summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorSimon Hausmann <simon.hausmann@digia.com>2013-04-15 11:34:00 +0200
committerSimon Hausmann <simon.hausmann@digia.com>2013-04-15 12:47:53 +0200
commit2cd8a90bd4d171ed2404822b6046455a94d4b6ed (patch)
treeed8eda56d54cb13d777be1cfa294c85ddd76e583
parent5bf33901429e64ab91f30037e25ec04aab4b4c11 (diff)
parentbec019b5fe35e1701c944eb340df458d5e3d1cdb (diff)
Merge branch 'master' of ssh://codereview.qt-project.org:29418/playground/v4vm into v4
This is the initial merge of the v4vm JS engine, designed specifically for QML. The engine is tested on Linux and Mac OS X, works on x86, x86-64 and ARM. Change-Id: I826b72cfa3d3575007b70d78604080582db568db Reviewed-by: Lars Knoll <lars.knoll@digia.com>
-rw-r--r--.gitmodules3
-rw-r--r--src/3rdparty/double-conversion/README6
-rw-r--r--src/3rdparty/double-conversion/bignum-dtoa.cc640
-rw-r--r--src/3rdparty/double-conversion/bignum-dtoa.h84
-rw-r--r--src/3rdparty/double-conversion/bignum.cc764
-rw-r--r--src/3rdparty/double-conversion/bignum.h145
-rw-r--r--src/3rdparty/double-conversion/cached-powers.cc175
-rw-r--r--src/3rdparty/double-conversion/cached-powers.h64
-rw-r--r--src/3rdparty/double-conversion/diy-fp.cc57
-rw-r--r--src/3rdparty/double-conversion/diy-fp.h118
-rw-r--r--src/3rdparty/double-conversion/double-conversion.cc889
-rw-r--r--src/3rdparty/double-conversion/double-conversion.h536
-rw-r--r--src/3rdparty/double-conversion/double-conversion.pri4
-rw-r--r--src/3rdparty/double-conversion/fast-dtoa.cc664
-rw-r--r--src/3rdparty/double-conversion/fast-dtoa.h88
-rw-r--r--src/3rdparty/double-conversion/fixed-dtoa.cc402
-rw-r--r--src/3rdparty/double-conversion/fixed-dtoa.h56
-rw-r--r--src/3rdparty/double-conversion/ieee.h398
-rw-r--r--src/3rdparty/double-conversion/strtod.cc554
-rw-r--r--src/3rdparty/double-conversion/strtod.h45
-rw-r--r--src/3rdparty/double-conversion/utils.h313
-rw-r--r--src/3rdparty/masm/WeakRandom.h52
-rw-r--r--src/3rdparty/masm/assembler/ARMAssembler.cpp444
-rw-r--r--src/3rdparty/masm/assembler/ARMAssembler.h1129
-rw-r--r--src/3rdparty/masm/assembler/ARMv7Assembler.cpp36
-rw-r--r--src/3rdparty/masm/assembler/ARMv7Assembler.h2790
-rw-r--r--src/3rdparty/masm/assembler/AbstractMacroAssembler.h842
-rw-r--r--src/3rdparty/masm/assembler/AssemblerBuffer.h181
-rw-r--r--src/3rdparty/masm/assembler/AssemblerBufferWithConstantPool.h342
-rw-r--r--src/3rdparty/masm/assembler/CodeLocation.h218
-rw-r--r--src/3rdparty/masm/assembler/LinkBuffer.cpp230
-rw-r--r--src/3rdparty/masm/assembler/LinkBuffer.h297
-rw-r--r--src/3rdparty/masm/assembler/MIPSAssembler.h1107
-rw-r--r--src/3rdparty/masm/assembler/MacroAssembler.h1465
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerARM.cpp99
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerARM.h1386
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerARMv7.h1914
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerCodeRef.h406
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerMIPS.h2751
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerSH4.cpp52
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerSH4.h2293
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerX86.h314
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerX86Common.h1541
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerX86_64.h643
-rw-r--r--src/3rdparty/masm/assembler/RepatchBuffer.h181
-rw-r--r--src/3rdparty/masm/assembler/SH4Assembler.h2152
-rw-r--r--src/3rdparty/masm/assembler/X86Assembler.h2540
-rw-r--r--src/3rdparty/masm/config.h56
-rw-r--r--src/3rdparty/masm/create_regex_tables121
-rw-r--r--src/3rdparty/masm/disassembler/Disassembler.cpp43
-rw-r--r--src/3rdparty/masm/disassembler/Disassembler.h52
-rw-r--r--src/3rdparty/masm/disassembler/UDis86Disassembler.cpp63
-rw-r--r--src/3rdparty/masm/disassembler/udis86/differences.txt24
-rw-r--r--src/3rdparty/masm/disassembler/udis86/itab.py360
-rw-r--r--src/3rdparty/masm/disassembler/udis86/optable.xml8959
-rw-r--r--src/3rdparty/masm/disassembler/udis86/ud_opcode.py235
-rw-r--r--src/3rdparty/masm/disassembler/udis86/ud_optable.py103
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86.c182
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86.h33
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_decode.c1141
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_decode.h258
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_extern.h88
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_input.c262
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_input.h67
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_itab_holder.c33
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_syn-att.c252
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_syn-intel.c278
