/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the Qt Data Visualization module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:GPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3 or (at your option) any later version ** approved by the KDE Free Qt Foundation. The licenses are as published by ** the Free Software Foundation and appearing in the file LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ /*! \example volumetric \title Volumetric rendering Example \ingroup qtdatavisualization_examples \brief Rendering volumetric objects. \since QtDataVisualization 1.2 This example shows how to use QCustom3DVolume items to display volumetric data. \image volumetric-example.png \section1 Initializing volume item The QCustom3DVolume items are special custom items (see QCustom3DItem), which can be used to display volumetric data. The volume items are only supported with orthographic projection, so first we make sure the graph is using it: \snippet volumetric/volumetric.cpp 6 The following code shows how to create a volumetric item tied to the data ranges of the axes: \snippet volumetric/volumetric.cpp 0 By setting the QCustom3DItem::scalingAbsolute property to \c{false}, we indicate that the scaling of the volume should follow the changes in the data ranges. Next we define the internal contents of the volume: \snippet volumetric/volumetric.cpp 1 We use eight bit indexed color for our texture, as it is compact and makes it easy to adjust the colors without needing to reset the whole texture. For the texture data we use the data we created earlier based on some height maps. Typically the data for volume items comes pregenerated in a form of a stack of images, so we are not going to explain the data generation in detail. Please refer to the example code if you are interested in the actual data generation process. Since we are using eight bit indexed colors, we need a color table to map the eight bit color indexes to actual colors. We use one we populated on our own, but in a typical use case you would get the color table from the source images: \snippet volumetric/volumetric.cpp 2 We want to optionally show slice frames around the volume, so we initialize their properties. Initially, the frames will be hidden: \snippet volumetric/volumetric.cpp 5 Finally we add the volume as a custom item to the graph to display it: \snippet volumetric/volumetric.cpp 3 \section1 Slicing into the volume Unless the volume is largely transparent, you can only see the surface of it, which is often not very helpful. One way to inspect the internal structure of the volume is to view the slices of the volume. QCustom3DVolume provides two ways to display the slices. The first is to show the selected slices in place of the volume. For example, to specify a slice perpendicular to the X-axis, you can use the following method: \snippet volumetric/volumetric.cpp 7 To actually draw the slice specified above, the QCustom3DVolume::drawSlices property must be also set: \snippet volumetric/volumetric.cpp 8 The second way to view slices is to use QCustom3DVolume::renderSlice() method, which produces a QImage from the specified slice. This image can then be displayed on another widget, such as a QLabel here: \snippet volumetric/volumetric.cpp 9 \section1 Adjusting volume transparency Sometimes viewing just the slices doesn't give you a good understanding of the volume's internal structure. QCustom3DVolume provides two properties that can be used to adjust the volume transparency: \snippet volumetric/volumetric.cpp 11 \dots \snippet volumetric/volumetric.cpp 10 The QCustom3DVolume::alphaMultiplier is a general multiplier that is applied to the alpha value of each voxel of the volume. It makes it possible to add uniform transparency to the already somewhat transparent portions of the volume to reveal internal opaque details. This multiplier doesn't affect colors that are fully opaque, unless the QCustom3DVolume::preserveOpacity property is set to \c{false}. An alternative way to adjust the transparency of the volume is adjust the alpha values of the voxels directly. For eight bit indexed textures, this is done simply by modifying and resetting the color table: \snippet volumetric/volumetric.cpp 12 \section1 High definition vs. low definition shader By default the volume rendering uses the high definition shader. It accounts for each voxel of the volume with correct weight when ray-tracing the volume contents, providing an accurate representation of even the finer details of the volume. However, this is computationally very expensive, so the frame rate suffers. If rendering speed is more important than pixel-perfect accuracy of the volume contents, you can take the much faster low definition shader into use by setting \c{false} for QCustom3DVolume::useHighDefShader property. The low definition shader achieves the speed by making compromises on the accuracy, so it doesn't guarantee each voxel of the volume will be sampled. This can lead to flickering and/or other rendering artifacts on the finer details of the volume. \snippet volumetric/volumetric.cpp 13 \section1 Example contents */