && a.attributes() == b.attributes();
}

/*!
    \return \c false if the values in the two QRhiVertexInputLayout
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiVertexInputLayout
*/
bool operator!=(const QRhiVertexInputLayout &a, const QRhiVertexInputLayout &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiVertexInputLayout
 */
uint qHash(const QRhiVertexInputLayout &v, uint seed) Q_DECL_NOTHROW
{
    return qHash(v.bindings(), seed) + qHash(v.attributes(), seed);
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiVertexInputLayout &v)
{
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiVertexInputLayout(bindings=" << v.bindings()
                  << " attributes=" << v.attributes()
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiShaderStage
    \inmodule QtRhi
    \brief Specifies the type and the shader code for a shader stage in the pipeline.
 */

/*!
    \enum QRhiShaderStage::Type
    Specifies the type of the shader stage.

    \value Vertex Vertex stage
    \value Fragment Fragment (pixel) stage
    \value Compute Compute stage (this may not always be supported at run time)
 */

/*!
    \fn QRhiShaderStage::QRhiShaderStage()

    Constructs a shader stage description for the vertex stage with an empty
    QShader.
 */

/*!
    Constructs a shader stage description with the \a type of the stage and the
    \a shader.

    The shader variant \a v defaults to QShader::StandardShader. A
    QShader contains multiple source and binary versions of a shader.
    In addition, it can also contain variants of the shader with slightly
    modified code. \a v can then be used to select the desired variant.
 */
QRhiShaderStage::QRhiShaderStage(Type type, const QShader &shader, QShader::Variant v)
    : m_type(type),
      m_shader(shader),
      m_shaderVariant(v)
{
}

/*!
    \return \c true if the values in the two QRhiShaderStage objects
    \a a and \a b are equal.

    \relates QRhiShaderStage
 */
bool operator==(const QRhiShaderStage &a, const QRhiShaderStage &b) Q_DECL_NOTHROW
{
    return a.type() == b.type()
            && a.shader() == b.shader()
            && a.shaderVariant() == b.shaderVariant();
}

/*!
    \return \c false if the values in the two QRhiShaderStage
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiShaderStage
*/
bool operator!=(const QRhiShaderStage &a, const QRhiShaderStage &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a v, using \a seed to seed the calculation.

    \relates QRhiShaderStage
 */
uint qHash(const QRhiShaderStage &v, uint seed) Q_DECL_NOTHROW
{
    return v.type() + qHash(v.shader(), seed) + v.shaderVariant();
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiShaderStage &s)
{
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiShaderStage(type=" << s.type()
                  << " shader=" << s.shader()
                  << " variant=" << s.shaderVariant()
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiColorAttachment
    \inmodule QtRhi
    \brief Describes the a single color attachment of a render target.

    A color attachment is either a QRhiTexture or a QRhiRenderBuffer. The
    former, when texture() is set, is used in most cases.

    \note texture() and renderBuffer() cannot be both set (be non-null at the
    same time).

    Setting renderBuffer instead is recommended only when multisampling is
    needed. Relying on QRhi::MultisampleRenderBuffer is a better choice than
    QRhi::MultisampleTexture in practice since the former is available in more
    run time configurations (e.g. when running on OpenGL ES 3.0 which has no
    support for multisample textures, but does support multisample
    renderbuffers).

    When targeting a non-multisample texture, the layer() and level()
    indicate the targeted layer (face index \c{0-5} for cubemaps) and mip
    level.

    When texture() or renderBuffer() is multisample, resolveTexture() can be
    set optionally. When set, samples are resolved automatically into that
    (non-multisample) texture at the end of the render pass. When rendering
    into a multisample renderbuffers, this is the only way to get resolved,
    non-multisample content out of them. Multisample textures allow sampling in
    shaders so for them this is just one option.

    \note when resolving is enabled, the multisample data may not be written
    out at all. This means that the multisample texture() must not be used
    afterwards with shaders for sampling when resolveTexture() is set.
 */

/*!
    \fn QRhiColorAttachment::QRhiColorAttachment()

    Constructs an empty color attachment description.
 */

/*!
    Constructs a color attachment description that specifies \a texture as the
    associated color buffer.
 */
QRhiColorAttachment::QRhiColorAttachment(QRhiTexture *texture)
    : m_texture(texture)
{
}

/*!
    Constructs a color attachment description that specifies \a renderBuffer as
    the associated color buffer.
 */
QRhiColorAttachment::QRhiColorAttachment(QRhiRenderBuffer *renderBuffer)
    : m_renderBuffer(renderBuffer)
{
}

/*!
    \class QRhiTextureRenderTargetDescription
    \inmodule QtRhi
    \brief Describes the color and depth or depth/stencil attachments of a render target.

    A texture render target has zero or more textures as color attachments,
    zero or one renderbuffer as combined depth/stencil buffer or zero or one
    texture as depth buffer.

    \note depthStencilBuffer() and depthTexture() cannot be both set (cannot be
    non-null at the same time).
 */

/*!
    \fn QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription()

    Constructs an empty texture render target description.
 */

/*!
    Constructs a texture render target description with one attachment
    described by \a colorAttachment.
 */
QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription(const QRhiColorAttachment &colorAttachment)
{
    m_colorAttachments.append(colorAttachment);
}

/*!
    Constructs a texture render target description with two attachments, a
    color attachment described by \a colorAttachment, and a depth/stencil
    attachment with \a depthStencilBuffer.
 */
QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription(const QRhiColorAttachment &colorAttachment,
                                                                       QRhiRenderBuffer *depthStencilBuffer)
    : m_depthStencilBuffer(depthStencilBuffer)
{
    m_colorAttachments.append(colorAttachment);
}

/*!
    Constructs a texture render target description with two attachments, a
    color attachment described by \a colorAttachment, and a depth attachment
    with \a depthTexture.

    \note \a depthTexture must have a suitable format, such as QRhiTexture::D16
    or QRhiTexture::D32F.
 */
QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription(const QRhiColorAttachment &colorAttachment,
                                                                       QRhiTexture *depthTexture)
    : m_depthTexture(depthTexture)
{
    m_colorAttachments.append(colorAttachment);
}

/*!
    \class QRhiTextureSubresourceUploadDescription
    \inmodule QtRhi
    \brief Describes the source for one mip level in a layer in a texture upload operation.

    The source content is specified either as a QImage or as a raw blob. The
    former is only allowed for uncompressed textures with a format that can be
    mapped to QImage, while the latter is supported for all formats, including
    floating point and compressed.

    \note image() and data() cannot be both set at the same time.

    destinationTopLeft() specifies the top-left corner of the target
    rectangle. Defaults to (0, 0).

    An empty sourceSize() (the default) indicates that size is assumed to be
    the size of the subresource. With QImage-based uploads this implies that
    the size of the source image() must match the subresource. When providing
    raw data instead, sufficient number of bytes must be provided in data().

    \note With compressed textures the first upload must always match the
    subresource size due to graphics API limitations with some backends.

    sourceTopLeft() is supported only for QImage-based uploads, and specifies
    the top-left corner of the source rectangle.

    \note Setting sourceSize() or sourceTopLeft() may trigger a QImage copy
    internally, depending on the format and the backend.

    When providing raw data, the stride (row pitch, row length in bytes) of the
    provided data must be equal to \c{width * pixelSize} where \c pixelSize is
    the number of bytes used for one pixel, and there must be no additional
    padding between rows. There is no row start alignment requirement.

    \note The format of the source data must be compatible with the texture
    format. With many graphics APIs the data is copied as-is into a staging
    buffer, there is no intermediate format conversion provided by QRhi. This
    applies to floating point formats as well, with, for example, RGBA16F
    requiring half floats in the source data.
 */

/*!
    \fn QRhiTextureSubresourceUploadDescription::QRhiTextureSubresourceUploadDescription()

    Constructs an empty subresource description.

    \note an empty QRhiTextureSubresourceUploadDescription is not useful on its
    own and should not be submitted to a QRhiTextureUploadEntry. At minimum
    image or data must be set first.
 */

/*!
    Constructs a mip level description with a \a image.

    The \l{QImage::size()}{size} of \a image must match the size of the mip
    level. For level 0 that is the \l{QRhiTexture::pixelSize()}{texture size}.

    The bit depth of \a image must be compatible with the
    \l{QRhiTexture::Format}{texture format}.

    To describe a partial upload, call setSourceSize(), setSourceTopLeft(), or
    setDestinationTopLeft() afterwards.
 */
QRhiTextureSubresourceUploadDescription::QRhiTextureSubresourceUploadDescription(const QImage &image)
    : m_image(image)
{
}

/*!
    Constructs a mip level description with the image data is specified by \a
    data and \a size. This is suitable for floating point and compressed
    formats as well.

    \a data can safely be destroyed or changed once this function returns.
 */
QRhiTextureSubresourceUploadDescription::QRhiTextureSubresourceUploadDescription(const void *data, int size)
    : m_data(reinterpret_cast<const char *>(data), size)
{
}

/*!
    \class QRhiTextureUploadEntry
    \inmodule QtRhi
    \brief Describes one layer (face for cubemaps) in a texture upload operation.
 */

/*!
    \fn QRhiTextureUploadEntry::QRhiTextureUploadEntry()

    Constructs an empty QRhiTextureUploadEntry targeting layer 0 and level 0.

    \note an empty QRhiTextureUploadEntry should not be submitted without
    setting a QRhiTextureSubresourceUploadDescription via setDescription()
    first.
 */

/*!
    Constructs a QRhiTextureUploadEntry targeting the given \a layer and mip
    \a level, with the subresource contents described by \a desc.
 */
QRhiTextureUploadEntry::QRhiTextureUploadEntry(int layer, int level,
                                               const QRhiTextureSubresourceUploadDescription &desc)
    : m_layer(layer),
      m_level(level),
      m_desc(desc)
{
}

/*!
    \class QRhiTextureUploadDescription
    \inmodule QtRhi
    \brief Describes a texture upload operation.

    Used with QRhiResourceUpdateBatch::uploadTexture(). That function has two
    variants: one taking a QImage and one taking a
    QRhiTextureUploadDescription. The former is a convenience version,
    internally creating a QRhiTextureUploadDescription with a single image
    targeting level 0 for layer 0. However, when cubemaps, pre-generated mip
    images, or compressed textures are involved, applications will have to work
    directly with this class instead.

    QRhiTextureUploadDescription also enables specifying batched uploads, which
    are useful for example when generating an atlas or glyph cache texture:
    multiple, partial uploads for the same subresource (meaning the same layer
    and level) are supported, and can be, depending on the backend and the
    underlying graphics API, more efficient when batched into the same
    QRhiTextureUploadDescription as opposed to issuing individual
    \l{QRhiResourceUpdateBatch::uploadTexture()}{uploadTexture()} commands for
    each of them.

    \note Cubemaps have one layer for each of the six faces in the order +X,
    -X, +Y, -Y, +Z, -Z.

    For example, specifying the faces of a cubemap could look like the following:

    \badcode
        QImage faces[6];
        ...
        QVector<QRhiTextureUploadEntry> entries;
        for (int i = 0; i < 6; ++i)
          entries.append(QRhiTextureUploadEntry(i, 0, faces[i]));
        QRhiTextureUploadDescription desc(entries);
        resourceUpdates->uploadTexture(texture, desc);
    \endcode

    Another example that specifies mip images for a compressed texture:

    \badcode
        QRhiTextureUploadDescription desc;
        const int mipCount = rhi->mipLevelsForSize(compressedTexture->pixelSize());
        for (int level = 0; level < mipCount; ++level) {
            const QByteArray compressedDataForLevel = ..
            desc.append(QRhiTextureUploadEntry(0, level, compressedDataForLevel));
        }
        resourceUpdates->uploadTexture(compressedTexture, desc);
    \endcode

    With partial uploads targeting the same subresource, it is recommended to
    batch them into a single upload request, whenever possible:

    \badcode
      QRhiTextureSubresourceUploadDescription subresDesc(image);
      subresDesc.setSourceSize(QSize(10, 10));
      subResDesc.setDestinationTopLeft(QPoint(50, 40));
      QRhiTextureUploadEntry entry(0, 0, subresDesc); // layer 0, level 0

      QRhiTextureSubresourceUploadDescription subresDesc2(image);
      subresDesc2.setSourceSize(QSize(30, 40));
      subResDesc2.setDestinationTopLeft(QPoint(100, 200));
      QRhiTextureUploadEntry entry2(0, 0, subresDesc2); // layer 0, level 0, i.e. same subresource

      QRhiTextureUploadDescription desc({ entry, entry2});
      resourceUpdates->uploadTexture(texture, desc);
    \endcode
 */

/*!
    \fn QRhiTextureUploadDescription::QRhiTextureUploadDescription()

    Constructs an empty texture upload description.
 */

/*!
    Constructs a texture upload description with a single subresource upload
    described by \a entry.
 */
QRhiTextureUploadDescription::QRhiTextureUploadDescription(const QRhiTextureUploadEntry &entry)
{
    m_entries.append(entry);
}

/*!
    Constructs a texture upload description with the specified list of \a entries.

    \note \a entries can also contain multiple QRhiTextureUploadEntry elements
    with the the same layer and level. This makes sense when those uploads are
    partial, meaning their subresource description has a source size or image
    smaller than the subresource dimensions, and can be more efficient than
    issuing separate uploadTexture()'s.
 */
QRhiTextureUploadDescription::QRhiTextureUploadDescription(const QVector<QRhiTextureUploadEntry> &entries)
    : m_entries(entries)
{
}

/*!
    Adds \a entry to the list of subresource uploads.
 */
void QRhiTextureUploadDescription::append(const QRhiTextureUploadEntry &entry)
{
    m_entries.append(entry);
}

/*!
    \class QRhiTextureCopyDescription
    \inmodule QtRhi
    \brief Describes a texture-to-texture copy operation.

    An empty pixelSize() indicates that the entire subresource is to be copied.
    A default constructed copy description therefore leads to copying the
    entire subresource at level 0 of layer 0.

    \note The source texture must be created with
    QRhiTexture::UsedAsTransferSource.

    \note The source and destination rectangles defined by pixelSize(),
    sourceTopLeft(), and destinationTopLeft() must fit the source and
    destination textures, respectively. The behavior is undefined otherwise.
 */

/*!
    \fn QRhiTextureCopyDescription::QRhiTextureCopyDescription()

    Constructs an empty texture copy description.
 */

/*!
    \class QRhiReadbackDescription
    \inmodule QtRhi
    \brief Describes a readback (reading back texture contents from possibly GPU-only memory) operation.

    The source of the readback operation is either a QRhiTexture or the
    current backbuffer of the currently targeted QRhiSwapChain. When
    texture() is not set, the swapchain is used. Otherwise the specified
    QRhiTexture is treated as the source.

    \note Textures used in readbacks must be created with
    QRhiTexture::UsedAsTransferSource.

    \note Swapchains used in readbacks must be created with
    QRhiSwapChain::UsedAsTransferSource.

    layer() and level() are only applicable when the source is a QRhiTexture.

    \note Multisample textures cannot be read back. Readbacks are supported for
    multisample swapchain buffers however.
 */

/*!
    \fn QRhiReadbackDescription::QRhiReadbackDescription()

    Constructs an empty texture readback description.

    \note The source texture is set to null by default, which is still a valid
    readback: it specifies that the backbuffer of the current swapchain is to
    be read back. (current meaning the frame's target swapchain at the time of
    committing the QRhiResourceUpdateBatch with the
    \l{QRhiResourceUpdateBatch::readBackTexture()}{texture readback} on it)
 */

/*!
    Constructs an texture readback description that specifies that level 0 of
    layer 0 of \a texture is to be read back.

    \note \a texture can also be null in which case this constructor is
    identical to the argumentless variant.
 */
QRhiReadbackDescription::QRhiReadbackDescription(QRhiTexture *texture)
    : m_texture(texture)
{
}

/*!
    \class QRhiReadbackResult
    \inmodule QtRhi
    \brief Describes the results of a potentially asynchronous readback operation.