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_syn.c86
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_syn.h47
-rw-r--r--src/3rdparty/masm/disassembler/udis86/udis86_types.h238
-rw-r--r--src/3rdparty/masm/jit/JITCompilationEffort.h39
-rw-r--r--src/3rdparty/masm/masm-defs.pri28
-rw-r--r--src/3rdparty/masm/masm.pri86
-rw-r--r--src/3rdparty/masm/runtime/MatchResult.h71
-rw-r--r--src/3rdparty/masm/stubs/ExecutableAllocator.h120
-rw-r--r--src/3rdparty/masm/stubs/JSGlobalData.h65
-rw-r--r--src/3rdparty/masm/stubs/LLIntData.h0
-rw-r--r--src/3rdparty/masm/stubs/Options.h53
-rw-r--r--src/3rdparty/masm/stubs/WTFStubs.cpp131
-rw-r--r--src/3rdparty/masm/stubs/WTFStubs.h50
-rw-r--r--src/3rdparty/masm/stubs/wtf/FastAllocBase.h48
-rw-r--r--src/3rdparty/masm/stubs/wtf/FastMalloc.h46
-rw-r--r--src/3rdparty/masm/stubs/wtf/Noncopyable.h48
-rw-r--r--src/3rdparty/masm/stubs/wtf/OwnPtr.h46
-rw-r--r--src/3rdparty/masm/stubs/wtf/PassOwnPtr.h120
-rw-r--r--src/3rdparty/masm/stubs/wtf/PassRefPtr.h101
-rw-r--r--src/3rdparty/masm/stubs/wtf/RefCounted.h70
-rw-r--r--src/3rdparty/masm/stubs/wtf/RefPtr.h93
-rw-r--r--src/3rdparty/masm/stubs/wtf/TypeTraits.h58
-rw-r--r--src/3rdparty/masm/stubs/wtf/UnusedParam.h48
-rw-r--r--src/3rdparty/masm/stubs/wtf/Vector.h104
-rw-r--r--src/3rdparty/masm/stubs/wtf/text/CString.h44
-rw-r--r--src/3rdparty/masm/stubs/wtf/text/WTFString.h75
-rw-r--r--src/3rdparty/masm/stubs/wtf/unicode/Unicode.h59
-rw-r--r--src/3rdparty/masm/wtf/ASCIICType.h181
-rw-r--r--src/3rdparty/masm/wtf/Assertions.h428
-rw-r--r--src/3rdparty/masm/wtf/Atomics.h227
-rw-r--r--src/3rdparty/masm/wtf/BumpPointerAllocator.h252
-rw-r--r--src/3rdparty/masm/wtf/CheckedArithmetic.h721
-rw-r--r--src/3rdparty/masm/wtf/Compiler.h302
-rw-r--r--src/3rdparty/masm/wtf/CryptographicallyRandomNumber.h45
-rw-r--r--src/3rdparty/masm/wtf/DataLog.h128
-rw-r--r--src/3rdparty/masm/wtf/DynamicAnnotations.h96
-rw-r--r--src/3rdparty/masm/wtf/EnumClass.h134
-rw-r--r--src/3rdparty/masm/wtf/FeatureDefines.h874
-rw-r--r--src/3rdparty/masm/wtf/FilePrintStream.cpp64
-rw-r--r--src/3rdparty/masm/wtf/FilePrintStream.h62
-rw-r--r--src/3rdparty/masm/wtf/Locker.h48
-rw-r--r--src/3rdparty/masm/wtf/MathExtras.h459
-rw-r--r--src/3rdparty/masm/wtf/NotFound.h37
-rw-r--r--src/3rdparty/masm/wtf/NullPtr.h56
-rw-r--r--src/3rdparty/masm/wtf/OSAllocator.h115
-rw-r--r--src/3rdparty/masm/wtf/OSAllocatorPosix.cpp193
-rw-r--r--src/3rdparty/masm/wtf/OSAllocatorWin.cpp84
-rw-r--r--src/3rdparty/masm/wtf/PageAllocation.h120
-rw-r--r--src/3rdparty/masm/wtf/PageAllocationAligned.cpp85
-rw-r--r--src/3rdparty/masm/wtf/PageAllocationAligned.h70
-rw-r--r--src/3rdparty/masm/wtf/PageBlock.cpp78
-rw-r--r--src/3rdparty/masm/wtf/PageBlock.h88
-rw-r--r--src/3rdparty/masm/wtf/PageReservation.h149
-rw-r--r--src/3rdparty/masm/wtf/Platform.h1019
-rw-r--r--src/3rdparty/masm/wtf/PossiblyNull.h59
-rw-r--r--src/3rdparty/masm/wtf/PrintStream.cpp114
-rw-r--r--src/3rdparty/masm/wtf/PrintStream.h300
-rw-r--r--src/3rdparty/masm/wtf/RawPointer.h58
-rw-r--r--src/3rdparty/masm/wtf/StdLibExtras.h282
-rw-r--r--src/3rdparty/masm/wtf/VMTags.h75
-rw-r--r--src/3rdparty/masm/yarr/Yarr.h69
-rw-r--r--src/3rdparty/masm/yarr/YarrCanonicalizeUCS2.cpp463
-rw-r--r--src/3rdparty/masm/yarr/YarrCanonicalizeUCS2.h138
-rw-r--r--src/3rdparty/masm/yarr/YarrCanonicalizeUCS2.js219
-rw-r--r--src/3rdparty/masm/yarr/YarrInterpreter.cpp1959
-rw-r--r--src/3rdparty/masm/yarr/YarrInterpreter.h380
-rw-r--r--src/3rdparty/masm/yarr/YarrJIT.cpp2702
-rw-r--r--src/3rdparty/masm/yarr/YarrJIT.h141
-rw-r--r--src/3rdparty/masm/yarr/YarrParser.h880
-rw-r--r--src/3rdparty/masm/yarr/YarrPattern.cpp880
-rw-r--r--src/3rdparty/masm/yarr/YarrPattern.h401
-rw-r--r--src/3rdparty/masm/yarr/YarrSyntaxChecker.cpp59
-rw-r--r--src/3rdparty/masm/yarr/YarrSyntaxChecker.h38
-rw-r--r--src/3rdparty/masm/yarr/yarr.pri12
-rw-r--r--src/qml/qml/v4vm/debugging.cpp308
-rw-r--r--src/qml/qml/v4vm/debugging.h157
-rw-r--r--src/qml/qml/v4vm/llvm_installation.pri23
-rw-r--r--src/qml/qml/v4vm/llvm_runtime.cpp513
-rw-r--r--src/qml/qml/v4vm/moth/moth.pri13
-rw-r--r--src/qml/qml/v4vm/moth/qv4instr_moth.cpp15
-rw-r--r--src/qml/qml/v4vm/moth/qv4instr_moth_p.h527
-rw-r--r--src/qml/qml/v4vm/moth/qv4isel_moth.cpp812
-rw-r--r--src/qml/qml/v4vm/moth/qv4isel_moth_p.h169
-rw-r--r--src/qml/qml/v4vm/moth/qv4vme_moth.cpp532
-rw-r--r--src/qml/qml/v4vm/moth/qv4vme_moth_p.h35
-rw-r--r--src/qml/qml/v4vm/qcalculatehash_p.h73
-rw-r--r--src/qml/qml/v4vm/qv4_llvm_p.h65
-rw-r--r--src/qml/qml/v4vm/qv4alloca_p.h54
-rw-r--r--src/qml/qml/v4vm/qv4argumentsobject.cpp176
-rw-r--r--src/qml/qml/v4vm/qv4argumentsobject.h99
-rw-r--r--src/qml/qml/v4vm/qv4arrayobject.cpp859
-rw-r--r--src/qml/qml/v4vm/qv4arrayobject.h103
-rw-r--r--src/qml/qml/v4vm/qv4booleanobject.cpp97
