summaryrefslogtreecommitdiffstats
path: root/examples/datavisualization/rotations/scatterdatamodifier.cpp
blob: 571761e86db1884045cb98b9f976190563bc0643 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the Qt Data Visualization module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "scatterdatamodifier.h"
#include <QtDataVisualization/qscatterdataproxy.h>
#include <QtDataVisualization/qvalue3daxis.h>
#include <QtDataVisualization/q3dscene.h>
#include <QtDataVisualization/q3dcamera.h>
#include <QtDataVisualization/qscatter3dseries.h>
#include <QtDataVisualization/q3dtheme.h>
#include <QtDataVisualization/QCustom3DItem>
#include <QtCore/qmath.h>

static const float verticalRange = 8.0f;
static const float horizontalRange = verticalRange;
static const float ellipse_a = horizontalRange / 3.0f;
static const float ellipse_b = verticalRange;
static const float doublePi = float(M_PI) * 2.0f;
static const float radiansToDegrees = 360.0f / doublePi;
static const float animationFrames = 30.0f;

ScatterDataModifier::ScatterDataModifier(Q3DScatter *scatter)
    : m_graph(scatter),
      m_fieldLines(12),
      m_arrowsPerLine(16),
      m_magneticField(new QScatter3DSeries),
      m_sun(new QCustom3DItem),
      m_magneticFieldArray(0),
      m_angleOffset(0.0f),
      m_angleStep(doublePi / m_arrowsPerLine / animationFrames)
{
    m_graph->setShadowQuality(QAbstract3DGraph::ShadowQualityNone);
    m_graph->scene()->activeCamera()->setCameraPreset(Q3DCamera::CameraPresetFront);

    // Magnetic field lines use custom narrow arrow
    m_magneticField->setItemSize(0.2f);
    //! [3]
    m_magneticField->setMesh(QAbstract3DSeries::MeshUserDefined);
    m_magneticField->setUserDefinedMesh(QStringLiteral(":/mesh/narrowarrow.obj"));
    //! [3]
    //! [4]
    QLinearGradient fieldGradient(0, 0, 16, 1024);
    fieldGradient.setColorAt(0.0, Qt::black);
    fieldGradient.setColorAt(1.0, Qt::white);
    m_magneticField->setBaseGradient(fieldGradient);
    m_magneticField->setColorStyle(Q3DTheme::ColorStyleRangeGradient);
    //! [4]

    // For 'sun' we use a custom large sphere
    m_sun->setScaling(QVector3D(0.07f, 0.07f, 0.07f));
    m_sun->setMeshFile(QStringLiteral(":/mesh/largesphere.obj"));
    QImage sunColor = QImage(2, 2, QImage::Format_RGB32);
    sunColor.fill(QColor(0xff, 0xbb, 0x00));
    m_sun->setTextureImage(sunColor);

    m_graph->addSeries(m_magneticField);
    m_graph->addCustomItem(m_sun);

    // Configure the axes according to the data
    m_graph->axisX()->setRange(-horizontalRange, horizontalRange);
    m_graph->axisY()->setRange(-verticalRange, verticalRange);
    m_graph->axisZ()->setRange(-horizontalRange, horizontalRange);
    m_graph->axisX()->setSegmentCount(int(horizontalRange));
    m_graph->axisZ()->setSegmentCount(int(horizontalRange));

    QObject::connect(&m_rotationTimer, &QTimer::timeout, this,
                     &ScatterDataModifier::triggerRotation);

    toggleRotation();
    generateData();
}

ScatterDataModifier::~ScatterDataModifier()
{
    delete m_graph;
}

void ScatterDataModifier::generateData()
{
    // Reusing existing array is computationally cheaper than always generating new array, even if
    // all data items change in the array, if the array size doesn't change.
    if (!m_magneticFieldArray)
        m_magneticFieldArray = new QScatterDataArray;

    int arraySize = m_fieldLines * m_arrowsPerLine;
    if (arraySize != m_magneticFieldArray->size())
        m_magneticFieldArray->resize(arraySize);

    QScatterDataItem *ptrToDataArray = &m_magneticFieldArray->first();

    for (float i = 0; i < m_fieldLines; i++) {
        float horizontalAngle = (doublePi * i) / m_fieldLines;
        float xCenter = ellipse_a * qCos(horizontalAngle);
        float zCenter = ellipse_a * qSin(horizontalAngle);

        // Rotate - arrow always tangential to origin
        //! [0]
        QQuaternion yRotation = QQuaternion::fromAxisAndAngle(0.0f, 1.0f, 0.0f, horizontalAngle * radiansToDegrees);
        //! [0]

        for (float j = 0; j < m_arrowsPerLine; j++) {
            // Calculate point on ellipse centered on origin and parallel to x-axis
            float verticalAngle = ((doublePi * j) / m_arrowsPerLine) + m_angleOffset;
            float xUnrotated = ellipse_a * qCos(verticalAngle);
            float y = ellipse_b * qSin(verticalAngle);

            // Rotate the ellipse around y-axis
            float xRotated = xUnrotated * qCos(horizontalAngle);
            float zRotated = xUnrotated * qSin(horizontalAngle);

            // Add offset
            float x = xCenter + xRotated;
            float z = zCenter + zRotated;

            //! [1]
            QQuaternion zRotation = QQuaternion::fromAxisAndAngle(0.0f, 0.0f, 1.0f, verticalAngle * radiansToDegrees);
            QQuaternion totalRotation = yRotation * zRotation;
            //! [1]

            ptrToDataArray->setPosition(QVector3D(x, y, z));
            //! [2]
            ptrToDataArray->setRotation(totalRotation);
            //! [2]
            ptrToDataArray++;
        }
    }

    if (m_graph->selectedSeries() == m_magneticField)
        m_graph->clearSelection();

    m_magneticField->dataProxy()->resetArray(m_magneticFieldArray);
}

void ScatterDataModifier::setFieldLines(int lines)
{
    m_fieldLines = lines;
    generateData();
}

void ScatterDataModifier::setArrowsPerLine(int arrows)
{
    m_angleOffset = 0.0f;
    m_angleStep = doublePi / m_arrowsPerLine / animationFrames;
    m_arrowsPerLine = arrows;
    generateData();
}

void ScatterDataModifier::triggerRotation()
{
    m_angleOffset += m_angleStep;
    generateData();
}

void ScatterDataModifier::toggleSun()
{
    m_sun->setVisible(!m_sun->isVisible());
}

void ScatterDataModifier::toggleRotation()
{
    if (m_rotationTimer.isActive())
        m_rotationTimer.stop();
    else
        m_rotationTimer.start(15);
}