    When \l completed is set, the function is invoked when the \l data is
    available. \l format and \l pixelSize are set upon completion together with
    \l data.
 */

/*!
    \class QRhiNativeHandles
    \inmodule QtRhi
    \brief Base class for classes exposing backend-specific collections of native resource objects.
 */

/*!
    \class QRhiResource
    \inmodule QtRhi
    \brief Base class for classes encapsulating native resource objects.
 */

/*!
    \fn QRhiResource::Type QRhiResource::resourceType() const

    \return the type of the resource.
 */

/*!
    \internal
 */
QRhiResource::QRhiResource(QRhiImplementation *rhi)
    : m_rhi(rhi)
{
    m_id = QRhiGlobalObjectIdGenerator::newId();
}

/*!
    Destructor.

    Releases (or requests deferred releasing of) the underlying native graphics
    resources, if there are any.

    \note Resources referenced by commands for the current frame should not be
    released until the frame is submitted by QRhi::endFrame().

    \sa release()
 */
QRhiResource::~QRhiResource()
{
    // release() cannot be called here, it being virtual; it is up to the
    // subclasses to do that.
}

/*!
    \fn void QRhiResource::release()

    Releases (or requests deferred releasing of) the underlying native graphics
    resources. Safe to call multiple times, subsequent invocations will be a
    no-op then.

    Once release() is called, the QRhiResource instance can be reused, by
    calling \c build() again. That will then result in creating new native
    graphics resources underneath.

    \note Resources referenced by commands for the current frame should not be
    released until the frame is submitted by QRhi::endFrame().

    The QRhiResource destructor also performs the same task, so calling this
    function is not necessary before destroying a QRhiResource.

    \sa releaseAndDestroyLater()
 */

/*!
    When called without a frame being recorded, this function is equivalent to
    deleting the object. Between a QRhi::beginFrame() and QRhi::endFrame()
    however the behavior is different: the QRhiResource will not be destroyed
    until the frame is submitted via QRhi::endFrame(), thus satisfying the QRhi
    requirement of not altering QRhiResource objects that are referenced by the
    frame being recorded.

    \sa release()
 */
void QRhiResource::releaseAndDestroyLater()
{
    m_rhi->addReleaseAndDestroyLater(this);
}

/*!
    \return the currently set object name. By default the name is empty.
 */
QByteArray QRhiResource::name() const
{
    return m_objectName;
}

/*!
    Sets a \a name for the object.

    This has two uses: to get descriptive names for the native graphics
    resources visible in graphics debugging tools, such as
    \l{https://renderdoc.org/}{RenderDoc} and
    \l{https://developer.apple.com/xcode/}{XCode}, and in the output stream of
    QRhiProfiler.

    When it comes to naming native objects by relaying the name via the
    appropriate graphics API, note that the name is ignored when
    QRhi::DebugMarkers are not supported, and may, depending on the backend,
    also be ignored when QRhi::EnableDebugMarkers is not set.

    \note The name may be ignored for objects other than buffers,
    renderbuffers, and textures, depending on the backend.

    \note The name may be modified. For slotted resources, such as a QRhiBuffer
    backed by multiple native buffers, QRhi will append a suffix to make the
    underlying native buffers easily distinguishable from each other.
 */
void QRhiResource::setName(const QByteArray &name)
{
    m_objectName = name;
    m_objectName.replace(',', '_'); // cannot contain comma for QRhiProfiler
}

/*!
    \return the global, unique identifier of this QRhiResource.

    User code rarely needs to deal with the value directly. It is used
    internally for tracking and bookkeeping purposes.
 */
quint64 QRhiResource::globalResourceId() const
{
    return m_id;
}

/*!
    \class QRhiBuffer
    \inmodule QtRhi
    \brief Vertex, index, or uniform (constant) buffer resource.
 */

/*!
    \enum QRhiBuffer::Type
    Specifies storage type of buffer resource.

    \value Immutable Indicates that the data is not expected to change ever
    after the initial upload. Under the hood such buffer resources are
    typically placed in device local (GPU) memory (on systems where
    applicable). Uploading new data is possible, but may be expensive. The
    upload typically happens by copying to a separate, host visible staging
    buffer from which a GPU buffer-to-buffer copy is issued into the actual
    GPU-only buffer.

    \value Static Indicates that the data is expected to change only
    infrequently. Typically placed in device local (GPU) memory, where
    applicable. On backends where host visible staging buffers are used for
    uploading, the staging buffers are kept around for this type, unlike with
    Immutable, so subsequent uploads do not suffer in performance. Frequent
    updates, especially updates in consecutive frames, should be avoided.

    \value Dynamic Indicates that the data is expected to change frequently.
    Not recommended for large buffers. Typically backed by host visible memory
    in 2 copies in order to allow for changing without stalling the graphics
    pipeline. The double buffering is managed transparently to the applications
    and is not exposed in the API here in any form. This is the recommended,
    and, with some backends, the only possible, type for buffers with
    UniformBuffer usage.
 */

/*!
    \enum QRhiBuffer::UsageFlag
    Flag values to specify how the buffer is going to be used.

    \value VertexBuffer Vertex buffer. This allows the QRhiBuffer to be used in
    \l{setVertexInput()}{QRhiCommandBuffer::setVertexInput()}.

    \value IndexBuffer Index buffer. This allows the QRhiBuffer to be used in
    \l{setVertexInput()}{QRhiCommandBuffer::setVertexInput()}.

    \value UniformBuffer Uniform buffer (also called constant buffer). This
    allows the QRhiBuffer to be used in combination with
    \l{UniformBuffer}{QRhiShaderResourceBinding::UniformBuffer}. When
    \l{QRhi::NonDynamicUniformBuffers}{NonDynamicUniformBuffers} is reported as
    not supported, this usage can only be combined with the type Dynamic.

    \value StorageBuffer Storage buffer. This allows the QRhiBuffer to be used
    in combination with \l{BufferLoad}{QRhiShaderResourceBinding::BufferLoad},
    \l{BufferStore}{QRhiShaderResourceBinding::BufferStore}, or
    \l{BufferLoadStore}{QRhiShaderResourceBinding::BufferLoadStore}. This usage
    can only be combined with the types Immutable or Static, and is only
    available when the \l{QRhi::Compute}{Compute feature} is reported as
    supported.
 */

/*!
    \fn void QRhiBuffer::setSize(int sz)

    Sets the size of the buffer in bytes. The size is normally specified in
    QRhi::newBuffer() so this function is only used when the size has to be
    changed. As with other setters, the size only takes effect when calling
    build(), and for already built buffers this involves releasing the previous
    native resource and creating new ones under the hood.

    Backends may choose to allocate buffers bigger than \a sz in order to
    fulfill alignment requirements. This is hidden from the applications and
    size() will always report the size requested in \a sz.
 */

/*!
    \internal
 */
QRhiBuffer::QRhiBuffer(QRhiImplementation *rhi, Type type_, UsageFlags usage_, int size_)
    : QRhiResource(rhi),
      m_type(type_), m_usage(usage_), m_size(size_)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiBuffer::resourceType() const
{
    return Buffer;
}

/*!
    \fn bool QRhiBuffer::build()

    Creates the corresponding native graphics resources. If there are already
    resources present due to an earlier build() with no corresponding
    release(), then release() is called implicitly first.

    \return \c true when successful, \c false when a graphics operation failed.
    Regardless of the return value, calling release() is always safe.
 */

/*!
    \class QRhiRenderBuffer
    \inmodule QtRhi
    \brief Renderbuffer resource.

    Renderbuffers cannot be sampled or read but have some benefits over
    textures in some cases:

    A DepthStencil renderbuffer may be lazily allocated and be backed by
    transient memory with some APIs. On some platforms this may mean the
    depth/stencil buffer uses no physical backing at all.

    Color renderbuffers are useful since QRhi::MultisampleRenderBuffer may be
    supported even when QRhi::MultisampleTexture is not.

    How the renderbuffer is implemented by a backend is not exposed to the
    applications. In some cases it may be backed by ordinary textures, while in
    others there may be a different kind of native resource used.
 */

/*!
    \enum QRhiRenderBuffer::Type
    Specifies the type of the renderbuffer

    \value DepthStencil Combined depth/stencil
    \value Color Color
 */

/*!
    \enum QRhiRenderBuffer::Flag
    Flag values for flags() and setFlags()

    \value UsedWithSwapChainOnly For DepthStencil renderbuffers this indicates
    that the renderbuffer is only used in combination with a QRhiSwapChain and
    never in other ways. Relevant with some backends, while others ignore it.
    With OpenGL where a separate windowing system interface API is in use (EGL,
    GLX, etc.), the flag is important since it avoids creating any actual
    resource as there is already a windowing system provided depth/stencil
    buffer as requested by QSurfaceFormat.
 */

/*!
    \internal
 */
QRhiRenderBuffer::QRhiRenderBuffer(QRhiImplementation *rhi, Type type_, const QSize &pixelSize_,
                                   int sampleCount_, Flags flags_)
    : QRhiResource(rhi),
      m_type(type_), m_pixelSize(pixelSize_), m_sampleCount(sampleCount_), m_flags(flags_)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiRenderBuffer::resourceType() const
{
    return RenderBuffer;
}

/*!
    \fn bool QRhiRenderBuffer::build()

    Creates the corresponding native graphics resources. If there are already
    resources present due to an earlier build() with no corresponding
    release(), then release() is called implicitly first.

    \return \c true when successful, \c false when a graphics operation failed.
    Regardless of the return value, calling release() is always safe.
 */

/*!
    \fn QRhiTexture::Format QRhiRenderBuffer::backingFormat() const

    \internal
 */

/*!
    \class QRhiTexture
    \inmodule QtRhi
    \brief Texture resource.
 */

/*!
    \enum QRhiTexture::Flag

    Flag values to specify how the texture is going to be used. Not honoring
    the flags set before build() and attempting to use the texture in ways that
    was not declared upfront can lead to unspecified behavior or decreased
    performance depending on the backend and the underlying graphics API.

    \value RenderTarget The texture going to be used in combination with
    QRhiTextureRenderTarget.

    \value CubeMap The texture is a cubemap. Such textures have 6 layers, one
    for each face in the order of +X, -X, +Y, -Y, +Z, -Z. Cubemap textures
    cannot be multisample.

     \value MipMapped The texture has mipmaps. The appropriate mip count is
     calculated automatically and can also be retrieved via
     QRhi::mipLevelsForSize(). The images for the mip levels have to be
     provided in the texture uploaded or generated via
     QRhiResourceUpdateBatch::generateMips(). Multisample textures cannot have
     mipmaps.

    \value sRGB Use an sRGB format.

    \value UsedAsTransferSource The texture is used as the source of a texture
    copy or readback, meaning the texture is given as the source in
    QRhiResourceUpdateBatch::copyTexture() or
    QRhiResourceUpdateBatch::readBackTexture().

     \value UsedWithGenerateMips The texture is going to be used with
     QRhiResourceUpdateBatch::generateMips().

     \value UsedWithLoadStore The texture is going to be used with image
     load/store operations, for example, in a compute shader.
 */

/*!
    \enum QRhiTexture::Format

    Specifies the texture format. See also QRhi::isTextureFormatSupported() and
    note that flags() can modify the format when QRhiTexture::sRGB is set.

    \value UnknownFormat Not a valid format. This cannot be passed to setFormat().

    \value RGBA8 Four component, unsigned normalized 8 bit per component. Always supported.

    \value BGRA8 Four component, unsigned normalized 8 bit per component.

    \value R8 One component, unsigned normalized 8 bit.

    \value R16 One component, unsigned normalized 16 bit.

    \value RED_OR_ALPHA8 Either same as R8, or is a similar format with the component swizzled to alpha,
    depending on \l{QRhi::RedOrAlpha8IsRed}{RedOrAlpha8IsRed}.

    \value RGBA16F Four components, 16-bit float per component.

    \value RGBA32F Four components, 32-bit float per component.

    \value D16 16-bit depth (normalized unsigned integer)

    \value D32F 32-bit depth (32-bit float)

    \value BC1
    \value BC2
    \value BC3
    \value BC4
    \value BC5
    \value BC6H
    \value BC7

    \value ETC2_RGB8
    \value ETC2_RGB8A1
    \value ETC2_RGBA8

    \value ASTC_4x4
    \value ASTC_5x4
    \value ASTC_5x5
    \value ASTC_6x5
    \value ASTC_6x6
    \value ASTC_8x5
    \value ASTC_8x6
    \value ASTC_8x8
    \value ASTC_10x5
    \value ASTC_10x6
    \value ASTC_10x8
    \value ASTC_10x10
    \value ASTC_12x10
    \value ASTC_12x12
 */

/*!
    \internal
 */
QRhiTexture::QRhiTexture(QRhiImplementation *rhi, Format format_, const QSize &pixelSize_,
                         int sampleCount_, Flags flags_)
    : QRhiResource(rhi),
      m_format(format_), m_pixelSize(pixelSize_), m_sampleCount(sampleCount_), m_flags(flags_)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiTexture::resourceType() const
{
    return Texture;
}

/*!
    \fn bool QRhiTexture::build()

    Creates the corresponding native graphics resources. If there are already
    resources present due to an earlier build() with no corresponding
    release(), then release() is called implicitly first.

    \return \c true when successful, \c false when a graphics operation failed.
    Regardless of the return value, calling release() is always safe.
 */

/*!
    \return a pointer to a backend-specific QRhiNativeHandles subclass, such as
    QRhiVulkanTextureNativeHandles. The returned value is null when exposing
    the underlying native resources is not supported by the backend.

    \sa QRhiVulkanTextureNativeHandles, QRhiD3D11TextureNativeHandles,
    QRhiMetalTextureNativeHandles, QRhiGles2TextureNativeHandles
 */
const QRhiNativeHandles *QRhiTexture::nativeHandles()
{
    return nullptr;
}

/*!
    Similar to build() except that no new native textures are created. Instead,
    the texture from \a src is used.

    This allows importing an existing native texture object (which must belong
    to the same device or sharing context, depending on the graphics API) from
    an external graphics engine.

    \note format(), pixelSize(), sampleCount(), and flags() must still be set
    correctly. Passing incorrect sizes and other values to QRhi::newTexture()
    and then following it with a buildFrom() expecting that the native texture
    object alone is sufficient to deduce such values is \b wrong and will lead
    to problems.

    \note QRhiTexture does not take ownership of the texture object. release()
    does not free the object or any associated memory.

    The opposite of this operation, exposing a QRhiTexture-created native
    texture object to a foreign engine, is possible via nativeHandles().

    \sa QRhiVulkanTextureNativeHandles, QRhiD3D11TextureNativeHandles,
    QRhiMetalTextureNativeHandles, QRhiGles2TextureNativeHandles
 */
bool QRhiTexture::buildFrom(const QRhiNativeHandles *src)
{
    Q_UNUSED(src);
    return false;
}

/*!
    \class QRhiSampler
    \inmodule QtRhi
    \brief Sampler resource.
 */

/*!
    \enum QRhiSampler::Filter
    Specifies the minification, magnification, or mipmap filtering

    \value None Applicable only for mipmapMode(), indicates no mipmaps to be used
    \value Nearest
    \value Linear
 */

/*!
    \enum QRhiSampler::AddressMode
    Specifies the addressing mode

    \value Repeat
    \value ClampToEdge
    \value Border
    \value Mirror
    \value MirrorOnce
 */

/*!
    \enum QRhiSampler::CompareOp
    Specifies the texture comparison function.

    \value Never (default)
    \value Less
    \value Equal
    \value LessOrEqual
    \value Greater
    \value NotEqual
    \value GreaterOrEqual
    \value Always
 */

/*!
    \internal
 */
QRhiSampler::QRhiSampler(QRhiImplementation *rhi,
                         Filter magFilter_, Filter minFilter_, Filter mipmapMode_,
                         AddressMode u_, AddressMode v_)
    : QRhiResource(rhi),
      m_magFilter(magFilter_), m_minFilter(minFilter_), m_mipmapMode(mipmapMode_),
      m_addressU(u_), m_addressV(v_),
      m_addressW(QRhiSampler::ClampToEdge),
      m_compareOp(QRhiSampler::Never)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiSampler::resourceType() const
{
    return Sampler;
}

/*!
    \class QRhiRenderPassDescriptor
    \inmodule QtRhi
    \brief Render pass resource.
 */

/*!
    \internal
 */
QRhiRenderPassDescriptor::QRhiRenderPassDescriptor(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiRenderPassDescriptor::resourceType() const
{
    return RenderPassDescriptor;
}

/*!
    \class QRhiRenderTarget
    \inmodule QtRhi
    \brief Represents an onscreen (swapchain) or offscreen (texture) render target.
 */

/*!
    \internal
 */
QRhiRenderTarget::QRhiRenderTarget(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiRenderTarget::resourceType() const
{
    return RenderTarget;
}

/*!
    \fn QSize QRhiRenderTarget::pixelSize() const

    \return the size in pixels.
 */

/*!
    \fn float QRhiRenderTarget::devicePixelRatio() const

    \return the device pixel ratio. For QRhiTextureRenderTarget this is always
    1. For targets retrieved from a QRhiSwapChain the value reflects the
    \l{QWindow::devicePixelRatio()}{device pixel ratio} of the targeted
    QWindow.
 */

/*!
    \class QRhiTextureRenderTarget
    \inmodule QtRhi
    \brief Texture render target resource.