-rw-r--r--src/qml/qml/v4vm/qv4booleanobject.h79
-rw-r--r--src/qml/qml/v4vm/qv4codegen.cpp3256
-rw-r--r--src/qml/qml/v4vm/qv4codegen_p.h444
-rw-r--r--src/qml/qml/v4vm/qv4context.cpp576
-rw-r--r--src/qml/qml/v4vm/qv4context.h194
-rw-r--r--src/qml/qml/v4vm/qv4dateobject.cpp1316
-rw-r--r--src/qml/qml/v4vm/qv4dateobject.h132
-rw-r--r--src/qml/qml/v4vm/qv4engine.cpp551
-rw-r--r--src/qml/qml/v4vm/qv4engine.h271
-rw-r--r--src/qml/qml/v4vm/qv4errorobject.cpp238
-rw-r--r--src/qml/qml/v4vm/qv4errorobject.h235
-rw-r--r--src/qml/qml/v4vm/qv4executableallocator.cpp208
-rw-r--r--src/qml/qml/v4vm/qv4executableallocator.h121
-rw-r--r--src/qml/qml/v4vm/qv4functionobject.cpp522
-rw-r--r--src/qml/qml/v4vm/qv4functionobject.h243
-rw-r--r--src/qml/qml/v4vm/qv4global.h169
-rw-r--r--src/qml/qml/v4vm/qv4globalobject.cpp731
-rw-r--r--src/qml/qml/v4vm/qv4globalobject.h93
-rw-r--r--src/qml/qml/v4vm/qv4identifier.h111
-rw-r--r--src/qml/qml/v4vm/qv4internalclass.cpp188
-rw-r--r--src/qml/qml/v4vm/qv4internalclass.h91
-rw-r--r--src/qml/qml/v4vm/qv4isel_llvm.cpp1375
-rw-r--r--src/qml/qml/v4vm/qv4isel_llvm_p.h177
-rw-r--r--src/qml/qml/v4vm/qv4isel_masm.cpp1252
-rw-r--r--src/qml/qml/v4vm/qv4isel_masm_p.h894
-rw-r--r--src/qml/qml/v4vm/qv4isel_p.cpp398
-rw-r--r--src/qml/qml/v4vm/qv4isel_p.h158
-rw-r--r--src/qml/qml/v4vm/qv4isel_util_p.h77
-rw-r--r--src/qml/qml/v4vm/qv4jsir.cpp948
-rw-r--r--src/qml/qml/v4vm/qv4jsir_p.h821
-rw-r--r--src/qml/qml/v4vm/qv4jsonobject.cpp936
-rw-r--r--src/qml/qml/v4vm/qv4jsonobject.h65
-rw-r--r--src/qml/qml/v4vm/qv4lookup.cpp332
-rw-r--r--src/qml/qml/v4vm/qv4lookup.h144
-rw-r--r--src/qml/qml/v4vm/qv4managed.cpp187
-rw-r--r--src/qml/qml/v4vm/qv4managed.h247
-rw-r--r--src/qml/qml/v4vm/qv4math.h120
-rw-r--r--src/qml/qml/v4vm/qv4mathobject.cpp311
-rw-r--r--src/qml/qml/v4vm/qv4mathobject.h80
-rw-r--r--src/qml/qml/v4vm/qv4mm.cpp493
-rw-r--r--src/qml/qml/v4vm/qv4mm.h155
-rw-r--r--src/qml/qml/v4vm/qv4numberobject.cpp237
-rw-r--r--src/qml/qml/v4vm/qv4numberobject.h83
-rw-r--r--src/qml/qml/v4vm/qv4object.cpp1177
-rw-r--r--src/qml/qml/v4vm/qv4object.h417
-rw-r--r--src/qml/qml/v4vm/qv4objectiterator.cpp185
-rw-r--r--src/qml/qml/v4vm/qv4objectiterator.h84
-rw-r--r--src/qml/qml/v4vm/qv4objectproto.cpp565
-rw-r--r--src/qml/qml/v4vm/qv4objectproto.h104
-rw-r--r--src/qml/qml/v4vm/qv4property.h152
-rw-r--r--src/qml/qml/v4vm/qv4regexp.cpp167
-rw-r--r--src/qml/qml/v4vm/qv4regexp.h149
-rw-r--r--src/qml/qml/v4vm/qv4regexpobject.cpp256
-rw-r--r--src/qml/qml/v4vm/qv4regexpobject.h108
-rw-r--r--src/qml/qml/v4vm/qv4runtime.cpp1319
-rw-r--r--src/qml/qml/v4vm/qv4runtime.h745
-rw-r--r--src/qml/qml/v4vm/qv4sparsearray.cpp464
-rw-r--r--src/qml/qml/v4vm/qv4sparsearray.h369
-rw-r--r--src/qml/qml/v4vm/qv4string.cpp242
-rw-r--r--src/qml/qml/v4vm/qv4string.h136
-rw-r--r--src/qml/qml/v4vm/qv4stringobject.cpp726
-rw-r--r--src/qml/qml/v4vm/qv4stringobject.h108
-rw-r--r--src/qml/qml/v4vm/qv4syntaxchecker.cpp119
-rw-r--r--src/qml/qml/v4vm/qv4syntaxchecker_p.h73
-rw-r--r--src/qml/qml/v4vm/qv4unwindhelper.cpp37
-rw-r--r--src/qml/qml/v4vm/qv4unwindhelper.h27
-rw-r--r--src/qml/qml/v4vm/qv4unwindhelper_p-arm.h176
-rw-r--r--src/qml/qml/v4vm/qv4unwindhelper_p-dw2.h189
-rw-r--r--src/qml/qml/v4vm/qv4util.h74
-rw-r--r--src/qml/qml/v4vm/qv4v8.cpp2141
-rw-r--r--src/qml/qml/v4vm/qv4v8.h2581
-rw-r--r--src/qml/qml/v4vm/qv4value.cpp214
-rw-r--r--src/qml/qml/v4vm/qv4value.h572
-rw-r--r--src/qml/qml/v4vm/v4.pri8
-rw-r--r--src/qml/qml/v4vm/v4.pro177
-rw-r--r--tests/manual/v4/TestExpectations21
-rw-r--r--tests/manual/v4/accessors.js8
-rw-r--r--tests/manual/v4/array.1.js32
-rw-r--r--tests/manual/v4/auto/auto.pro4
-rw-r--r--tests/manual/v4/auto/executableallocator/executableallocator.pro4
-rw-r--r--tests/manual/v4/auto/executableallocator/tst_executableallocator.cpp97
-rw-r--r--tests/manual/v4/crypto.js1712
-rw-r--r--tests/manual/v4/exceptions.1.js16
-rw-r--r--tests/manual/v4/exceptions.2.js2
-rw-r--r--tests/manual/v4/fact.2.js8
-rw-r--r--tests/manual/v4/fact.js15
-rw-r--r--tests/manual/v4/for/for.1.js6
-rw-r--r--tests/manual/v4/for/for.2.js7
-rw-r--r--tests/manual/v4/for/for.3.js7
-rw-r--r--tests/manual/v4/for/for.4.js7
-rw-r--r--tests/manual/v4/fun.1.js7
-rw-r--r--tests/manual/v4/fun.2.js14
-rw-r--r--tests/manual/v4/fun.3.js17
-rw-r--r--tests/manual/v4/fun.4.js18
-rw-r--r--tests/manual/v4/instanceof.1.js9
-rw-r--r--tests/manual/v4/label.1.js8
-rw-r--r--tests/manual/v4/label.2.js2
-rw-r--r--tests/manual/v4/label.3.js6
-rw-r--r--tests/manual/v4/obj.1.js8
-rw-r--r--tests/manual/v4/obj.2.js10
-rw-r--r--tests/manual/v4/property_lookup.js9
-rw-r--r--tests/manual/v4/prototype.1.js14
-rw-r--r--tests/manual/v4/prototype.2.js13
-rw-r--r--tests/manual/v4/prototype.3.js10
-rw-r--r--tests/manual/v4/prototype.4.js9