    A texture render target allows rendering into one or more textures,
    optionally with a depth texture or depth/stencil renderbuffer.

    \note Textures used in combination with QRhiTextureRenderTarget must be
    created with the QRhiTexture::RenderTarget flag.

    The simplest example of creating a render target with a texture as its
    single color attachment:

    \badcode
        texture = rhi->newTexture(QRhiTexture::RGBA8, size, 1, QRhiTexture::RenderTarget);
        texture->build();
        rt = rhi->newTextureRenderTarget({ texture });
        rp = rt->newCompatibleRenderPassDescriptor();
        rt->setRenderPassDescriptor(rt);
        rt->build();
        // rt can now be used with beginPass()
    \endcode
 */

/*!
    \enum QRhiTextureRenderTarget::Flag

    Flag values describing the load/store behavior for the render target. The
    load/store behavior may be baked into native resources under the hood,
    depending on the backend, and therefore it needs to be known upfront and
    cannot be changed without rebuilding (and so releasing and creating new
    native resources).

    \value PreserveColorContents Indicates that the contents of the color
    attachments is to be loaded when starting a render pass, instead of
    clearing. This is potentially more expensive, especially on mobile (tiled)
    GPUs, but allows preserving the existing contents between passes.

    \value PreserveDepthStencilContents Indicates that the contents of the
    depth texture is to be loaded when starting a render pass, instead
    clearing. Only applicable when a texture is used as the depth buffer
    (QRhiTextureRenderTargetDescription::depthTexture() is set) because
    depth/stencil renderbuffers may not have any physical backing and data may
    not be written out in the first place.
 */

/*!
    \internal
 */
QRhiTextureRenderTarget::QRhiTextureRenderTarget(QRhiImplementation *rhi,
                                                 const QRhiTextureRenderTargetDescription &desc_,
                                                 Flags flags_)
    : QRhiRenderTarget(rhi),
      m_desc(desc_),
      m_flags(flags_)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiTextureRenderTarget::resourceType() const
{
    return TextureRenderTarget;
}

/*!
    \fn QRhiRenderPassDescriptor *QRhiTextureRenderTarget::newCompatibleRenderPassDescriptor()

    \return a new QRhiRenderPassDescriptor that is compatible with this render
    target.

    The returned value is used in two ways: it can be passed to
    setRenderPassDescriptor() and
    QRhiGraphicsPipeline::setRenderPassDescriptor(). A render pass descriptor
    describes the attachments (color, depth/stencil) and the load/store
    behavior that can be affected by flags(). A QRhiGraphicsPipeline can only
    be used in combination with a render target that has the same
    QRhiRenderPassDescriptor set.

    Two QRhiTextureRenderTarget instances can share the same render pass
    descriptor as long as they have the same number and type of attachments.
    The associated QRhiTexture or QRhiRenderBuffer instances are not part of
    the render pass descriptor so those can differ in the two
    QRhiTextureRenderTarget intances.

    \note resources, such as QRhiTexture instances, referenced in description()
    must already be built

    \sa build()
 */

/*!
    \fn bool QRhiTextureRenderTarget::build()

    Creates the corresponding native graphics resources. If there are already
    resources present due to an earlier build() with no corresponding
    release(), then release() is called implicitly first.

    \note renderPassDescriptor() must be set before calling build(). To obtain
    a QRhiRenderPassDescriptor compatible with the render target, call
    newCompatibleRenderPassDescriptor() before build() but after setting all
    other parameters, such as description() and flags(). To save resources,
    reuse the same QRhiRenderPassDescriptor with multiple
    QRhiTextureRenderTarget instances, whenever possible. Sharing the same
    render pass descriptor is only possible when the render targets have the
    same number and type of attachments (the actual textures can differ) and
    the same flags.

    \note resources, such as QRhiTexture instances, referenced in description()
    must already be built

    \return \c true when successful, \c false when a graphics operation failed.
    Regardless of the return value, calling release() is always safe.
 */

/*!
    \class QRhiShaderResourceBindings
    \inmodule QtRhi
    \brief Encapsulates resources for making buffer, texture, sampler resources visible to shaders.

    A QRhiShaderResourceBindings is a collection of QRhiShaderResourceBinding
    objects, each of which describe a single binding.

    Take a fragment shader with the following interface:

    \badcode
        layout(std140, binding = 0) uniform buf {
            mat4 mvp;
            int flip;
        } ubuf;

        layout(binding = 1) uniform sampler2D tex;
    \endcode

    To make resources visible to the shader, the following
    QRhiShaderResourceBindings could be created and then passed to
    QRhiGraphicsPipeline::setShaderResourceBindings():

    \badcode
        srb = rhi->newShaderResourceBindings();
        srb->setBindings({
            QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage | QRhiShaderResourceBinding::FragmentStage, ubuf),
            QRhiShaderResourceBinding::sampledTexture(1, QRhiShaderResourceBinding::FragmentStage, texture, sampler)
        });
        srb->build();
        ...
        ps = rhi->newGraphicsPipeline();
        ...
        ps->setShaderResourceBindings(srb);
        ps->build();
        ...
        cb->setGraphicsPipeline(ps);
        cb->setShaderResources(); // binds srb
    \endcode

    This assumes that \c ubuf is a QRhiBuffer, \c texture is a QRhiTexture,
    while \a sampler is a QRhiSampler. The example also assumes that the
    uniform block is present in the vertex shader as well so the same buffer is
    made visible to the vertex stage too.

    \section3 Advanced usage

    Building on the above example, let's assume that a pass now needs to use
    the exact same pipeline and shaders with a different texture. Creating a
    whole separate QRhiGraphicsPipeline just for this would be an overkill.
    This is why QRhiCommandBuffer::setShaderResources() allows specifying a \a
    srb argument. As long as the layouts (so the number of bindings and the
    binding points) match between two QRhiShaderResourceBindings, they can both
    be used with the same pipeline, assuming the pipeline was built with one of
    them in the first place.

    Creating and then using a new \c srb2 that is very similar to \c srb with
    the exception of referencing another texture could be implemented like the
    following:

    \badcode
        srb2 = rhi->newShaderResourceBindings();
        QVector<QRhiShaderResourceBinding> bindings = srb->bindings();
        bindings[1] = QRhiShaderResourceBinding::sampledTexture(1, QRhiShaderResourceBinding::FragmentStage, anotherTexture, sampler);
        srb2->setBindings(bindings);
        srb2->build();
        ...
        cb->setGraphicsPipeline(ps);
        cb->setShaderResources(srb2); // binds srb2
    \endcode
 */

/*!
    \internal
 */
QRhiShaderResourceBindings::QRhiShaderResourceBindings(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiShaderResourceBindings::resourceType() const
{
    return ShaderResourceBindings;
}

/*!
    \return \c true if the layout is compatible with \a other. The layout does
    not include the actual resource (such as, buffer or texture) and related
    parameters (such as, offset or size). It does include the binding point,
    pipeline stage, and resource type, however. The number and order of the
    bindings must also match in order to be compatible.

    When there is a QRhiGraphicsPipeline created with this
    QRhiShaderResourceBindings, and the function returns \c true, \a other can
    then safely be passed to QRhiCommandBuffer::setShaderResources(), and so
    be used with the pipeline in place of this QRhiShaderResourceBindings.

    This function can be called before build() as well. The bindings must
    already be set via setBindings() however.
 */
bool QRhiShaderResourceBindings::isLayoutCompatible(const QRhiShaderResourceBindings *other) const
{
    const int count = m_bindings.count();
    if (count != other->m_bindings.count())
        return false;

    for (int i = 0; i < count; ++i) {
        if (!m_bindings[i].isLayoutCompatible(other->m_bindings.at(i)))
            return false;
    }

    return true;
}

/*!
    \class QRhiShaderResourceBinding
    \inmodule QtRhi
    \brief Describes the shader resource for a single binding point.

    A QRhiShaderResourceBinding cannot be constructed directly. Instead, use
    the static functions uniformBuffer(), sampledTexture() to get an instance.
 */

/*!
    \enum QRhiShaderResourceBinding::Type
    Specifies type of the shader resource bound to a binding point

    \value UniformBuffer Uniform buffer

    \value SampledTexture Combined image sampler

    \value ImageLoad Image load (with GLSL this maps to doing imageLoad() on a
    single level - and either one or all layers - of a texture exposed to the
    shader as an image object)

    \value ImageStore Image store (with GLSL this maps to doing imageStore() or
    imageAtomic*() on a single level - and either one or all layers - of a
    texture exposed to the shader as an image object)

    \value ImageLoadStore Image load and store

    \value BufferLoad Storage buffer store (with GLSL this maps to reading from
    a shader storage buffer)

    \value BufferStore Storage buffer store (with GLSL this maps to writing to
    a shader storage buffer)

    \value BufferLoadStore Storage buffer load and store
 */

/*!
    \enum QRhiShaderResourceBinding::StageFlag
    Flag values to indicate which stages the shader resource is visible in

    \value VertexStage Vertex stage
    \value FragmentStage Fragment (pixel) stage
    \value ComputeStage Compute stage
 */

/*!
    \internal
 */
QRhiShaderResourceBinding::QRhiShaderResourceBinding()
    : d(new QRhiShaderResourceBindingPrivate)
{
}

/*!
    \internal
 */
void QRhiShaderResourceBinding::detach()
{
    qAtomicDetach(d);
}

/*!
    \internal
 */
QRhiShaderResourceBinding::QRhiShaderResourceBinding(const QRhiShaderResourceBinding &other)
    : d(other.d)
{
    d->ref.ref();
}

/*!
    \internal
 */
QRhiShaderResourceBinding &QRhiShaderResourceBinding::operator=(const QRhiShaderResourceBinding &other)
{
    qAtomicAssign(d, other.d);
    return *this;
}

/*!
    Destructor.
 */
QRhiShaderResourceBinding::~QRhiShaderResourceBinding()
{
    if (!d->ref.deref())
        delete d;
}

/*!
    \return \c true if the layout is compatible with \a other. The layout does not
    include the actual resource (such as, buffer or texture) and related
    parameters (such as, offset or size).

    For example, \c a and \c b below are not equal, but are compatible layout-wise:

    \badcode
        auto a = QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage, buffer);
        auto b = QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage, someOtherBuffer, 256);
    \endcode
 */
bool QRhiShaderResourceBinding::isLayoutCompatible(const QRhiShaderResourceBinding &other) const
{
    return (d == other.d)
            || (d->binding == other.d->binding && d->stage == other.d->stage && d->type == other.d->type);
}

/*!
    \return a shader resource binding for the given binding number, pipeline
    stages, and buffer specified by \a binding, \a stage, and \a buf.

    \note \a buf must have been created with QRhiBuffer::UniformBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::uniformBuffer(
        int binding, StageFlags stage, QRhiBuffer *buf)
{
    QRhiShaderResourceBinding b;
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    Q_ASSERT(d->ref.loadRelaxed() == 1);
    d->binding = binding;
    d->stage = stage;
    d->type = UniformBuffer;
    d->u.ubuf.buf = buf;
    d->u.ubuf.offset = 0;
    d->u.ubuf.maybeSize = 0; // entire buffer
    d->u.ubuf.hasDynamicOffset = false;
    return b;
}

/*!
    \return a shader resource binding for the given binding number, pipeline
    stages, and buffer specified by \a binding, \a stage, and \a buf. This
    overload binds a region only, as specified by \a offset and \a size.

    \note It is up to the user to ensure the offset is aligned to
    QRhi::ubufAlignment().

    \note \a size must be greater than 0.

    \note \a buf must have been created with QRhiBuffer::UniformBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::uniformBuffer(
        int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size)
{
    Q_ASSERT(size > 0);
    QRhiShaderResourceBinding b = uniformBuffer(binding, stage, buf);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->u.ubuf.offset = offset;
    d->u.ubuf.maybeSize = size;
    return b;
}

/*!
    \return a shader resource binding for the given binding number, pipeline
    stages, and buffer specified by \a binding, \a stage, and \a buf. The
    uniform buffer is assumed to have dynamic offset. The dynamic offset can be
    specified in QRhiCommandBuffer::setShaderResources(), thus allowing using
    varying offset values without creating new bindings for the buffer. The
    size of the bound region is specified by \a size. Like with non-dynamic
    offsets, \c{offset + size} cannot exceed the size of \a buf.

    \note \a buf must have been created with QRhiBuffer::UniformBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::uniformBufferWithDynamicOffset(
        int binding, StageFlags stage, QRhiBuffer *buf, int size)
{
    QRhiShaderResourceBinding b = uniformBuffer(binding, stage, buf, 0, size);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->u.ubuf.hasDynamicOffset = true;
    return b;
}

/*!
    \return a shader resource binding for the given binding number, pipeline
    stages, texture, and sampler specified by \a binding, \a stage, \a tex,
    \a sampler.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::sampledTexture(
        int binding, StageFlags stage, QRhiTexture *tex, QRhiSampler *sampler)
{
    QRhiShaderResourceBinding b;
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    Q_ASSERT(d->ref.loadRelaxed() == 1);
    d->binding = binding;
    d->stage = stage;
    d->type = SampledTexture;
    d->u.stex.tex = tex;
    d->u.stex.sampler = sampler;
    return b;
}

/*!
   \return a shader resource binding for a read-only storage image with the
   given \a binding number and pipeline \a stage. The image load operations
   will have access to all layers of the specified \a level. (so if the texture
   is a cubemap, the shader must use imageCube instead of image2D)

   \note \a tex must have been created with QRhiTexture::UsedWithLoadStore.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::imageLoad(
        int binding, StageFlags stage, QRhiTexture *tex, int level)
{
    QRhiShaderResourceBinding b;
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    Q_ASSERT(d->ref.loadRelaxed() == 1);
    d->binding = binding;
    d->stage = stage;
    d->type = ImageLoad;
    d->u.simage.tex = tex;
    d->u.simage.level = level;
    return b;
}

/*!
   \return a shader resource binding for a write-only storage image with the
   given \a binding number and pipeline \a stage. The image store operations
   will have access to all layers of the specified \a level. (so if the texture
   is a cubemap, the shader must use imageCube instead of image2D)

   \note \a tex must have been created with QRhiTexture::UsedWithLoadStore.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::imageStore(
        int binding, StageFlags stage, QRhiTexture *tex, int level)
{
    QRhiShaderResourceBinding b = imageLoad(binding, stage, tex, level);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->type = ImageStore;
    return b;
}

/*!
   \return a shader resource binding for a read/write storage image with the
   given \a binding number and pipeline \a stage. The image load/store operations
   will have access to all layers of the specified \a level. (so if the texture
   is a cubemap, the shader must use imageCube instead of image2D)

   \note \a tex must have been created with QRhiTexture::UsedWithLoadStore.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::imageLoadStore(
        int binding, StageFlags stage, QRhiTexture *tex, int level)
{
    QRhiShaderResourceBinding b = imageLoad(binding, stage, tex, level);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->type = ImageLoadStore;
    return b;
}

/*!
    \return a shader resource binding for a read-only storage buffer with the
    given \a binding number and pipeline \a stage.

    \note \a buf must have been created with QRhiBuffer::StorageBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoad(
        int binding, StageFlags stage, QRhiBuffer *buf)
{
    QRhiShaderResourceBinding b;
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    Q_ASSERT(d->ref.loadRelaxed() == 1);
    d->binding = binding;
    d->stage = stage;
    d->type = BufferLoad;
    d->u.sbuf.buf = buf;
    d->u.sbuf.offset = 0;
    d->u.sbuf.maybeSize = 0; // entire buffer
    return b;
}

/*!
    \return a shader resource binding for a read-only storage buffer with the
    given \a binding number and pipeline \a stage. This overload binds a region
    only, as specified by \a offset and \a size.

    \note \a buf must have been created with QRhiBuffer::StorageBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoad(
        int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size)
{
    Q_ASSERT(size > 0);
    QRhiShaderResourceBinding b = bufferLoad(binding, stage, buf);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->u.sbuf.offset = offset;
    d->u.sbuf.maybeSize = size;
    return b;
}

/*!
    \return a shader resource binding for a write-only storage buffer with the
    given \a binding number and pipeline \a stage.

    \note \a buf must have been created with QRhiBuffer::StorageBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferStore(
        int binding, StageFlags stage, QRhiBuffer *buf)
{
    QRhiShaderResourceBinding b = bufferLoad(binding, stage, buf);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->type = BufferStore;
    return b;
}

/*!
    \return a shader resource binding for a write-only storage buffer with the
    given \a binding number and pipeline \a stage. This overload binds a region
    only, as specified by \a offset and \a size.

    \note \a buf must have been created with QRhiBuffer::StorageBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferStore(
        int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size)
{
    Q_ASSERT(size > 0);
    QRhiShaderResourceBinding b = bufferStore(binding, stage, buf);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->u.sbuf.offset = offset;
    d->u.sbuf.maybeSize = size;
    return b;
}

/*!
    \return a shader resource binding for a read-write storage buffer with the
    given \a binding number and pipeline \a stage.

    \note \a buf must have been created with QRhiBuffer::StorageBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoadStore(
        int binding, StageFlags stage, QRhiBuffer *buf)
{
    QRhiShaderResourceBinding b = bufferLoad(binding, stage, buf);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->type = BufferLoadStore;
    return b;
}

/*!
    \return a shader resource binding for a read-write storage buffer with the
    given \a binding number and pipeline \a stage. This overload binds a region
    only, as specified by \a offset and \a size.

    \note \a buf must have been created with QRhiBuffer::StorageBuffer.
 */
QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoadStore(
        int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size)
{
    Q_ASSERT(size > 0);
    QRhiShaderResourceBinding b = bufferLoadStore(binding, stage, buf);
    QRhiShaderResourceBindingPrivate *d = QRhiShaderResourceBindingPrivate::get(&b);
    d->u.sbuf.offset = offset;
    d->u.sbuf.maybeSize = size;
    return b;
}

/*!
    \return \c true if the contents of the two QRhiShaderResourceBinding
    objects \a a and \a b are equal. This includes the resources (buffer,
    texture) and related parameters (offset, size) as well. To only compare
    layouts (binding point, pipeline stage, resource type), use
    \l{QRhiShaderResourceBinding::isLayoutCompatible()}{isLayoutCompatible()}
    instead.

    \relates QRhiShaderResourceBinding
 */
bool operator==(const QRhiShaderResourceBinding &a, const QRhiShaderResourceBinding &b) Q_DECL_NOTHROW
{
    if (a.d == b.d)
        return true;

    if (a.d->binding != b.d->binding
            || a.d->stage != b.d->stage
            || a.d->type != b.d->type)
    {
        return false;
    }

    switch (a.d->type) {
    case QRhiShaderResourceBinding::UniformBuffer:
        if (a.d->u.ubuf.buf != b.d->u.ubuf.buf
                || a.d->u.ubuf.offset != b.d->u.ubuf.offset
                || a.d->u.ubuf.maybeSize != b.d->u.ubuf.maybeSize)
        {
            return false;
        }
        break;
    case QRhiShaderResourceBinding::SampledTexture:
        if (a.d->u.stex.tex != b.d->u.stex.tex
                || a.d->u.stex.sampler != b.d->u.stex.sampler)
        {
            return false;
        }
        break;
    case QRhiShaderResourceBinding::ImageLoad:
        Q_FALLTHROUGH();
    case QRhiShaderResourceBinding::ImageStore:
        Q_FALLTHROUGH();
    case QRhiShaderResourceBinding::ImageLoadStore:
        if (a.d->u.simage.tex != b.d->u.simage.tex
                || a.d->u.simage.level != b.d->u.simage.level)
        {
            return false;
        }
        break;
    case QRhiShaderResourceBinding::BufferLoad:
        Q_FALLTHROUGH();
    case QRhiShaderResourceBinding::BufferStore:
        Q_FALLTHROUGH();
    case QRhiShaderResourceBinding::BufferLoadStore:
        if (a.d->u.sbuf.buf != b.d->u.sbuf.buf
                || a.d->u.sbuf.offset != b.d->u.sbuf.offset
                || a.d->u.sbuf.maybeSize != b.d->u.sbuf.maybeSize)
        {
            return false;
        }
        break;
    default:
        Q_UNREACHABLE();
        return false;
    }

    return true;
}

/*!
    \return \c false if all the bindings in the two QRhiShaderResourceBinding
    objects \a a and \a b are equal; otherwise returns \c true.

    \relates QRhiShaderResourceBinding
 */
bool operator!=(const QRhiShaderResourceBinding &a, const QRhiShaderResourceBinding &b) Q_DECL_NOTHROW
{
    return !(a == b);
}

/*!
    \return the hash value for \a b, using \a seed to seed the calculation.

    \relates QRhiShaderResourceBinding
 */
uint qHash(const QRhiShaderResourceBinding &b, uint seed) Q_DECL_NOTHROW
{
    const char *u = reinterpret_cast<const char *>(&b.d->u);
    return seed + b.d->binding + 10 * b.d->stage + 100 * b.d->type
            + qHash(QByteArray::fromRawData(u, sizeof(b.d->u)), seed);
}

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiShaderResourceBinding &b)
{
    const QRhiShaderResourceBindingPrivate *d = b.d;
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiShaderResourceBinding("
                  << "binding=" << d->binding
                  << " stage=" << d->stage
                  << " type=" << d->type;
    switch (d->type) {
    case QRhiShaderResourceBinding::UniformBuffer:
        dbg.nospace() << " UniformBuffer("
                      << "buffer=" << d->u.ubuf.buf
                      << " offset=" << d->u.ubuf.offset
                      << " maybeSize=" << d->u.ubuf.maybeSize
                      << ')';
        break;
    case QRhiShaderResourceBinding::SampledTexture:
        dbg.nospace() << " SampledTexture("
                      << "texture=" << d->u.stex.tex
                      << " sampler=" << d->u.stex.sampler
                      << ')';
        break;
    case QRhiShaderResourceBinding::ImageLoad:
        dbg.nospace() << " ImageLoad("
                      << "texture=" << d->u.simage.tex
                      << " level=" << d->u.simage.level
                      << ')';
        break;
    case QRhiShaderResourceBinding::ImageStore:
        dbg.nospace() << " ImageStore("
                      << "texture=" << d->u.simage.tex
                      << " level=" << d->u.simage.level
                      << ')';
        break;
    case QRhiShaderResourceBinding::ImageLoadStore:
        dbg.nospace() << " ImageLoadStore("
                      << "texture=" << d->u.simage.tex
                      << " level=" << d->u.simage.level
                      << ')';
        break;
    case QRhiShaderResourceBinding::BufferLoad:
        dbg.nospace() << " BufferLoad("
                      << "buffer=" << d->u.sbuf.buf
                      << " offset=" << d->u.sbuf.offset
                      << " maybeSize=" << d->u.sbuf.maybeSize
                      << ')';
        break;
    case QRhiShaderResourceBinding::BufferStore:
        dbg.nospace() << " BufferStore("
                      << "buffer=" << d->u.sbuf.buf
                      << " offset=" << d->u.sbuf.offset
                      << " maybeSize=" << d->u.sbuf.maybeSize
                      << ')';
        break;
    case QRhiShaderResourceBinding::BufferLoadStore:
        dbg.nospace() << " BufferLoadStore("
                      << "buffer=" << d->u.sbuf.buf
                      << " offset=" << d->u.sbuf.offset
                      << " maybeSize=" << d->u.sbuf.maybeSize
                      << ')';
        break;
    default:
        Q_UNREACHABLE();
        break;
    }
    dbg.nospace() << ')';
    return dbg;
}
#endif

#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QRhiShaderResourceBindings &srb)
{
    QDebugStateSaver saver(dbg);
    dbg.nospace() << "QRhiShaderResourceBindings("
                  << srb.m_bindings
                  << ')';
    return dbg;
}
#endif

/*!
    \class QRhiGraphicsPipeline
    \inmodule QtRhi
    \brief Graphics pipeline state resource.

    \note Setting the shader resource bindings is mandatory. The referenced
    QRhiShaderResourceBindings must already be built by the time build() is
    called.

    \note Setting the render pass descriptor is mandatory. To obtain a
    QRhiRenderPassDescriptor that can be passed to setRenderPassDescriptor(),
    use either QRhiTextureRenderTarget::newCompatibleRenderPassDescriptor() or
    QRhiSwapChain::newCompatibleRenderPassDescriptor().

    \note Setting the vertex input layout is mandatory.

    \note Setting the shader stages is mandatory.

    \note sampleCount() defaults to 1 and must match the sample count of the
    render target's color and depth stencil attachments.

    \note The depth test, depth write, and stencil test are disabled by
    default.

    \note stencilReadMask() and stencilWriteMask() apply to both faces. They
    both default to 0xFF.
 */

/*!
    \fn void QRhiGraphicsPipeline::setTargetBlends(const QVector<TargetBlend> &blends)

    Sets the blend specification for color attachments. Each element in \a
    blends corresponds to a color attachment of the render target.

    By default no blends are set, which is a shortcut to disabling blending and
    enabling color write for all four channels.
 */

/*!
    \enum QRhiGraphicsPipeline::Flag

    Flag values for describing the dynamic state of the pipeline. The viewport is always dynamic.

    \value UsesBlendConstants Indicates that a blend color constant will be set
    via QRhiCommandBuffer::setBlendConstants()

    \value UsesStencilRef Indicates that a stencil reference value will be set
    via QRhiCommandBuffer::setStencilRef()

    \value UsesScissor Indicates that a scissor rectangle will be set via
    QRhiCommandBuffer::setScissor()
 */

/*!
    \enum QRhiGraphicsPipeline::Topology
    Specifies the primitive topology

    \value Triangles (default)
    \value TriangleStrip
    \value Lines
    \value LineStrip
    \value Points
 */

/*!
    \enum QRhiGraphicsPipeline::CullMode
    Specifies the culling mode

    \value None No culling (default)
    \value Front Cull front faces
    \value Back Cull back faces
 */

/*!
    \enum QRhiGraphicsPipeline::FrontFace
    Specifies the front face winding order

    \value CCW Counter clockwise (default)
    \value CW Clockwise
 */

/*!
    \enum QRhiGraphicsPipeline::ColorMaskComponent
    Flag values for specifying the color write mask

    \value R
    \value G
    \value B
    \value A
 */

/*!
    \enum QRhiGraphicsPipeline::BlendFactor
    Specifies the blend factor

    \value Zero
    \value One
    \value SrcColor
    \value OneMinusSrcColor
    \value DstColor
    \value OneMinusDstColor
    \value SrcAlpha
    \value OneMinusSrcAlpha
    \value DstAlpha
    \value OneMinusDstAlpha
    \value ConstantColor
    \value OneMinusConstantColor
    \value ConstantAlpha
    \value OneMinusConstantAlpha
    \value SrcAlphaSaturate
    \value Src1Color
    \value OneMinusSrc1Color
    \value Src1Alpha
    \value OneMinusSrc1Alpha
 */

/*!
    \enum QRhiGraphicsPipeline::BlendOp
    Specifies the blend operation

    \value Add
    \value Subtract
    \value ReverseSubtract
    \value Min
    \value Max
 */

/*!
    \enum QRhiGraphicsPipeline::CompareOp
    Specifies the depth or stencil comparison function

    \value Never
    \value Less (default for depth)
    \value Equal
    \value LessOrEqual
    \value Greater
    \value NotEqual
    \value GreaterOrEqual
    \value Always (default for stencil)
 */

/*!
    \enum QRhiGraphicsPipeline::StencilOp
    Specifies the stencil operation

    \value StencilZero
    \value Keep (default)
    \value Replace
    \value IncrementAndClamp
    \value DecrementAndClamp
    \value Invert
    \value IncrementAndWrap
    \value DecrementAndWrap
 */

/*!
    \class QRhiGraphicsPipeline::TargetBlend
    \inmodule QtRhi
    \brief Describes the blend state for one color attachment.

    Defaults to color write enabled, blending disabled. The blend values are
    set up for pre-multiplied alpha (One, OneMinusSrcAlpha, One,
    OneMinusSrcAlpha) by default.
 */

/*!
    \class QRhiGraphicsPipeline::StencilOpState
    \inmodule QtRhi
    \brief Describes the stencil operation state.
 */

/*!
    \internal
 */
QRhiGraphicsPipeline::QRhiGraphicsPipeline(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiGraphicsPipeline::resourceType() const
{
    return GraphicsPipeline;
}

/*!
    \fn bool QRhiGraphicsPipeline::build()

    Creates the corresponding native graphics resources. If there are already
    resources present due to an earlier build() with no corresponding
    release(), then release() is called implicitly first.

    \return \c true when successful, \c false when a graphics operation failed.
    Regardless of the return value, calling release() is always safe.
 */

/*!
    \fn void QRhiGraphicsPipeline::setDepthTest(bool enable)

    Enables or disables depth testing. Both depth test and the writing out of
    depth data are disabled by default.

    \sa setDepthWrite()
 */

/*!
    \fn void QRhiGraphicsPipeline::setDepthWrite(bool enable)

    Controls the writing out of depth data into the depth buffer. By default
    this is disabled. Depth write is typically enabled together with the depth
    test.

    \note Enabling depth write without having depth testing enabled may not
    lead to the desired result, and should be avoided.

    \sa setDepthTest()
 */

/*!
    \class QRhiSwapChain
    \inmodule QtRhi
    \brief Swapchain resource.

    A swapchain enables presenting rendering results to a surface. A swapchain
    is typically backed by a set of color buffers. Of these, one is displayed
    at a time.

    Below is a typical pattern for creating and managing a swapchain and some
    associated resources in order to render onto a QWindow:

    \badcode
      void init()
      {
          sc = rhi->newSwapChain();
          ds = rhi->newRenderBuffer(QRhiRenderBuffer::DepthStencil,
                                    QSize(), // no need to set the size yet
                                    1,
                                    QRhiRenderBuffer::UsedWithSwapChainOnly);
          sc->setWindow(window);
          sc->setDepthStencil(ds);
          rp = sc->newCompatibleRenderPassDescriptor();
          sc->setRenderPassDescriptor(rp);
          resizeSwapChain();
      }

      void resizeSwapChain()
      {
          const QSize outputSize = sc->surfacePixelSize();
          ds->setPixelSize(outputSize);
          ds->build();
          hasSwapChain = sc->buildOrResize();
      }

      void render()
      {
          if (!hasSwapChain || notExposed)
              return;

          if (sc->currentPixelSize() != sc->surfacePixelSize() || newlyExposed) {
              resizeSwapChain();
              if (!hasSwapChain)
                  return;
              newlyExposed = false;
          }

          rhi->beginFrame(sc);
          // ...
          rhi->endFrame(sc);
      }
    \endcode

    Avoid relying on QWindow resize events to resize swapchains, especially
    considering that surface sizes may not always fully match the QWindow
    reported dimensions. The safe, cross-platform approach is to do the check
    via surfacePixelSize() whenever starting a new frame.

    Releasing the swapchain must happen while the QWindow and the underlying
    native window is fully up and running. Building on the previous example:

    \badcode
        void releaseSwapChain()
        {
            if (hasSwapChain) {
                sc->release();
                hasSwapChain = false;
            }
        }

        // assuming Window is our QWindow subclass
        bool Window::event(QEvent *e)
        {
            switch (e->type()) {
            case QEvent::UpdateRequest: // for QWindow::requestUpdate()
                render();
                break;
            case QEvent::PlatformSurface:
                if (static_cast<QPlatformSurfaceEvent *>(e)->surfaceEventType() == QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed)
                    releaseSwapChain();
                break;
            default:
                break;
            }
            return QWindow::event(e);
        }
    \endcode

    Initializing the swapchain and starting to render the first frame cannot
    start at any time. The safe, cross-platform approach is to rely on expose
    events. QExposeEvent is a loosely specified event that is sent whenever a
    window gets mapped, obscured, and resized, depending on the platform.