-rw-r--r--tests/manual/v4/regexp.1.js4
-rw-r--r--tests/manual/v4/simple.2.js19
-rw-r--r--tests/manual/v4/simple.js15
-rw-r--r--tests/manual/v4/string.1.js20
-rw-r--r--tests/manual/v4/switch.1.js16
-rw-r--r--tests/manual/v4/switch.2.js11
m---------tests/manual/v4/test2620
-rwxr-xr-xtests/manual/v4/test262.py555
-rw-r--r--tests/manual/v4/tests.pro2
-rw-r--r--tests/manual/v4/typeof.1.js12
-rw-r--r--tests/manual/v4/v8-bench.js11591
-rw-r--r--tests/manual/v4/with.js43
-rw-r--r--tools/fdegen/fdegen.pro8
-rw-r--r--tools/fdegen/main.cpp372
-rw-r--r--tools/v4/main.cpp402
-rw-r--r--tools/v4/v4.pro10
281 files changed, 114268 insertions, 0 deletions
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000000..b813acb9f2
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "tests/manual/v4/test262"]
+ path = tests/manual/v4/test262
+ url = git://github.com/tronical/test262.git
diff --git a/src/3rdparty/double-conversion/README b/src/3rdparty/double-conversion/README
new file mode 100644
index 0000000000..40ed4a7efd
--- /dev/null
+++ b/src/3rdparty/double-conversion/README
@@ -0,0 +1,6 @@
+This is a copy of the library for binary-decimal and decimal-binary conversion routines for IEEE doubles, taken
+from
+
+ http://code.google.com/p/double-conversion/
+
+commit e5b34421b763f7bf7e4f9081403db417d5a55a36
diff --git a/src/3rdparty/double-conversion/bignum-dtoa.cc b/src/3rdparty/double-conversion/bignum-dtoa.cc
new file mode 100644
index 0000000000..b6c2e85d17
--- /dev/null
+++ b/src/3rdparty/double-conversion/bignum-dtoa.cc
@@ -0,0 +1,640 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <math.h>
+
+#include "bignum-dtoa.h"
+
+#include "bignum.h"
+#include "ieee.h"
+
+namespace double_conversion {
+
+static int NormalizedExponent(uint64_t significand, int exponent) {
+ ASSERT(significand != 0);
+ while ((significand & Double::kHiddenBit) == 0) {
+ significand = significand << 1;
+ exponent = exponent - 1;
+ }
+ return exponent;
+}
+
+
+// Forward declarations:
+// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
+static int EstimatePower(int exponent);
+// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
+// and denominator.
+static void InitialScaledStartValues(uint64_t significand,
+ int exponent,
+ bool lower_boundary_is_closer,
+ int estimated_power,
+ bool need_boundary_deltas,
+ Bignum* numerator,
+ Bignum* denominator,
+ Bignum* delta_minus,
+ Bignum* delta_plus);
+// Multiplies numerator/denominator so that its values lies in the range 1-10.
+// Returns decimal_point s.t.
+// v = numerator'/denominator' * 10^(decimal_point-1)
+// where numerator' and denominator' are the values of numerator and
+// denominator after the call to this function.
+static void FixupMultiply10(int estimated_power, bool is_even,
+ int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus);
+// Generates digits from the left to the right and stops when the generated
+// digits yield the shortest decimal representation of v.
+static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus,
+ bool is_even,
+ Vector<char> buffer, int* length);
+// Generates 'requested_digits' after the decimal point.
+static void BignumToFixed(int requested_digits, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length);
+// Generates 'count' digits of numerator/denominator.
+// Once 'count' digits have been produced rounds the result depending on the
+// remainder (remainders of exactly .5 round upwards). Might update the
+// decimal_point when rounding up (for example for 0.9999).
+static void GenerateCountedDigits(int count, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length);
+
+
+void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
+ Vector<char> buffer, int* length, int* decimal_point) {
+ ASSERT(v > 0);
+ ASSERT(!Double(v).IsSpecial());
+ uint64_t significand;
+ int exponent;
+ bool lower_boundary_is_closer;
+ if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
+ float f = static_cast<float>(v);
+ ASSERT(f == v);
+ significand = Single(f).Significand();
+ exponent = Single(f).Exponent();
+ lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
+ } else {
+ significand = Double(v).Significand();
+ exponent = Double(v).Exponent();
+ lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
+ }
+ bool need_boundary_deltas =
+ (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
+
+ bool is_even = (significand & 1) == 0;
+ int normalized_exponent = NormalizedExponent(significand, exponent);
+ // estimated_power might be too low by 1.
+ int estimated_power = EstimatePower(normalized_exponent);
+
+ // Shortcut for Fixed.
+ // The requested digits correspond to the digits after the point. If the
+ // number is much too small, then there is no need in trying to get any
+ // digits.