    \badcode
        void Window::exposeEvent(QExposeEvent *)
        {
            // initialize and start rendering when the window becomes usable for graphics purposes
            if (isExposed() && !running) {
                running = true;
                init();
            }

            // stop pushing frames when not exposed or size becomes 0
            if ((!isExposed() || (hasSwapChain && sc->surfacePixelSize().isEmpty())) && running)
                notExposed = true;

            // continue when exposed again and the surface has a valid size
            if (isExposed() && running && notExposed && !sc->surfacePixelSize().isEmpty()) {
                notExposed = false;
                newlyExposed = true;
            }

            if (isExposed() && !sc->surfacePixelSize().isEmpty())
                render();
        }
    \endcode

    Once the rendering has started, a simple way to request a new frame is
    QWindow::requestUpdate(). While on some platforms this is merely a small
    timer, on others it has a specific implementation: for instance on macOS or
    iOS it may be backed by
    \l{https://developer.apple.com/documentation/corevideo/cvdisplaylink?language=objc}{CVDisplayLink}.
    The example above is already prepared for update requests by handling
    QEvent::UpdateRequest.

    While acting as a QRhiRenderTarget, QRhiSwapChain also manages a
    QRhiCommandBuffer. Calling QRhi::endFrame() submits the recorded commands
    and also enqueues a \c present request. The default behavior is to do this
    with a swap interval of 1, meaning synchronizing to the display's vertical
    refresh is enabled. Thus the rendering thread calling beginFrame() and
    endFrame() will get throttled to vsync. On some backends this can be
    disabled by passing QRhiSwapChain:NoVSync in flags().

    Multisampling (MSAA) is handled transparently to the applications when
    requested via setSampleCount(). Where applicable, QRhiSwapChain will take
    care of creating additional color buffers and issuing a multisample resolve
    command at the end of a frame. For OpenGL, it is necessary to request the
    appropriate sample count also via QSurfaceFormat, by calling
    QSurfaceFormat::setDefaultFormat() before initializing the QRhi.
 */

/*!
    \enum QRhiSwapChain::Flag
    Flag values to describe swapchain properties

    \value SurfaceHasPreMulAlpha Indicates that the target surface has
    transparency with premultiplied alpha.

    \value SurfaceHasNonPreMulAlpha Indicates the target surface has
    transparencyt with non-premultiplied alpha.

    \value sRGB Requests to pick an sRGB format for the swapchain and/or its
    render target views, where applicable. Note that this implies that sRGB
    framebuffer update and blending will get enabled for all content targeting
    this swapchain, and opting out is not possible. For OpenGL, set
    \l{QSurfaceFormat::sRGBColorSpace}{sRGBColorSpace} on the QSurfaceFormat of
    the QWindow in addition.

    \value UsedAsTransferSource Indicates the the swapchain will be used as the
    source of a readback in QRhiResourceUpdateBatch::readBackTexture().

    \value NoVSync Requests disabling waiting for vertical sync, also avoiding
    throttling the rendering thread. The behavior is backend specific and
    applicable only where it is possible to control this. Some may ignore the
    request altogether. For OpenGL, try instead setting the swap interval to 0
    on the QWindow via QSurfaceFormat::setSwapInterval().

    \value MinimalBufferCount Requests creating the swapchain with the minimum
    number of buffers, which is in practice 2, unless the graphics
    implementation has a higher minimum number than that. Only applicable with
    backends where such control is available via the graphics API, for example,
    Vulkan. By default it is up to the backend to decide what number of buffers
    it requests (in practice this is almost always either 2 or 3), and it is
    not the applications' concern. However, on Vulkan for instance the backend
    will likely prefer the higher number (3), for example to avoid odd
    performance issues with some Vulkan implementations on mobile devices. It
    could be that on some platforms it can prove to be beneficial to force the
    lower buffer count (2), so this flag allows forcing that. Note that all
    this has no effect on the number of frames kept in flight, so the CPU
    (QRhi) will still prepare frames at most \c{N - 1} frames ahead of the GPU,
    even when the swapchain image buffer count larger than \c N. (\c{N} =
    QRhi::FramesInFlight and typically 2).
 */

/*!
    \internal
 */
QRhiSwapChain::QRhiSwapChain(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiSwapChain::resourceType() const
{
    return SwapChain;
}

/*!
    \fn QSize QRhiSwapChain::currentPixelSize() const

    \return the size with which the swapchain was last successfully built. Use
    this to decide if buildOrResize() needs to be called again: if
    \c{currentPixelSize() != surfacePixelSize()} then the swapchain needs to be
    resized.

    \sa surfacePixelSize()
  */

/*!
    \fn QSize QRhiSwapChain::surfacePixelSize()

    \return The size of the window's associated surface or layer. Do not assume
    this is the same as QWindow::size() * QWindow::devicePixelRatio().

    Can be called before buildOrResize() (but with window() already set), which
    allows setting the correct size for the depth-stencil buffer that is then
    used together with the swapchain's color buffers. Also used in combination
    with currentPixelSize() to detect size changes.

    \sa currentPixelSize()
  */

/*!
    \fn QRhiCommandBuffer *QRhiSwapChain::currentFrameCommandBuffer()

    \return a command buffer on which rendering commands can be recorded. Only
    valid within a QRhi::beginFrame() - QRhi::endFrame() block where
    beginFrame() was called with this swapchain.

    \note the value must not be cached and reused between frames
*/

/*!
    \fn QRhiRenderTarget *QRhiSwapChain::currentFrameRenderTarget()

    \return a render target that can used with beginPass() in order to render
    the the swapchain's current backbuffer. Only valid within a
    QRhi::beginFrame() - QRhi::endFrame() block where beginFrame() was called
    with this swapchain.

    \note the value must not be cached and reused between frames
 */

/*!
    \fn bool QRhiSwapChain::buildOrResize()

    Creates the swapchain if not already done and resizes the swapchain buffers
    to match the current size of the targeted surface. Call this whenever the
    size of the target surface is different than before.

    \note call release() only when the swapchain needs to be released
    completely, typically upon
    QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed. To perform resizing, just
    call buildOrResize().

    \return \c true when successful, \c false when a graphics operation failed.
    Regardless of the return value, calling release() is always safe.
 */

/*!
    \class QRhiComputePipeline
    \inmodule QtRhi
    \brief Compute pipeline state resource.

    \note Setting the shader resource bindings is mandatory. The referenced
    QRhiShaderResourceBindings must already be built by the time build() is
    called.

    \note Setting the shader is mandatory.
 */

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiComputePipeline::resourceType() const
{
    return ComputePipeline;
}

/*!
    \internal
 */
QRhiComputePipeline::QRhiComputePipeline(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \class QRhiCommandBuffer
    \inmodule QtRhi
    \brief Command buffer resource.

    Not creatable by applications at the moment. The only ways to obtain a
    valid QRhiCommandBuffer are to get it from the targeted swapchain via
    QRhiSwapChain::currentFrameCommandBuffer(), or, in case of rendering
    completely offscreen, initializing one via QRhi::beginOffscreenFrame().
 */

/*!
    \enum QRhiCommandBuffer::IndexFormat
    Specifies the index data type

    \value IndexUInt16 Unsigned 16-bit (quint16)
    \value IndexUInt32 Unsigned 32-bit (quint32)
 */

/*!
    \typedef QRhiCommandBuffer::DynamicOffset

    Synonym for QPair<int, quint32>. The first entry is the binding, the second
    is the offset in the buffer.
*/

/*!
    \typedef QRhiCommandBuffer::VertexInput

    Synonym for QPair<QRhiBuffer *, quint32>. The second entry is an offset in
    the buffer specified by the first.
*/

/*!
    \internal
 */
QRhiCommandBuffer::QRhiCommandBuffer(QRhiImplementation *rhi)
    : QRhiResource(rhi)
{
}

/*!
    \return the resource type.
 */
QRhiResource::Type QRhiCommandBuffer::resourceType() const
{
    return CommandBuffer;
}

QRhiImplementation::~QRhiImplementation()
{
    qDeleteAll(resUpdPool);

    // Be nice and show something about leaked stuff. Though we may not get
    // this far with some backends where the allocator or the api may check
    // and freak out for unfreed graphics objects in the derived dtor already.
#ifndef QT_NO_DEBUG
    if (!resources.isEmpty()) {
        qWarning("QRhi %p going down with %d unreleased resources. This is not nice.",
                 q, resources.count());
        for (QRhiResource *res : qAsConst(resources)) {
            qWarning("  Resource %p (%s)", res, res->m_objectName.constData());
            res->m_rhi = nullptr;
        }
    }
#endif
}

bool QRhiImplementation::isCompressedFormat(QRhiTexture::Format format) const
{
    return (format >= QRhiTexture::BC1 && format <= QRhiTexture::BC7)
            || (format >= QRhiTexture::ETC2_RGB8 && format <= QRhiTexture::ETC2_RGBA8)
            || (format >= QRhiTexture::ASTC_4x4 && format <= QRhiTexture::ASTC_12x12);
}

void QRhiImplementation::compressedFormatInfo(QRhiTexture::Format format, const QSize &size,
                                              quint32 *bpl, quint32 *byteSize,
                                              QSize *blockDim) const
{
    int xdim = 4;
    int ydim = 4;
    quint32 blockSize = 0;

    switch (format) {
    case QRhiTexture::BC1:
        blockSize = 8;
        break;
    case QRhiTexture::BC2:
        blockSize = 16;
        break;
    case QRhiTexture::BC3:
        blockSize = 16;
        break;
    case QRhiTexture::BC4:
        blockSize = 8;
        break;
    case QRhiTexture::BC5:
        blockSize = 16;
        break;
    case QRhiTexture::BC6H:
        blockSize = 16;
        break;
    case QRhiTexture::BC7:
        blockSize = 16;
        break;

    case QRhiTexture::ETC2_RGB8:
        blockSize = 8;
        break;
    case QRhiTexture::ETC2_RGB8A1:
        blockSize = 8;
        break;
    case QRhiTexture::ETC2_RGBA8:
        blockSize = 16;
        break;

    case QRhiTexture::ASTC_4x4:
        blockSize = 16;
        break;
    case QRhiTexture::ASTC_5x4:
        blockSize = 16;
        xdim = 5;
        break;
    case QRhiTexture::ASTC_5x5:
        blockSize = 16;
        xdim = ydim = 5;
        break;
    case QRhiTexture::ASTC_6x5:
        blockSize = 16;
        xdim = 6;
        ydim = 5;
        break;
    case QRhiTexture::ASTC_6x6:
        blockSize = 16;
        xdim = ydim = 6;
        break;
    case QRhiTexture::ASTC_8x5:
        blockSize = 16;
        xdim = 8;
        ydim = 5;
        break;
    case QRhiTexture::ASTC_8x6:
        blockSize = 16;
        xdim = 8;
        ydim = 6;
        break;
    case QRhiTexture::ASTC_8x8:
        blockSize = 16;
        xdim = ydim = 8;
        break;
    case QRhiTexture::ASTC_10x5:
        blockSize = 16;
        xdim = 10;
        ydim = 5;
        break;
    case QRhiTexture::ASTC_10x6:
        blockSize = 16;
        xdim = 10;
        ydim = 6;
        break;
    case QRhiTexture::ASTC_10x8:
        blockSize = 16;
        xdim = 10;
        ydim = 8;
        break;
    case QRhiTexture::ASTC_10x10:
        blockSize = 16;
        xdim = ydim = 10;
        break;
    case QRhiTexture::ASTC_12x10:
        blockSize = 16;
        xdim = 12;
        ydim = 10;
        break;
    case QRhiTexture::ASTC_12x12:
        blockSize = 16;
        xdim = ydim = 12;
        break;

    default:
        Q_UNREACHABLE();
        break;
    }

    const quint32 wblocks = (size.width() + xdim - 1) / xdim;
    const quint32 hblocks = (size.height() + ydim - 1) / ydim;

    if (bpl)
        *bpl = wblocks * blockSize;
    if (byteSize)
        *byteSize = wblocks * hblocks * blockSize;
    if (blockDim)
        *blockDim = QSize(xdim, ydim);
}

void QRhiImplementation::textureFormatInfo(QRhiTexture::Format format, const QSize &size,
                                           quint32 *bpl, quint32 *byteSize) const
{
    if (isCompressedFormat(format)) {
        compressedFormatInfo(format, size, bpl, byteSize, nullptr);
        return;
    }

    quint32 bpc = 0;
    switch (format) {
    case QRhiTexture::RGBA8:
        bpc = 4;
        break;
    case QRhiTexture::BGRA8:
        bpc = 4;
        break;
    case QRhiTexture::R8:
        bpc = 1;
        break;
    case QRhiTexture::R16:
        bpc = 2;
        break;
    case QRhiTexture::RED_OR_ALPHA8:
        bpc = 1;
        break;

    case QRhiTexture::RGBA16F:
        bpc = 8;
        break;
    case QRhiTexture::RGBA32F:
        bpc = 16;
        break;

    case QRhiTexture::D16:
        bpc = 2;
        break;
    case QRhiTexture::D32F:
        bpc = 4;
        break;

    default:
        Q_UNREACHABLE();
        break;
    }

    if (bpl)
        *bpl = size.width() * bpc;
    if (byteSize)
        *byteSize = size.width() * size.height() * bpc;
}

// Approximate because it excludes subresource alignment or multisampling.
quint32 QRhiImplementation::approxByteSizeForTexture(QRhiTexture::Format format, const QSize &baseSize,
                                                     int mipCount, int layerCount)
{
    quint32 approxSize = 0;
    for (int level = 0; level < mipCount; ++level) {
        quint32 byteSize = 0;
        const QSize size(qFloor(float(qMax(1, baseSize.width() >> level))),
                         qFloor(float(qMax(1, baseSize.height() >> level))));
        textureFormatInfo(format, size, nullptr, &byteSize);
        approxSize += byteSize;
    }
    approxSize *= layerCount;
    return approxSize;
}

/*!
    \internal
 */
QRhi::QRhi()
{
}

/*!
    Destructor. Destroys the backend and releases resources.
 */
QRhi::~QRhi()
{
    if (!d)
        return;

    qDeleteAll(d->pendingReleaseAndDestroyResources);
    d->pendingReleaseAndDestroyResources.clear();

    runCleanup();

    d->destroy();
    delete d;
}

/*!
    \return a new QRhi instance with a backend for the graphics API specified by \a impl.

    \a params must point to an instance of one of the backend-specific
    subclasses of QRhiInitParams, such as, QRhiVulkanInitParams,
    QRhiMetalInitParams, QRhiD3D11InitParams, QRhiGles2InitParams. See these
    classes for examples on creating a QRhi.

    \a flags is optional. It is used to enable profile and debug related
    features that are potentially expensive and should only be used during
    development.
 */
QRhi *QRhi::create(Implementation impl, QRhiInitParams *params, Flags flags, QRhiNativeHandles *importDevice)
{
    QScopedPointer<QRhi> r(new QRhi);

    switch (impl) {
    case Null:
        r->d = new QRhiNull(static_cast<QRhiNullInitParams *>(params));
        break;
    case Vulkan:
#if QT_CONFIG(vulkan)
        r->d = new QRhiVulkan(static_cast<QRhiVulkanInitParams *>(params),
                              static_cast<QRhiVulkanNativeHandles *>(importDevice));
        break;
#else
        Q_UNUSED(importDevice);
        qWarning("This build of Qt has no Vulkan support");
        break;
#endif
    case OpenGLES2:
#ifndef QT_NO_OPENGL
        r->d = new QRhiGles2(static_cast<QRhiGles2InitParams *>(params),
                             static_cast<QRhiGles2NativeHandles *>(importDevice));
        break;
#else
        qWarning("This build of Qt has no OpenGL support");
        break;
#endif
    case D3D11:
#ifdef Q_OS_WIN
        r->d = new QRhiD3D11(static_cast<QRhiD3D11InitParams *>(params),
                             static_cast<QRhiD3D11NativeHandles *>(importDevice));
        break;
#else
        qWarning("This platform has no Direct3D 11 support");
        break;
#endif
    case Metal:
//#ifdef Q_OS_DARWIN
#ifdef Q_OS_MACOS
        r->d = new QRhiMetal(static_cast<QRhiMetalInitParams *>(params),
                             static_cast<QRhiMetalNativeHandles *>(importDevice));
        break;
#else
        qWarning("This platform has no Metal support");
        break;
#endif
    default:
        break;
    }

    if (r->d) {
        r->d->q = r.data();
        if (flags.testFlag(EnableProfiling)) {
            QRhiProfilerPrivate *profD = QRhiProfilerPrivate::get(&r->d->profiler);
            profD->rhiDWhenEnabled = r->d;
        }
        r->d->debugMarkers = flags.testFlag(EnableDebugMarkers);
        if (r->d->create(flags)) {
            r->d->implType = impl;
            r->d->implThread = QThread::currentThread();
            return r.take();
        }
    }

    return nullptr;
}

/*!
    \return the backend type for this QRhi.
 */
QRhi::Implementation QRhi::backend() const
{
    return d->implType;
}

/*!
    \return the thread on which the QRhi was \l{QRhi::create()}{initialized}.
 */
QThread *QRhi::thread() const
{
    return d->implThread;
}

/*!
    Registers a \a callback that is invoked either when the QRhi is destroyed,
    or when runCleanup() is called.

    The callback will run with the graphics resource still available, so this
    provides an opportunity for the application to cleanly release QRhiResource
    instances belonging to the QRhi. This is particularly useful for managing
    the lifetime of resources stored in \c cache type of objects, where the
    cache holds QRhiResources or objects containing QRhiResources.

    \sa runCleanup(), ~QRhi()
 */
void QRhi::addCleanupCallback(const CleanupCallback &callback)
{
    d->addCleanupCallback(callback);
}

/*!
    Invokes all registered cleanup functions. The list of cleanup callbacks it
    then cleared. Normally destroying the QRhi does this automatically, but
    sometimes it can be useful to trigger cleanup in order to release all
    cached, non-essential resources.

    \sa addCleanupCallback()
 */
void QRhi::runCleanup()
{
    for (const CleanupCallback &f : qAsConst(d->cleanupCallbacks))
        f(this);

    d->cleanupCallbacks.clear();
}

/*!
    \class QRhiResourceUpdateBatch
    \inmodule QtRhi
    \brief Records upload and copy type of operations.

    With QRhi it is no longer possible to perform copy type of operations at
    arbitrary times. Instead, all such operations are recorded into batches
    that are then passed, most commonly, to QRhiCommandBuffer::beginPass().
    What then happens under the hood is hidden from the application: the
    underlying implementations can defer and implement these operations in
    various different ways.

    A resource update batch owns no graphics resources and does not perform any
    actual operations on its own. It should rather be viewed as a command
    buffer for update, upload, and copy type of commands.

    To get an available, empty batch from the pool, call
    QRhi::nextResourceUpdateBatch().
 */

/*!
    \internal
 */
QRhiResourceUpdateBatch::QRhiResourceUpdateBatch(QRhiImplementation *rhi)
    : d(new QRhiResourceUpdateBatchPrivate)
{
    d->q = this;
    d->rhi = rhi;
}

QRhiResourceUpdateBatch::~QRhiResourceUpdateBatch()
{
    delete d;
}

/*!
    \return the batch to the pool. This should only be used when the batch is
    not passed to one of QRhiCommandBuffer::beginPass(),
    QRhiCommandBuffer::endPass(), or QRhiCommandBuffer::resourceUpdate()
    because these implicitly call release().

    \note QRhiResourceUpdateBatch instances must never by \c deleted by
    applications.
 */
void QRhiResourceUpdateBatch::release()
{
    d->free();
}

/*!
    Copies all queued operations from the \a other batch into this one.

    \note \a other is not changed in any way, typically it will still need a
    release()

    This allows for a convenient pattern where resource updates that are
    already known during the initialization step are collected into a batch
    that is then merged into another when starting to first render pass later
    on:

    \badcode
    void init()
    {
        ...
        initialUpdates = rhi->nextResourceUpdateBatch();
        initialUpdates->uploadStaticBuffer(vbuf, vertexData);
        initialUpdates->uploadStaticBuffer(ibuf, indexData);
        ...
    }

    void render()
    {
        ...
        QRhiResourceUpdateBatch *resUpdates = rhi->nextResourceUpdateBatch();
        if (initialUpdates) {
            resUpdates->merge(initialUpdates);
            initialUpdates->release();
            initialUpdates = nullptr;
        }
        resUpdates->updateDynamicBuffer(...);
        ...
        cb->beginPass(rt, clearCol, clearDs, resUpdates);
    }
    \endcode
 */
void QRhiResourceUpdateBatch::merge(QRhiResourceUpdateBatch *other)
{
    d->merge(other->d);
}

/*!
    Enqueues updating a region of a QRhiBuffer \a buf created with the type
    QRhiBuffer::Dynamic.

    The region is specified \a offset and \a size. The actual bytes to write
    are specified by \a data which must have at least \a size bytes available.
    \a data can safely be destroyed or changed once this function returns.

    \note If host writes are involved, which is the case with
    updateDynamicBuffer() typically as such buffers are backed by host visible
    memory with most backends, they may accumulate within a frame. Thus pass 1
    reading a region changed by a batch passed to pass 2 may see the changes
    specified in pass 2's update batch.

    \note QRhi transparently manages double buffering in order to prevent
    stalling the graphics pipeline. The fact that a QRhiBuffer may have
    multiple native underneath can be safely ignored when using the QRhi and
    QRhiResourceUpdateBatch.
 */
void QRhiResourceUpdateBatch::updateDynamicBuffer(QRhiBuffer *buf, int offset, int size, const void *data)
{
    if (size > 0)
        d->dynamicBufferUpdates.append({ buf, offset, size, data });
}

/*!
    Enqueues updating a region of a QRhiBuffer \a buf created with the type
    QRhiBuffer::Immutable or QRhiBuffer::Static.

    The region is specified \a offset and \a size. The actual bytes to write
    are specified by \a data which must have at least \a size bytes available.
    \a data can safely be destroyed or changed once this function returns.
 */
void QRhiResourceUpdateBatch::uploadStaticBuffer(QRhiBuffer *buf, int offset, int size, const void *data)
{
    if (size > 0)
        d->staticBufferUploads.append({ buf, offset, size, data });
}

/*!
    Enqueues updating the entire QRhiBuffer \a buf created with the type
    QRhiBuffer::Immutable or QRhiBuffer::Static.
 */
void QRhiResourceUpdateBatch::uploadStaticBuffer(QRhiBuffer *buf, const void *data)
{
    if (buf->size() > 0)
        d->staticBufferUploads.append({ buf, 0, 0, data });
}

/*!
    Enqueues uploading the image data for one or more mip levels in one or more
    layers of the texture \a tex.

    The details of the copy (source QImage or compressed texture data, regions,
    target layers and levels) are described in \a desc.
 */
void QRhiResourceUpdateBatch::uploadTexture(QRhiTexture *tex, const QRhiTextureUploadDescription &desc)
{
    if (!desc.entries().isEmpty())
        d->textureOps.append(QRhiResourceUpdateBatchPrivate::TextureOp::textureUpload(tex, desc));
}

/*!
    Enqueues uploading the image data for mip level 0 of layer 0 of the texture
    \a tex.

    \a tex must have an uncompressed format. Its format must also be compatible
    with the QImage::format() of \a image. The source data is given in \a
    image.
 */
void QRhiResourceUpdateBatch::uploadTexture(QRhiTexture *tex, const QImage &image)
{
    uploadTexture(tex, QRhiTextureUploadEntry(0, 0, image));
}

/*!
   Enqueues a texture-to-texture copy operation from \a src into \a dst as
   described by \a desc.

   \note The source texture \a src must be created with
   QRhiTexture::UsedAsTransferSource.
 */
void QRhiResourceUpdateBatch::copyTexture(QRhiTexture *dst, QRhiTexture *src, const QRhiTextureCopyDescription &desc)
{
    d->textureOps.append(QRhiResourceUpdateBatchPrivate::TextureOp::textureCopy(dst, src, desc));
}

/*!
   Enqueues a texture-to-host copy operation as described by \a rb.

   Normally \a rb will specify a QRhiTexture as the source. However, when the
   swapchain in the current frame was created with
   QRhiSwapChain::UsedAsTransferSource, it can also be the source of the
   readback. For this, leave the texture set to null in \a rb.

   Unlike other operations, the results here need to be processed by the
   application. Therefore, \a result provides not just the data but also a
   callback as operations on the batch are asynchronous by nature:

   \badcode
      beginFrame(sc);
      beginPass
      ...
      QRhiReadbackResult *rbResult = new QRhiReadbackResult;
      rbResult->completed = [rbResult] {
          {
              const QImage::Format fmt = QImage::Format_RGBA8888_Premultiplied; // fits QRhiTexture::RGBA8
              const uchar *p = reinterpret_cast<const uchar *>(rbResult->data.constData());
              QImage image(p, rbResult->pixelSize.width(), rbResult->pixelSize.height(), fmt);
              image.save("result.png");
          }
          delete rbResult;
      };
      u = nextResourceUpdateBatch();
      QRhiReadbackDescription rb; // no texture -> uses the current backbuffer of sc
      u->readBackTexture(rb, rbResult);
      endPass(u);
      endFrame(sc);
   \endcode

   \note The texture must be created with QRhiTexture::UsedAsTransferSource.

   \note Multisample textures cannot be read back.

   \note The readback returns raw byte data, in order to allow the applications
   to interpret it in any way they see fit. Be aware of the blending settings
   of rendering code: if the blending is set up to rely on premultiplied alpha,
   the results of the readback must also be interpreted as Premultiplied.

   \note When interpreting the resulting raw data, be aware that the readback
   happens with a byte ordered format. A \l{QRhiTexture::RGBA8}{RGBA8} texture
   maps therefore to byte ordered QImage formats, such as,
   QImage::Format_RGBA8888.
 */
void QRhiResourceUpdateBatch::readBackTexture(const QRhiReadbackDescription &rb, QRhiReadbackResult *result)
{
    d->textureOps.append(QRhiResourceUpdateBatchPrivate::TextureOp::textureRead(rb, result));
}

/*!
   Enqueues a mipmap generation operation for the specified \a layer of texture
   \a tex.

   \note The texture must be created with QRhiTexture::MipMapped and
   QRhiTexture::UsedWithGenerateMips.
 */
void QRhiResourceUpdateBatch::generateMips(QRhiTexture *tex, int layer)
{
    d->textureOps.append(QRhiResourceUpdateBatchPrivate::TextureOp::textureMipGen(tex, layer));
}

/*!
   \return an available, empty batch to which copy type of operations can be
   recorded.

   \note the return value is not owned by the caller and must never be
   destroyed. Instead, the batch is returned the the pool for reuse by passing
   it to QRhiCommandBuffer::beginPass(), QRhiCommandBuffer::endPass(), or
   QRhiCommandBuffer::resourceUpdate(), or by calling
   QRhiResourceUpdateBatch::release() on it.

   \note Can be called outside beginFrame() - endFrame() as well since a batch
   instance just collects data on its own, it does not perform any operations.
 */
QRhiResourceUpdateBatch *QRhi::nextResourceUpdateBatch()
{
    auto nextFreeBatch = [this]() -> QRhiResourceUpdateBatch * {
        for (int i = 0, ie = d->resUpdPoolMap.count(); i != ie; ++i) {
            if (!d->resUpdPoolMap.testBit(i)) {
                d->resUpdPoolMap.setBit(i);
                QRhiResourceUpdateBatch *u = d->resUpdPool[i];
                QRhiResourceUpdateBatchPrivate::get(u)->poolIndex = i;
                return u;
            }
        }
        return nullptr;
    };

    QRhiResourceUpdateBatch *u = nextFreeBatch();
    if (!u) {
        const int oldSize = d->resUpdPool.count();
        const int newSize = oldSize + 4;
        d->resUpdPool.resize(newSize);
        d->resUpdPoolMap.resize(newSize);
        for (int i = oldSize; i < newSize; ++i)
            d->resUpdPool[i] = new QRhiResourceUpdateBatch(d);
        u = nextFreeBatch();
        Q_ASSERT(u);
    }

    return u;
}

void QRhiResourceUpdateBatchPrivate::free()
{
    Q_ASSERT(poolIndex >= 0 && rhi->resUpdPool[poolIndex] == q);

    dynamicBufferUpdates.clear();
    staticBufferUploads.clear();
    textureOps.clear();

    rhi->resUpdPoolMap.clearBit(poolIndex);
    poolIndex = -1;
}

void QRhiResourceUpdateBatchPrivate::merge(QRhiResourceUpdateBatchPrivate *other)
{
    dynamicBufferUpdates += other->dynamicBufferUpdates;
    staticBufferUploads += other->staticBufferUploads;
    textureOps += other->textureOps;
}

/*!
    Sometimes committing resource updates is necessary without starting a
    render pass. Not often needed, updates should typically be passed to
    beginPass (or endPass, in case of readbacks) instead.

    \note Cannot be called inside a pass.
 */
void QRhiCommandBuffer::resourceUpdate(QRhiResourceUpdateBatch *resourceUpdates)
{
    if (resourceUpdates)
        m_rhi->resourceUpdate(this, resourceUpdates);
}

/*!
    Records starting a new render pass targeting the render target \a rt.

    \a resourceUpdates, when not null, specifies a resource update batch that
    is to be committed and then released.

    The color and depth/stencil buffers of the render target are normally
    cleared. The clear values are specified in \a colorClearValue and \a
    depthStencilClearValue. The exception is when the render target was created
    with QRhiTextureRenderTarget::PreserveColorContents and/or
    QRhiTextureRenderTarget::PreserveDepthStencilContents. The clear values are
    ignored then.

    \note Enabling preserved color or depth contents leads to decreased
    performance depending on the underlying hardware. Mobile GPUs with tiled
    architecture benefit from not having to reload the previous contents into
    the tile buffer. Similarly, a QRhiTextureRenderTarget with a QRhiTexture as
    the depth buffer is less efficient than a QRhiRenderBuffer since using a
    depth texture triggers requiring writing the data out to it, while with
    renderbuffers this is not needed (as the API does not allow sampling or
    reading from a renderbuffer).

    \note Do not assume that any state or resource bindings persist between
    passes.

    \note The QRhiCommandBuffer's \c set and \c draw functions can only be
    called inside a pass. Also, with the exception of setGraphicsPipeline(),
    they expect to have a pipeline set already on the command buffer.
    Unspecified issues may arise otherwise, depending on the backend.
 */
void QRhiCommandBuffer::beginPass(QRhiRenderTarget *rt,
                                  const QColor &colorClearValue,
                                  const QRhiDepthStencilClearValue &depthStencilClearValue,
                                  QRhiResourceUpdateBatch *resourceUpdates)
{
    m_rhi->beginPass(this, rt, colorClearValue, depthStencilClearValue, resourceUpdates);
}

/*!
    Records ending the current render pass.

    \a resourceUpdates, when not null, specifies a resource update batch that
    is to be committed and then released.
 */
void QRhiCommandBuffer::endPass(QRhiResourceUpdateBatch *resourceUpdates)
{
    m_rhi->endPass(this, resourceUpdates);
}

/*!
    Records setting a new graphics pipeline \a ps.

    \note This function must be called before recording other \c set or \c draw
    commands on the command buffer.

    \note QRhi will optimize out unnecessary invocations within a pass, so
    therefore overoptimizing to avoid calls to this function is not necessary
    on the applications' side.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::setGraphicsPipeline(QRhiGraphicsPipeline *ps)
{
    m_rhi->setGraphicsPipeline(this, ps);
}

/*!
    Records binding a set of shader resources, such as, uniform buffers or
    textures, that are made visible to one or more shader stages.

    \a srb can be null in which case the current graphics or compute pipeline's
    associated QRhiShaderResourceBindings is used. When \a srb is non-null, it
    must be
    \l{QRhiShaderResourceBindings::isLayoutCompatible()}{layout-compatible},
    meaning the layout (number of bindings, the type and binding number of each
    binding) must fully match the QRhiShaderResourceBindings that was
    associated with the pipeline at the time of calling the pipeline's build().