+ if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
+ buffer[0] = '\0';
+ *length = 0;
+ // Set decimal-point to -requested_digits. This is what Gay does.
+ // Note that it should not have any effect anyways since the string is
+ // empty.
+ *decimal_point = -requested_digits;
+ return;
+ }
+
+ Bignum numerator;
+ Bignum denominator;
+ Bignum delta_minus;
+ Bignum delta_plus;
+ // Make sure the bignum can grow large enough. The smallest double equals
+ // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
+ // The maximum double is 1.7976931348623157e308 which needs fewer than
+ // 308*4 binary digits.
+ ASSERT(Bignum::kMaxSignificantBits >= 324*4);
+ InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
+ estimated_power, need_boundary_deltas,
+ &numerator, &denominator,
+ &delta_minus, &delta_plus);
+ // We now have v = (numerator / denominator) * 10^estimated_power.
+ FixupMultiply10(estimated_power, is_even, decimal_point,
+ &numerator, &denominator,
+ &delta_minus, &delta_plus);
+ // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
+ // 1 <= (numerator + delta_plus) / denominator < 10
+ switch (mode) {
+ case BIGNUM_DTOA_SHORTEST:
+ case BIGNUM_DTOA_SHORTEST_SINGLE:
+ GenerateShortestDigits(&numerator, &denominator,
+ &delta_minus, &delta_plus,
+ is_even, buffer, length);
+ break;
+ case BIGNUM_DTOA_FIXED:
+ BignumToFixed(requested_digits, decimal_point,
+ &numerator, &denominator,
+ buffer, length);
+ break;
+ case BIGNUM_DTOA_PRECISION:
+ GenerateCountedDigits(requested_digits, decimal_point,
+ &numerator, &denominator,
+ buffer, length);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ buffer[*length] = '\0';
+}
+
+
+// The procedure starts generating digits from the left to the right and stops
+// when the generated digits yield the shortest decimal representation of v. A
+// decimal representation of v is a number lying closer to v than to any other
+// double, so it converts to v when read.
+//
+// This is true if d, the decimal representation, is between m- and m+, the
+// upper and lower boundaries. d must be strictly between them if !is_even.
+// m- := (numerator - delta_minus) / denominator
+// m+ := (numerator + delta_plus) / denominator
+//
+// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
+// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
+// will be produced. This should be the standard precondition.
+static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus,
+ bool is_even,
+ Vector<char> buffer, int* length) {
+ // Small optimization: if delta_minus and delta_plus are the same just reuse
+ // one of the two bignums.
+ if (Bignum::Equal(*delta_minus, *delta_plus)) {
+ delta_plus = delta_minus;
+ }
+ *length = 0;
+ while (true) {
+ uint16_t digit;
+ digit = numerator->DivideModuloIntBignum(*denominator);
+ ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
+ // digit = numerator / denominator (integer division).
+ // numerator = numerator % denominator.
+ buffer[(*length)++] = digit + '0';
+
+ // Can we stop already?
+ // If the remainder of the division is less than the distance to the lower
+ // boundary we can stop. In this case we simply round down (discarding the
+ // remainder).
+ // Similarly we test if we can round up (using the upper boundary).
+ bool in_delta_room_minus;
+ bool in_delta_room_plus;
+ if (is_even) {
+ in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
+ } else {
+ in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
+ }
+ if (is_even) {
+ in_delta_room_plus =
+ Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
+ } else {
+ in_delta_room_plus =
+ Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
+ }
+ if (!in_delta_room_minus && !in_delta_room_plus) {
+ // Prepare for next iteration.
+ numerator->Times10();
+ delta_minus->Times10();
+ // We optimized delta_plus to be equal to delta_minus (if they share the
+ // same value). So don't multiply delta_plus if they point to the same
+ // object.
+ if (delta_minus != delta_plus) {
+ delta_plus->Times10();
+ }
+ } else if (in_delta_room_minus && in_delta_room_plus) {
+ // Let's see if 2*numerator < denominator.
+ // If yes, then the next digit would be < 5 and we can round down.
+ int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
+ if (compare < 0) {
+ // Remaining digits are less than .5. -> Round down (== do nothing).
+ } else if (compare > 0) {
+ // Remaining digits are more than .5 of denominator. -> Round up.
+ // Note that the last digit could not be a '9' as otherwise the whole
+ // loop would have stopped earlier.
+ // We still have an assert here in case the preconditions were not
+ // satisfied.
+ ASSERT(buffer[(*length) - 1] != '9');
+ buffer[(*length) - 1]++;
+ } else {
+ // Halfway case.
+ // TODO(floitsch): need a way to solve half-way cases.
+ // For now let's round towards even (since this is what Gay seems to
+ // do).
+
+ if ((buffer[(*length) - 1] - '0') % 2 == 0) {
+ // Round down => Do nothing.
+ } else {
+ ASSERT(buffer[(*length) - 1] != '9');
+ buffer[(*length) - 1]++;
+ }
+ }
+ return;
+ } else if (in_delta_room_minus) {
+ // Round down (== do nothing).
+ return;
+ } else { // in_delta_room_plus
+ // Round up.
+ // Note again that the last digit could not be '9' since this would have
+ // stopped the loop earlier.
+ // We still have an ASSERT here, in case the preconditions were not
+ // satisfied.
+ ASSERT(buffer[(*length) -1] != '9');
+ buffer[(*length) - 1]++;
+ return;
+ }
+ }
+}
+
+
+// Let v = numerator / denominator < 10.
+// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
+// from left to right. Once 'count' digits have been produced we decide wether
+// to round up or down. Remainders of exactly .5 round upwards. Numbers such
+// as 9.999999 propagate a carry all the way, and change the
+// exponent (decimal_point), when rounding upwards.
+static void GenerateCountedDigits(int count, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length) {
+ ASSERT(count >= 0);
+ for (int i = 0; i < count - 1; ++i) {
+ uint16_t digit;
+ digit = numerator->DivideModuloIntBignum(*denominator);
+ ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
+ // digit = numerator / denominator (integer division).
+ // numerator = numerator % denominator.
+ buffer[i] = digit + '0';
+ // Prepare for next iteration.
+ numerator->Times10();
+ }
+ // Generate the last digit.
+ uint16_t digit;
+ digit = numerator->DivideModuloIntBignum(*denominator);
+ if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
+ digit++;
+ }
+ buffer[count - 1] = digit + '0';
+ // Correct bad digits (in case we had a sequence of '9's). Propagate the
+ // carry until we hat a non-'9' or til we reach the first digit.
+ for (int i = count - 1; i > 0; --i) {
+ if (buffer[i] != '0' + 10) break;
+ buffer[i] = '0';
+ buffer[i - 1]++;
+ }
+ if (buffer[0] == '0' + 10) {
+ // Propagate a carry past the top place.
+ buffer[0] = '1';
+ (*decimal_point)++;
+ }
+ *length = count;
+}
+
+
+// Generates 'requested_digits' after the decimal point. It might omit
+// trailing '0's. If the input number is too small then no digits at all are
+// generated (ex.: 2 fixed digits for 0.00001).
+//
+// Input verifies: 1 <= (numerator + delta) / denominator < 10.
+static void BignumToFixed(int requested_digits, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length) {
+ // Note that we have to look at more than just the requested_digits, since
+ // a number could be rounded up. Example: v=0.5 with requested_digits=0.
+ // Even though the power of v equals 0 we can't just stop here.
+ if (-(*decimal_point) > requested_digits) {
+ // The number is definitively too small.
+ // Ex: 0.001 with requested_digits == 1.
+ // Set decimal-point to -requested_digits. This is what Gay does.
+ // Note that it should not have any effect anyways since the string is
+ // empty.
+ *decimal_point = -requested_digits;
+ *length = 0;
+ return;
+ } else if (-(*decimal_point) == requested_digits) {
+ // We only need to verify if the number rounds down or up.
+ // Ex: 0.04 and 0.06 with requested_digits == 1.
+ ASSERT(*decimal_point == -requested_digits);
+ // Initially the fraction lies in range (1, 10]. Multiply the denominator
+ // by 10 so that we can compare more easily.
+ denominator->Times10();
+ if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
+ // If the fraction is >= 0.5 then we have to include the rounded
+ // digit.
+ buffer[0] = '1';
+ *length = 1;
+ (*decimal_point)++;
+ } else {
+ // Note that we caught most of similar cases earlier.
+ *length = 0;
+ }
+ return;
+ } else {
+ // The requested digits correspond to the digits after the point.
+ // The variable 'needed_digits' includes the digits before the point.
+ int needed_digits = (*decimal_point) + requested_digits;
+ GenerateCountedDigits(needed_digits, decimal_point,
+ numerator, denominator,
+ buffer, length);
+ }
+}
+
+
+// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
+// v = f * 2^exponent and 2^52 <= f < 2^53.
+// v is hence a normalized double with the given exponent. The output is an
+// approximation for the exponent of the decimal approimation .digits * 10^k.
+//
+// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
+// Note: this property holds for v's upper boundary m+ too.
+// 10^k <= m+ < 10^k+1.
+// (see explanation below).
+//
+// Examples:
+// EstimatePower(0) => 16
+// EstimatePower(-52) => 0
+//
+// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
+static int EstimatePower(int exponent) {
+ // This function estimates log10 of v where v = f*2^e (with e == exponent).
+ // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
+ // Note that f is bounded by its container size. Let p = 53 (the double's
+ // significand size). Then 2^(p-1) <= f < 2^p.
+ //
+ // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
+ // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
+ // The computed number undershoots by less than 0.631 (when we compute log3
+ // and not log10).
+ //
+ // Optimization: since we only need an approximated result this computation
+ // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
+ // not really measurable, though.
+ //
+ // Since we want to avoid overshooting we decrement by 1e10 so that
+ // floating-point imprecisions don't affect us.
+ //
+ // Explanation for v's boundary m+: the computation takes advantage of
+ // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
+ // (even for denormals where the delta can be much more important).
+
+ const double k1Log10 = 0.30102999566398114; // 1/lg(10)
+
+ // For doubles len(f) == 53 (don't forget the hidden bit).
+ const int kSignificandSize = Double::kSignificandSize;
+ double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
+ return static_cast<int>(estimate);
+}
+
+
+// See comments for InitialScaledStartValues.
+static void InitialScaledStartValuesPositiveExponent(
+ uint64_t significand, int exponent,
+ int estimated_power, bool need_boundary_deltas,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ // A positive exponent implies a positive power.
+ ASSERT(estimated_power >= 0);
+ // Since the estimated_power is positive we simply multiply the denominator
+ // by 10^estimated_power.
+
+ // numerator = v.
+ numerator->AssignUInt64(significand);
+ numerator->ShiftLeft(exponent);
+ // denominator = 10^estimated_power.
+ denominator->AssignPowerUInt16(10, estimated_power);
+
+ if (need_boundary_deltas) {
+ // Introduce a common denominator so that the deltas to the boundaries are
+ // integers.
+ denominator->ShiftLeft(1);
+ numerator->ShiftLeft(1);
+ // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
+ // denominator (of 2) delta_plus equals 2^e.
+ delta_plus->AssignUInt16(1);
+ delta_plus->ShiftLeft(exponent);
+ // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
+ delta_minus->AssignUInt16(1);
+ delta_minus->ShiftLeft(exponent);
+ }
+}
+
+
+// See comments for InitialScaledStartValues
+static void InitialScaledStartValuesNegativeExponentPositivePower(
+ uint64_t significand, int exponent,
+ int estimated_power, bool need_boundary_deltas,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ // v = f * 2^e with e < 0, and with estimated_power >= 0.
+ // This means that e is close to 0 (have a look at how estimated_power is
+ // computed).
+
+ // numerator = significand
+ // since v = significand * 2^exponent this is equivalent to
+ // numerator = v * / 2^-exponent
+ numerator->AssignUInt64(significand);
+ // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
+ denominator->AssignPowerUInt16(10, estimated_power);
+ denominator->ShiftLeft(-exponent);
+
+ if (need_boundary_deltas) {
+ // Introduce a common denominator so that the deltas to the boundaries are
+ // integers.
+ denominator->ShiftLeft(1);
+ numerator->ShiftLeft(1);
+ // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
+ // denominator (of 2) delta_plus equals 2^e.
+ // Given that the denominator already includes v's exponent the distance
+ // to the boundaries is simply 1.
+ delta_plus->AssignUInt16(1);
+ // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
+ delta_minus->AssignUInt16(1);
+ }
+}
+
+
+// See comments for InitialScaledStartValues
+static void InitialScaledStartValuesNegativeExponentNegativePower(
+ uint64_t significand, int exponent,
+ int estimated_power, bool need_boundary_deltas,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ // Instead of multiplying the denominator with 10^estimated_power we
+ // multiply all values (numerator and deltas) by 10^-estimated_power.
+
+ // Use numerator as temporary container for power_ten.