    There are cases when a seemingly unnecessary setShaderResources() call is
    mandatory: when rebuilding a resource referenced from \a srb, for example
    changing the size of a QRhiBuffer followed by a QRhiBuffer::build(), this
    is the place where associated native objects (such as descriptor sets in
    case of Vulkan) are updated to refer to the current native resources that
    back the QRhiBuffer, QRhiTexture, QRhiSampler objects referenced from \a
    srb. In this case setShaderResources() must be called even if \a srb is
    the same as in the last call.

    \a dynamicOffsets allows specifying buffer offsets for uniform buffers that
    were associated with \a srb via
    QRhiShaderResourceBinding::uniformBufferWithDynamicOffset(). This is
    different from providing the offset in the \a srb itself: dynamic offsets
    do not require building a new QRhiShaderResourceBindings for every
    different offset, can avoid writing the underlying descriptors (with
    backends where applicable), and so they may be more efficient. Each element
    of \a dynamicOffsets is a \c binding - \c offset pair.
    \a dynamicOffsetCount specifies the number of elements in \a dynamicOffsets.

    \note All offsets in \a dynamicOffsets must be byte aligned to the value
    returned from QRhi::ubufAlignment().

    \note QRhi will optimize out unnecessary invocations within a pass (taking
    the conditions described above into account), so therefore overoptimizing
    to avoid calls to this function is not necessary on the applications' side.

    \note This function can only be called inside a render or compute pass,
    meaning between a beginPass() and endPass(), or beginComputePass() and
    endComputePass().
 */
void QRhiCommandBuffer::setShaderResources(QRhiShaderResourceBindings *srb,
                                           int dynamicOffsetCount,
                                           const DynamicOffset *dynamicOffsets)
{
    m_rhi->setShaderResources(this, srb, dynamicOffsetCount, dynamicOffsets);
}

/*!
    Records vertex input bindings.

    The index buffer used by subsequent drawIndexed() commands is specified by
    \a indexBuf, \a indexOffset, and \a indexFormat. \a indexBuf can be set to
    null when indexed drawing is not needed.

    Vertex buffer bindings are batched. \a startBinding specifies the first
    binding number. The recorded command then binds each buffer from \a
    bindings to the binding point \c{startBinding + i} where \c i is the index
    in \a bindings. Each element in \a bindings specifies a QRhiBuffer and an
    offset.

    Superfluous vertex input and index changes in the same pass are ignored
    automatically with most backends and therefore applications do not need to
    overoptimize to avoid calls to this function.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.

    As a simple example, take a vertex shader with two inputs:

    \badcode
        layout(location = 0) in vec4 position;
        layout(location = 1) in vec3 color;
    \endcode

    and assume we have the data available in interleaved format, using only 2
    floats for position (so 5 floats per vertex: x, y, r, g, b). A QRhiGraphicsPipeline for
    this shader can then be created using the input layout:

    \badcode
        QRhiVertexInputLayout inputLayout;
        inputLayout.setBindings({
            { 5 * sizeof(float) }
        });
        inputLayout.setAttributes({
            { 0, 0, QRhiVertexInputAttribute::Float2, 0 },
            { 0, 1, QRhiVertexInputAttribute::Float3, 2 * sizeof(float) }
        });
    \endcode

    Here there is one buffer binding (binding number 0), with two inputs
    referencing it. When recording the pass, once the pipeline is set, the
    vertex bindings can be specified simply like the following (using C++11
    initializer syntax), assuming vbuf is the QRhiBuffer with all the
    interleaved position+color data:

    \badcode
        const QRhiCommandBuffer::VertexInput vbufBinding(vbuf, 0);
        cb->setVertexInput(0, 1, &vbufBinding);
    \endcode
 */
void QRhiCommandBuffer::setVertexInput(int startBinding, int bindingCount, const VertexInput *bindings,
                                       QRhiBuffer *indexBuf, quint32 indexOffset,
                                       IndexFormat indexFormat)
{
    m_rhi->setVertexInput(this, startBinding, bindingCount, bindings, indexBuf, indexOffset, indexFormat);
}

/*!
    Records setting the active viewport rectangle specified in \a viewport.

    With backends where the underlying graphics API has scissoring always
    enabled, this function also sets the scissor to match the viewport whenever
    the active QRhiGraphicsPipeline does not have
    \l{QRhiGraphicsPipeline::UsesScissor}{UsesScissor} set.

    \note QRhi assumes OpenGL-style viewport coordinates, meaning x and y are
    bottom-left.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::setViewport(const QRhiViewport &viewport)
{
    m_rhi->setViewport(this, viewport);
}

/*!
    Records setting the active scissor rectangle specified in \a scissor.

    This can only be called when the bound pipeline has
    \l{QRhiGraphicsPipeline::UsesScissor}{UsesScissor} set. When the flag is
    set on the active pipeline, this function must be called because scissor
    testing will get enabled and so a scissor rectangle must be provided.

    \note QRhi assumes OpenGL-style viewport coordinates, meaning x and y are
    bottom-left.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::setScissor(const QRhiScissor &scissor)
{
    m_rhi->setScissor(this, scissor);
}

/*!
    Records setting the active blend constants to \a c.

    This can only be called when the bound pipeline has
    QRhiGraphicsPipeline::UsesBlendConstants set.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::setBlendConstants(const QColor &c)
{
    m_rhi->setBlendConstants(this, c);
}

/*!
    Records setting the active stencil reference value to \a refValue.

    This can only be called when the bound pipeline has
    QRhiGraphicsPipeline::UsesStencilRef set.

    \note This function can only be called inside a render pass, meaning between
    a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::setStencilRef(quint32 refValue)
{
    m_rhi->setStencilRef(this, refValue);
}

/*!
    Records a non-indexed draw.

    The number of vertices is specified in \a vertexCount. For instanced
    drawing set \a instanceCount to a value other than 1. \a firstVertex is the
    index of the first vertex to draw. When drawing multiple instances, the
    first instance ID is specified by \a firstInstance.

    \note \a firstInstance may not be supported, and is ignored when the
    QRhi::BaseInstance feature is reported as not supported. The first ID is
    always 0 in that case.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::draw(quint32 vertexCount,
                             quint32 instanceCount,
                             quint32 firstVertex,
                             quint32 firstInstance)
{
    m_rhi->draw(this, vertexCount, instanceCount, firstVertex, firstInstance);
}

/*!
    Records an indexed draw.

    The number of vertices is specified in \a indexCount. \a firstIndex is the
    base index. The effective offset in the index buffer is given by
    \c{indexOffset + firstIndex * n} where \c n is 2 or 4 depending on the
    index element type. \c indexOffset is specified in setVertexInput().

    \note The effective offset in the index buffer must be 4 byte aligned with
    some backends (for example, Metal). With these backends the
    \l{QRhi::NonFourAlignedEffectiveIndexBufferOffset}{NonFourAlignedEffectiveIndexBufferOffset}
    feature will be reported as not-supported.

    For instanced drawing set \a instanceCount to a value other than 1. When
    drawing multiple instances, the first instance ID is specified by \a
    firstInstance.

    \note \a firstInstance may not be supported, and is ignored when the
    QRhi::BaseInstance feature is reported as not supported. The first ID is
    always 0 in that case.

    \a vertexOffset (also called \c{base vertex}) is a signed value that is
    added to the element index before indexing into the vertex buffer. Support
    for this is not always available, and the value is ignored when the feature
    QRhi::BaseVertex is reported as unsupported.

    \note This function can only be called inside a render pass, meaning
    between a beginPass() and endPass() call.
 */
void QRhiCommandBuffer::drawIndexed(quint32 indexCount,
                                    quint32 instanceCount,
                                    quint32 firstIndex,
                                    qint32 vertexOffset,
                                    quint32 firstInstance)
{
    m_rhi->drawIndexed(this, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}

/*!
    Records a named debug group on the command buffer. This is shown in
    graphics debugging tools such as \l{https://renderdoc.org/}{RenderDoc} and
    \l{https://developer.apple.com/xcode/}{XCode}. The end of the grouping is
    indicated by debugMarkEnd().

    \note Ignored when QRhi::DebugMarkers are not supported or
    QRhi::EnableDebugMarkers is not set.

    \note Can be called anywhere within the frame, both inside and outside of passes.
 */
void QRhiCommandBuffer::debugMarkBegin(const QByteArray &name)
{
    m_rhi->debugMarkBegin(this, name);
}

/*!
    Records the end of a debug group.

    \note Ignored when QRhi::DebugMarkers are not supported or
    QRhi::EnableDebugMarkers is not set.

    \note Can be called anywhere within the frame, both inside and outside of passes.
 */
void QRhiCommandBuffer::debugMarkEnd()
{
    m_rhi->debugMarkEnd(this);
}

/*!
    Inserts a debug message \a msg into the command stream.

    \note Ignored when QRhi::DebugMarkers are not supported or
    QRhi::EnableDebugMarkers is not set.

    \note With some backends debugMarkMsg() is only supported inside a pass and
    is ignored when called outside a pass. With others it is recorded anywhere
    within the frame.
 */
void QRhiCommandBuffer::debugMarkMsg(const QByteArray &msg)
{
    m_rhi->debugMarkMsg(this, msg);
}

/*!
    Records starting a new compute pass.

    \a resourceUpdates, when not null, specifies a resource update batch that
    is to be committed and then released.

    \note Do not assume that any state or resource bindings persist between
    passes.

    \note A compute pass can record setComputePipeline(), setShaderResources(),
    and dispatch() calls, not graphics ones. General functionality, such as,
    debug markers and beginExternal() is available both in render and compute
    passes.

    \note Compute is only available when the \l{QRhi::Compute}{Compute} feature
    is reported as supported.
 */
void QRhiCommandBuffer::beginComputePass(QRhiResourceUpdateBatch *resourceUpdates)
{
    m_rhi->beginComputePass(this, resourceUpdates);
}

/*!
    Records ending the current compute pass.

    \a resourceUpdates, when not null, specifies a resource update batch that
    is to be committed and then released.
 */
void QRhiCommandBuffer::endComputePass(QRhiResourceUpdateBatch *resourceUpdates)
{
    m_rhi->endComputePass(this, resourceUpdates);
}

/*!
    Records setting a new compute pipeline \a ps.

    \note This function must be called before recording setShaderResources() or
    dispatch() commands on the command buffer.

    \note QRhi will optimize out unnecessary invocations within a pass, so
    therefore overoptimizing to avoid calls to this function is not necessary
    on the applications' side.

    \note This function can only be called inside a compute pass, meaning
    between a beginComputePass() and endComputePass() call.
 */
void QRhiCommandBuffer::setComputePipeline(QRhiComputePipeline *ps)
{
    m_rhi->setComputePipeline(this, ps);
}

/*!
    Records dispatching compute work items, with \a x, \a y, and \a z
    specifying the number of local workgroups in the corresponding dimension.

    \note This function can only be called inside a compute pass, meaning
    between a beginComputePass() and endComputePass() call.
 */
void QRhiCommandBuffer::dispatch(int x, int y, int z)
{
    m_rhi->dispatch(this, x, y, z);
}

/*!
    \return a pointer to a backend-specific QRhiNativeHandles subclass, such as
    QRhiVulkanCommandBufferNativeHandles. The returned value is null when
    exposing the underlying native resources is not supported by, or not
    applicable to, the backend.

    \sa QRhiVulkanCommandBufferNativeHandles,
    QRhiMetalCommandBufferNativeHandles, beginExternal(), endExternal()
 */
const QRhiNativeHandles *QRhiCommandBuffer::nativeHandles()
{
    return m_rhi->nativeHandles(this);
}

/*!
    To be called when the application before the application is about to
    enqueue commands to the current pass' command buffer by calling graphics
    API functions directly.

    With Vulkan or Metal one can query the native command buffer or encoder
    objects via nativeHandles() and enqueue commands to them. With OpenGL or
    Direct3D 11 the (device) context can be retrieved from
    QRhi::nativeHandles(). However, this must never be done without ensuring
    the QRhiCommandBuffer's state stays up-to-date. Hence the requirement for
    wrapping any externally added command recording between beginExternal() and
    endExternal(). Conceptually this is the same as QPainter's
    \l{QPainter::beginNativePainting()}{beginNativePainting()} and
    \l{QPainter::endNativePainting()}{endNativePainting()} functions.

    For OpenGL in particular, this function has an additional task: it makes
    sure the context is made current on the current thread.

    \note Once beginExternal() is called, no other render pass specific
    functions (\c set* or \c draw*) must be called on the
    QRhiCommandBuffer until endExternal().

    \sa endExternal(), nativeHandles()
 */
void QRhiCommandBuffer::beginExternal()
{
    m_rhi->beginExternal(this);
}

/*!
    To be called once the externally added commands are recorded to the command
    buffer or context.

    \note All QRhiCommandBuffer state must be assumed as invalid after calling
    this function. Pipelines, vertex and index buffers, and other state must be
    set again if more draw calls are recorded after the external commands.

    \sa beginExternal(), nativeHandles()
 */
void QRhiCommandBuffer::endExternal()
{
    m_rhi->endExternal(this);
}

/*!
    \return the value (typically an offset) \a v aligned to the uniform buffer
    alignment given by by ubufAlignment().
 */
int QRhi::ubufAligned(int v) const
{
    const int byteAlign = ubufAlignment();
    return (v + byteAlign - 1) & ~(byteAlign - 1);
}

/*!
    \return the number of mip levels for a given \a size.
 */
int QRhi::mipLevelsForSize(const QSize &size) const
{
    return qFloor(std::log2(qMax(size.width(), size.height()))) + 1;
}

/*!
    \return the texture image size for a given \a mipLevel, calculated based on
    the level 0 size given in \a baseLevelSize.
 */
QSize QRhi::sizeForMipLevel(int mipLevel, const QSize &baseLevelSize) const
{
    const int w = qMax(1, baseLevelSize.width() >> mipLevel);
    const int h = qMax(1, baseLevelSize.height() >> mipLevel);
    return QSize(w, h);
}

/*!
    \return \c true if the underlying graphics API has the Y axis pointing up
    in framebuffers and images.

    In practice this is \c true for OpenGL only.
 */
bool QRhi::isYUpInFramebuffer() const
{
    return d->isYUpInFramebuffer();
}

/*!
    \return \c true if the underlying graphics API has the Y axis pointing up
    in its normalized device coordinate system.

    In practice this is \c false for Vulkan only.

    \note clipSpaceCorrMatrix() includes the corresponding adjustment (to make
    Y point up) in its returned matrix.
 */
bool QRhi::isYUpInNDC() const
{
    return d->isYUpInNDC();
}

/*!
    \return \c true if the underlying graphics API uses depth 0 - 1 in clip
    space.

    In practice this is \c false for OpenGL only.

    \note clipSpaceCorrMatrix() includes the corresponding adjustment in its
    returned matrix.
 */
bool QRhi::isClipDepthZeroToOne() const
{
    return d->isClipDepthZeroToOne();
}

/*!
    \return a matrix that can be used to allow applications keep using
    OpenGL-targeted vertex data and perspective projection matrices (such as,
    the ones generated by QMatrix4x4::perspective()), regardless of the
    backend. Once \c{this_matrix * mvp} is used instead of just \c mvp, vertex
    data with Y up and viewports with depth range 0 - 1 can be used without
    considering what backend and so graphics API is going to be used at run
    time.

    See
    \l{https://matthewwellings.com/blog/the-new-vulkan-coordinate-system/}{this
    page} for a discussion of the topic from Vulkan perspective.
 */
QMatrix4x4 QRhi::clipSpaceCorrMatrix() const
{
    return d->clipSpaceCorrMatrix();
}

/*!
    \return \c true if the specified texture \a format modified by \a flags is
    supported.

    The query is supported both for uncompressed and compressed formats.
 */
bool QRhi::isTextureFormatSupported(QRhiTexture::Format format, QRhiTexture::Flags flags) const
{
    return d->isTextureFormatSupported(format, flags);
}

/*!
    \return \c true if the specified \a feature is supported
 */
bool QRhi::isFeatureSupported(QRhi::Feature feature) const
{
    return d->isFeatureSupported(feature);
}

/*!
    \return the value for the specified resource \a limit.