+ Bignum* power_ten = numerator;
+ power_ten->AssignPowerUInt16(10, -estimated_power);
+
+ if (need_boundary_deltas) {
+ // Since power_ten == numerator we must make a copy of 10^estimated_power
+ // before we complete the computation of the numerator.
+ // delta_plus = delta_minus = 10^estimated_power
+ delta_plus->AssignBignum(*power_ten);
+ delta_minus->AssignBignum(*power_ten);
+ }
+
+ // numerator = significand * 2 * 10^-estimated_power
+ // since v = significand * 2^exponent this is equivalent to
+ // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
+ // Remember: numerator has been abused as power_ten. So no need to assign it
+ // to itself.
+ ASSERT(numerator == power_ten);
+ numerator->MultiplyByUInt64(significand);
+
+ // denominator = 2 * 2^-exponent with exponent < 0.
+ denominator->AssignUInt16(1);
+ denominator->ShiftLeft(-exponent);
+
+ if (need_boundary_deltas) {
+ // Introduce a common denominator so that the deltas to the boundaries are
+ // integers.
+ numerator->ShiftLeft(1);
+ denominator->ShiftLeft(1);
+ // With this shift the boundaries have their correct value, since
+ // delta_plus = 10^-estimated_power, and
+ // delta_minus = 10^-estimated_power.
+ // These assignments have been done earlier.
+ // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
+ }
+}
+
+
+// Let v = significand * 2^exponent.
+// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
+// and denominator. The functions GenerateShortestDigits and
+// GenerateCountedDigits will then convert this ratio to its decimal
+// representation d, with the required accuracy.
+// Then d * 10^estimated_power is the representation of v.
+// (Note: the fraction and the estimated_power might get adjusted before
+// generating the decimal representation.)
+//
+// The initial start values consist of:
+// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
+// - a scaled (common) denominator.
+// optionally (used by GenerateShortestDigits to decide if it has the shortest
+// decimal converting back to v):
+// - v - m-: the distance to the lower boundary.
+// - m+ - v: the distance to the upper boundary.
+//
+// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
+//
+// Let ep == estimated_power, then the returned values will satisfy:
+// v / 10^ep = numerator / denominator.
+// v's boundarys m- and m+:
+// m- / 10^ep == v / 10^ep - delta_minus / denominator
+// m+ / 10^ep == v / 10^ep + delta_plus / denominator
+// Or in other words:
+// m- == v - delta_minus * 10^ep / denominator;
+// m+ == v + delta_plus * 10^ep / denominator;
+//
+// Since 10^(k-1) <= v < 10^k (with k == estimated_power)
+// or 10^k <= v < 10^(k+1)
+// we then have 0.1 <= numerator/denominator < 1
+// or 1 <= numerator/denominator < 10
+//
+// It is then easy to kickstart the digit-generation routine.
+//
+// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
+// or BIGNUM_DTOA_SHORTEST_SINGLE.
+
+static void InitialScaledStartValues(uint64_t significand,
+ int exponent,
+ bool lower_boundary_is_closer,
+ int estimated_power,
+ bool need_boundary_deltas,
+ Bignum* numerator,
+ Bignum* denominator,
+ Bignum* delta_minus,
+ Bignum* delta_plus) {
+ if (exponent >= 0) {
+ InitialScaledStartValuesPositiveExponent(
+ significand, exponent, estimated_power, need_boundary_deltas,
+ numerator, denominator, delta_minus, delta_plus);
+ } else if (estimated_power >= 0) {
+ InitialScaledStartValuesNegativeExponentPositivePower(
+ significand, exponent, estimated_power, need_boundary_deltas,
+ numerator, denominator, delta_minus, delta_plus);
+ } else {
+ InitialScaledStartValuesNegativeExponentNegativePower(
+ significand, exponent, estimated_power, need_boundary_deltas,
+ numerator, denominator, delta_minus, delta_plus);
+ }
+
+ if (need_boundary_deltas && lower_boundary_is_closer) {
+ // The lower boundary is closer at half the distance of "normal" numbers.
+ // Increase the common denominator and adapt all but the delta_minus.
+ denominator->ShiftLeft(1); // *2
+ numerator->ShiftLeft(1); // *2
+ delta_plus->ShiftLeft(1); // *2
+ }
+}
+
+
+// This routine multiplies numerator/denominator so that its values lies in the
+// range 1-10. That is after a call to this function we have:
+// 1 <= (numerator + delta_plus) /denominator < 10.
+// Let numerator the input before modification and numerator' the argument
+// after modification, then the output-parameter decimal_point is such that
+// numerator / denominator * 10^estimated_power ==
+// numerator' / denominator' * 10^(decimal_point - 1)
+// In some cases estimated_power was too low, and this is already the case. We
+// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
+// estimated_power) but do not touch the numerator or denominator.
+// Otherwise the routine multiplies the numerator and the deltas by 10.
+static void FixupMultiply10(int estimated_power, bool is_even,
+ int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ bool in_range;
+ if (is_even) {
+ // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
+ // are rounded to the closest floating-point number with even significand.
+ in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
+ } else {
+ in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
+ }
+ if (in_range) {
+ // Since numerator + delta_plus >= denominator we already have
+ // 1 <= numerator/denominator < 10. Simply update the estimated_power.
+ *decimal_point = estimated_power + 1;
+ } else {
+ *decimal_point = estimated_power;
+ numerator->Times10();
+ if (Bignum::Equal(*delta_minus, *delta_plus)) {
+ delta_minus->Times10();
+ delta_plus->AssignBignum(*delta_minus);
+ } else {
+ delta_minus->Times10();
+ delta_plus->Times10();
+ }
+ }
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/bignum-dtoa.h b/src/3rdparty/double-conversion/bignum-dtoa.h
new file mode 100644
index 0000000000..34b961992d
--- /dev/null
+++ b/src/3rdparty/double-conversion/bignum-dtoa.h
@@ -0,0 +1,84 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_BIGNUM_DTOA_H_
+#define DOUBLE_CONVERSION_BIGNUM_DTOA_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+enum BignumDtoaMode {
+ // Return the shortest correct representation.
+ // For example the output of 0.299999999999999988897 is (the less accurate but
+ // correct) 0.3.
+ BIGNUM_DTOA_SHORTEST,
+ // Same as BIGNUM_DTOA_SHORTEST but for single-precision floats.
+ BIGNUM_DTOA_SHORTEST_SINGLE,
+ // Return a fixed number of digits after the decimal point.
+ // For instance fixed(0.1, 4) becomes 0.1000
+ // If the input number is big, the output will be big.