    The values are expected to be queried by the backends upon initialization,
    meaning calling this function is a light operation.
 */
int QRhi::resourceLimit(ResourceLimit limit) const
{
    return d->resourceLimit(limit);
}

/*!
    \return a pointer to the backend-specific collection of native objects
    for the device, context, and similar concepts used by the backend.

    Cast to QRhiVulkanNativeHandles, QRhiD3D11NativeHandles,
    QRhiGles2NativeHandles, QRhiMetalNativeHandles as appropriate.

    \note No ownership is transferred, neither for the returned pointer nor for
    any native objects.
 */
const QRhiNativeHandles *QRhi::nativeHandles()
{
    return d->nativeHandles();
}

/*!
    With OpenGL this makes the OpenGL context current on the current thread.
    The function has no effect with other backends.

    Calling this function is relevant typically in Qt framework code, when one
    has to ensure external OpenGL code provided by the application can still
    run like it did before with direct usage of OpenGL, as long as the QRhi is
    using the OpenGL backend.
 */
void QRhi::makeThreadLocalNativeContextCurrent()
{
    d->makeThreadLocalNativeContextCurrent();
}

/*!
    \return the associated QRhiProfiler instance.

    An instance is always available for each QRhi, but it is not very useful
    without EnableProfiling because no data is collected without setting the
    flag upon creation.
  */
QRhiProfiler *QRhi::profiler()
{
    return &d->profiler;
}

/*!
    \return a new graphics pipeline resource.

    \sa QRhiResource::release()
 */
QRhiGraphicsPipeline *QRhi::newGraphicsPipeline()
{
    return d->createGraphicsPipeline();
}

/*!
    \return a new compute pipeline resource.

    \note Compute is only available when the \l{QRhi::Compute}{Compute} feature
    is reported as supported.

    \sa QRhiResource::release()
 */
QRhiComputePipeline *QRhi::newComputePipeline()
{
    return d->createComputePipeline();
}

/*!
    \return a new shader resource binding collection resource.

    \sa QRhiResource::release()
 */
QRhiShaderResourceBindings *QRhi::newShaderResourceBindings()
{
    return d->createShaderResourceBindings();
}

/*!
    \return a new buffer with the specified \a type, \a usage, and \a size.

    \note Some \a usage and \a type combinations may not be supported by all
    backends. See \l{QRhiBuffer::UsageFlag}{UsageFlags} and
    \l{QRhi::NonDynamicUniformBuffers}{the feature flags}.

    \sa QRhiResource::release()
 */
QRhiBuffer *QRhi::newBuffer(QRhiBuffer::Type type,
                            QRhiBuffer::UsageFlags usage,
                            int size)
{
    return d->createBuffer(type, usage, size);
}

/*!
    \return a new renderbuffer with the specified \a type, \a pixelSize, \a
    sampleCount, and \a flags.

    \sa QRhiResource::release()
 */
QRhiRenderBuffer *QRhi::newRenderBuffer(QRhiRenderBuffer::Type type,
                                        const QSize &pixelSize,
                                        int sampleCount,
                                        QRhiRenderBuffer::Flags flags)
{
    return d->createRenderBuffer(type, pixelSize, sampleCount, flags);
}

/*!
    \return a new texture with the specified \a format, \a pixelSize, \a
    sampleCount, and \a flags.

    \note \a format specifies the requested internal and external format,
    meaning the data to be uploaded to the texture will need to be in a
    compatible format, while the native texture may (but is not guaranteed to,
    in case of OpenGL at least) use this format internally.

    \sa QRhiResource::release()
 */
QRhiTexture *QRhi::newTexture(QRhiTexture::Format format,
                              const QSize &pixelSize,
                              int sampleCount,
                              QRhiTexture::Flags flags)
{
    return d->createTexture(format, pixelSize, sampleCount, flags);
}

/*!
    \return a new sampler with the specified magnification filter \a magFilter,
    minification filter \a minFilter, mipmapping mode \a mipmapMpde, and S/T
    addressing modes \a u and \a v.

    \sa QRhiResource::release()
 */
QRhiSampler *QRhi::newSampler(QRhiSampler::Filter magFilter, QRhiSampler::Filter minFilter,
                              QRhiSampler::Filter mipmapMode,
                              QRhiSampler:: AddressMode u, QRhiSampler::AddressMode v)
{
    return d->createSampler(magFilter, minFilter, mipmapMode, u, v);
}

/*!
    \return a new texture render target with color and depth/stencil
    attachments given in \a desc, and with the specified \a flags.

    \sa QRhiResource::release()
 */

QRhiTextureRenderTarget *QRhi::newTextureRenderTarget(const QRhiTextureRenderTargetDescription &desc,
                                                      QRhiTextureRenderTarget::Flags flags)
{
    return d->createTextureRenderTarget(desc, flags);
}

/*!
    \return a new swapchain.

    \sa QRhiResource::release(), QRhiSwapChain::buildOrResize()
 */
QRhiSwapChain *QRhi::newSwapChain()
{
    return d->createSwapChain();
}

/*!
    Starts a new frame targeting the next available buffer of \a swapChain.

    The high level pattern of rendering into a QWindow using a swapchain:

    \list

    \li Create a swapchain.

    \li Call QRhiSwapChain::buildOrResize() whenever the surface size is
    different than before.

    \li Call QRhiSwapChain::release() on
    QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed.

    \li Then on every frame:
    \badcode
       beginFrame(sc);
       updates = nextResourceUpdateBatch();
       updates->...
       QRhiCommandBuffer *cb = sc->currentFrameCommandBuffer();
       cb->beginPass(sc->currentFrameRenderTarget(), colorClear, dsClear, updates);
       ...
       cb->endPass();
       ... // more passes as necessary
       endFrame(sc);
    \endcode

    \endlist

    \a flags is currently unused.

    \sa endFrame()
 */
QRhi::FrameOpResult QRhi::beginFrame(QRhiSwapChain *swapChain, BeginFrameFlags flags)
{
    if (d->inFrame)
        qWarning("Attempted to call beginFrame() within a still active frame; ignored");

    QRhi::FrameOpResult r = !d->inFrame ? d->beginFrame(swapChain, flags) : FrameOpSuccess;
    if (r == FrameOpSuccess)
        d->inFrame = true;

    return r;
}

/*!
    Ends, commits, and presents a frame that was started in the last
    beginFrame() on \a swapChain.

    Double (or triple) buffering is managed internally by the QRhiSwapChain and
    QRhi.

    \a flags can optionally be used to change the behavior in certain ways.
    Passing QRhi::SkipPresent skips queuing the Present command or calling
    swapBuffers.

    \sa beginFrame()
 */
QRhi::FrameOpResult QRhi::endFrame(QRhiSwapChain *swapChain, EndFrameFlags flags)
{
    if (!d->inFrame)
        qWarning("Attempted to call endFrame() without an active frame; ignored");

    QRhi::FrameOpResult r = d->inFrame ? d->endFrame(swapChain, flags) : FrameOpSuccess;
    d->inFrame = false;
    // releaseAndDestroyLater is a high level QRhi concept the backends know
    // nothing about - handle it here.
    qDeleteAll(d->pendingReleaseAndDestroyResources);
    d->pendingReleaseAndDestroyResources.clear();

    return r;
}

/*!
    \return true when there is an active frame, meaning there was a
    beginFrame() (or beginOffscreenFrame()) with no corresponding endFrame()
    (or endOffscreenFrame()) yet.

    \sa currentFrameSlot(), beginFrame(), endFrame()
 */
bool QRhi::isRecordingFrame() const
{
    return d->inFrame;
}

/*!
    \return the current frame slot index while recording a frame. Unspecified
    when called outside an active frame (that is, when isRecordingFrame() is \c
    false).

    With backends like Vulkan or Metal, it is the responsibility of the QRhi
    backend to block whenever starting a new frame and finding the CPU is
    already \c{FramesInFlight - 1} frames ahead of the GPU (because the command
    buffer submitted in frame no. \c{current} - \c{FramesInFlight} has not yet
    completed).

    Resources that tend to change between frames (such as, the native buffer
    object backing a QRhiBuffer with type QRhiBuffer::Dynamic) exist in
    multiple versions, so that each frame, that can be submitted while a
    previous one is still being processed, works with its own copy, thus
    avoiding the need to stall the pipeline when preparing the frame. (The
    contents of a resource that may still be in use in the GPU should not be
    touched, but simply always waiting for the previous frame to finish would
    reduce GPU utilization and ultimately, performance and efficiency.)

    Conceptually this is somewhat similar to copy-on-write schemes used by some
    C++ containers and other types. It may also be similar to what an OpenGL or
    Direct 3D 11 implementation performs internally for certain type of objects.

    In practice, such double (or tripple) buffering resources is realized in
    the Vulkan, Metal, and similar QRhi backends by having a fixed number of
    native resource (such as, VkBuffer) \c slots behind a QRhiResource. That
    can then be indexed by a frame slot index running 0, 1, ..,
    FramesInFlight-1, and then wrapping around.

    All this is managed transparently to the users of QRhi. However,
    applications that integrate rendering done directly with the graphics API
    may want to perform a similar double or tripple buffering of their own
    graphics resources. That is then most easily achieved by knowing the values
    of the maximum number of in-flight frames (retrievable via resourceLimit())
    and the current frame (slot) index (returned by this function).

    \sa isRecordingFrame(), beginFrame(), endFrame()
 */
int QRhi::currentFrameSlot() const
{
    return d->currentFrameSlot;
}

/*!
    Starts a new offscreen frame. Provides a command buffer suitable for
    recording rendering commands in \a cb.

    \note The QRhiCommandBuffer stored to *cb is not owned by the caller.

    Rendering without a swapchain is possible as well. The typical use case is
    to use it in completely offscreen applications, e.g. to generate image
    sequences by rendering and reading back without ever showing a window.

    Usage in on-screen applications (so beginFrame, endFrame,
    beginOffscreenFrame, endOffscreenFrame, beginFrame, ...) is possible too
    but it does reduce parallelism so it should be done only infrequently.

    Offscreen frames do not let the CPU - potentially - generate another frame
    while the GPU is still processing the previous one. This has the side
    effect that if readbacks are scheduled, the results are guaranteed to be
    available once endOffscreenFrame() returns. That is not the case with
    frames targeting a swapchain.

    The skeleton of rendering a frame without a swapchain and then reading the
    frame contents back could look like the following:

    \badcode
          QRhiReadbackResult rbResult;
          QRhiCommandBuffer *cb;
          beginOffscreenFrame(&cb);
          beginPass
          ...
          u = nextResourceUpdateBatch();
          u->readBackTexture(rb, &rbResult);
          endPass(u);
          endOffscreenFrame();
          // image data available in rbResult
   \endcode

   \sa endOffscreenFrame()
 */
QRhi::FrameOpResult QRhi::beginOffscreenFrame(QRhiCommandBuffer **cb)
{
    if (d->inFrame)
        qWarning("Attempted to call beginOffscreenFrame() within a still active frame; ignored");

    QRhi::FrameOpResult r = !d->inFrame ? d->beginOffscreenFrame(cb) : FrameOpSuccess;
    if (r == FrameOpSuccess)
        d->inFrame = true;

    return r;
}

/*!
    Ends and waits for the offscreen frame.

    \sa beginOffscreenFrame()
 */
QRhi::FrameOpResult QRhi::endOffscreenFrame()
{
    if (!d->inFrame)
        qWarning("Attempted to call endOffscreenFrame() without an active frame; ignored");

    QRhi::FrameOpResult r = d->inFrame ? d->endOffscreenFrame() : FrameOpSuccess;
    d->inFrame = false;
    qDeleteAll(d->pendingReleaseAndDestroyResources);
    d->pendingReleaseAndDestroyResources.clear();

    return r;
}

/*!
    Waits for any work on the graphics queue (where applicable) to complete,
    then executes all deferred operations, like completing readbacks and
    resource releases. Can be called inside and outside of a frame, but not
    inside a pass. Inside a frame it implies submitting any work on the
    command buffer.

    \note Avoid this function. One case where it may be needed is when the
    results of an enqueued readback in a swapchain-based frame are needed at a
    fixed given point and so waiting for the results is desired.
 */
QRhi::FrameOpResult QRhi::finish()
{
    return d->finish();
}

/*!
    \return the list of supported sample counts.

    A typical example would be (1, 2, 4, 8).

    With some backend this list of supported values is fixed in advance, while
    with some others the (physical) device properties indicate what is
    supported at run time.
 */
QVector<int> QRhi::supportedSampleCounts() const
{
    return d->supportedSampleCounts();
}

/*!
    \return the minimum uniform buffer offset alignment in bytes. This is
    typically 256.

    Attempting to bind a uniform buffer region with an offset not aligned to
    this value will lead to failures depending on the backend and the
    underlying graphics API.

    \sa ubufAligned()
 */
int QRhi::ubufAlignment() const
{
    return d->ubufAlignment();
}

static QBasicAtomicInteger<QRhiGlobalObjectIdGenerator::Type> counter = Q_BASIC_ATOMIC_INITIALIZER(0);

QRhiGlobalObjectIdGenerator::Type QRhiGlobalObjectIdGenerator::newId()
{
    return counter.fetchAndAddRelaxed(1) + 1;
}

bool QRhiPassResourceTracker::isEmpty() const
{
    return m_buffers.isEmpty() && m_textures.isEmpty();
}

void QRhiPassResourceTracker::reset()
{
    m_buffers.clear();
    m_textures.clear();
}

static inline QRhiPassResourceTracker::BufferStage earlierStage(QRhiPassResourceTracker::BufferStage a,
                                                                QRhiPassResourceTracker::BufferStage b)
{
    return QRhiPassResourceTracker::BufferStage(qMin(int(a), int(b)));
}

void QRhiPassResourceTracker::registerBuffer(QRhiBuffer *buf, int slot, BufferAccess *access, BufferStage *stage,
                                             const UsageState &state)
{
    auto it = std::find_if(m_buffers.begin(), m_buffers.end(), [buf](const Buffer &b) { return b.buf == buf; });
    if (it != m_buffers.end()) {
        if (it->access != *access) {
            const QByteArray name = buf->name();
            qWarning("Buffer %p (%s) used with different accesses within the same pass, this is not allowed.",
                     buf, name.constData());
            return;
        }
        if (it->stage != *stage) {
            it->stage = earlierStage(it->stage, *stage);
            *stage = it->stage;
        }
        return;
    }

    Buffer b;
    b.buf = buf;
    b.slot = slot;
    b.access = *access;
    b.stage = *stage;
    b.stateAtPassBegin = state; // first use -> initial state
    m_buffers.append(b);
}

static inline QRhiPassResourceTracker::TextureStage earlierStage(QRhiPassResourceTracker::TextureStage a,
                                                                 QRhiPassResourceTracker::TextureStage b)
{
    return QRhiPassResourceTracker::TextureStage(qMin(int(a), int(b)));
}

static inline bool isImageLoadStore(QRhiPassResourceTracker::TextureAccess access)
{
    return access == QRhiPassResourceTracker::TexStorageLoad
            || access == QRhiPassResourceTracker::TexStorageStore
            || access == QRhiPassResourceTracker::TexStorageLoadStore;
}

void QRhiPassResourceTracker::registerTexture(QRhiTexture *tex, TextureAccess *access, TextureStage *stage,
                                              const UsageState &state)
{
    auto it = std::find_if(m_textures.begin(), m_textures.end(), [tex](const Texture &t) { return t.tex == tex; });
    if (it != m_textures.end()) {
        if (it->access != *access) {
            // Different subresources of a texture may be used for both load
            // and store in the same pass. (think reading from one mip level
            // and writing to another one in a compute shader) This we can
            // handle by treating the entire resource as read-write.
            if (isImageLoadStore(it->access) && isImageLoadStore(*access)) {
                it->access = QRhiPassResourceTracker::TexStorageLoadStore;
                *access = it->access;
            } else {
                const QByteArray name = tex->name();
                qWarning("Texture %p (%s) used with different accesses within the same pass, this is not allowed.",
                         tex, name.constData());
            }
        }
        if (it->stage != *stage) {
            it->stage = earlierStage(it->stage, *stage);
            *stage = it->stage;
        }
        return;
    }

    Texture t;
    t.tex = tex;
    t.access = *access;
    t.stage = *stage;
    t.stateAtPassBegin = state; // first use -> initial state
    m_textures.append(t);
}

QT_END_NAMESPACE