+ BIGNUM_DTOA_FIXED,
+ // Return a fixed number of digits, no matter what the exponent is.
+ BIGNUM_DTOA_PRECISION
+};
+
+// Converts the given double 'v' to ascii.
+// The result should be interpreted as buffer * 10^(point-length).
+// The buffer will be null-terminated.
+//
+// The input v must be > 0 and different from NaN, and Infinity.
+//
+// The output depends on the given mode:
+// - SHORTEST: produce the least amount of digits for which the internal
+// identity requirement is still satisfied. If the digits are printed
+// (together with the correct exponent) then reading this number will give
+// 'v' again. The buffer will choose the representation that is closest to
+// 'v'. If there are two at the same distance, than the number is round up.
+// In this mode the 'requested_digits' parameter is ignored.
+// - FIXED: produces digits necessary to print a given number with
+// 'requested_digits' digits after the decimal point. The produced digits
+// might be too short in which case the caller has to fill the gaps with '0's.
+// Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
+// Halfway cases are rounded up. The call toFixed(0.15, 2) thus returns
+// buffer="2", point=0.
+// Note: the length of the returned buffer has no meaning wrt the significance
+// of its digits. That is, just because it contains '0's does not mean that
+// any other digit would not satisfy the internal identity requirement.
+// - PRECISION: produces 'requested_digits' where the first digit is not '0'.
+// Even though the length of produced digits usually equals
+// 'requested_digits', the function is allowed to return fewer digits, in
+// which case the caller has to fill the missing digits with '0's.
+// Halfway cases are again rounded up.
+// 'BignumDtoa' expects the given buffer to be big enough to hold all digits
+// and a terminating null-character.
+void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
+ Vector<char> buffer, int* length, int* point);
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_BIGNUM_DTOA_H_
diff --git a/src/3rdparty/double-conversion/bignum.cc b/src/3rdparty/double-conversion/bignum.cc
new file mode 100644
index 0000000000..747491a089
--- /dev/null
+++ b/src/3rdparty/double-conversion/bignum.cc
@@ -0,0 +1,764 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "bignum.h"
+#include "utils.h"
+
+namespace double_conversion {
+
+Bignum::Bignum()
+ : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
+ for (int i = 0; i < kBigitCapacity; ++i) {
+ bigits_[i] = 0;
+ }
+}
+
+
+template<typename S>
+static int BitSize(S value) {
+ return 8 * sizeof(value);
+}
+
+// Guaranteed to lie in one Bigit.
+void Bignum::AssignUInt16(uint16_t value) {
+ ASSERT(kBigitSize >= BitSize(value));
+ Zero();
+ if (value == 0) return;
+
+ EnsureCapacity(1);
+ bigits_[0] = value;
+ used_digits_ = 1;
+}
+
+
+void Bignum::AssignUInt64(uint64_t value) {
+ const int kUInt64Size = 64;
+
+ Zero();
+ if (value == 0) return;
+
+ int needed_bigits = kUInt64Size / kBigitSize + 1;
+ EnsureCapacity(needed_bigits);
+ for (int i = 0; i < needed_bigits; ++i) {
+ bigits_[i] = value & kBigitMask;
+ value = value >> kBigitSize;
+ }
+ used_digits_ = needed_bigits;
+ Clamp();
+}
+
+
+void Bignum::AssignBignum(const Bignum& other) {
+ exponent_ = other.exponent_;
+ for (int i = 0; i < other.used_digits_; ++i) {
+ bigits_[i] = other.bigits_[i];
+ }
+ // Clear the excess digits (if there were any).
+ for (int i = other.used_digits_; i < used_digits_; ++i) {
+ bigits_[i] = 0;
+ }
+ used_digits_ = other.used_digits_;
+}
+
+
+static uint64_t ReadUInt64(Vector<const char> buffer,
+ int from,
+ int digits_to_read) {
+ uint64_t result = 0;
+ for (int i = from; i < from + digits_to_read; ++i) {
+ int digit = buffer[i] - '0';
+ ASSERT(0 <= digit && digit <= 9);
+ result = result * 10 + digit;
+ }
+ return result;
+}
+
+
+void Bignum::AssignDecimalString(Vector<const char> value) {
+ // 2^64 = 18446744073709551616 > 10^19
+ const int kMaxUint64DecimalDigits = 19;
+ Zero();
+ int length = value.length();
+ int pos = 0;
+ // Let's just say that each digit needs 4 bits.
+ while (length >= kMaxUint64DecimalDigits) {
+ uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
+ pos += kMaxUint64DecimalDigits;
+ length -= kMaxUint64DecimalDigits;
+ MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
+ AddUInt64(digits);
+ }
+ uint64_t digits = ReadUInt64(value, pos, length);
+ MultiplyByPowerOfTen(length);
+ AddUInt64(digits);
+ Clamp();
+}
+
+
+static int HexCharValue(char c) {
+ if ('0' <= c && c <= '9') return c - '0';
+ if ('a' <= c && c <= 'f') return 10 + c - 'a';
+ if ('A' <= c && c <= 'F') return 10 + c - 'A';
+ UNREACHABLE();
+ return 0; // To make compiler happy.
+}
+
+
+void Bignum::AssignHexString(Vector<const char> value) {
+ Zero();
+ int length = value.length();
+
+ int needed_bigits = length * 4 / kBigitSize + 1;
+ EnsureCapacity(needed_bigits);
+ int string_index = length - 1;
+ for (int i = 0; i < needed_bigits - 1; ++i) {
+ // These bigits are guaranteed to be "full".
+ Chunk current_bigit = 0;
+ for (int j = 0; j < kBigitSize / 4; j++) {
+ current_bigit += HexCharValue(value[string_index--]) << (j * 4);
+ }
+ bigits_[i] = current_bigit;
+ }
+ used_digits_ = needed_bigits - 1;
+
+ Chunk most_significant_bigit = 0; // Could be = 0;
+ for (int j = 0; j <= string_index; ++j) {
+ most_significant_bigit <<= 4;
+ most_significant_bigit += HexCharValue(value[j]);
+ }
+ if (most_significant_bigit != 0) {
+ bigits_[used_digits_] = most_significant_bigit;
+ used_digits_++;
+ }
+ Clamp();
+}
+
+
+void Bignum::AddUInt64(uint64_t operand) {
+ if (operand == 0) return;
+ Bignum other;
+ other.AssignUInt64(operand);
+ AddBignum(other);
+}
+
+
+void Bignum::AddBignum(const Bignum& other) {
+ ASSERT(IsClamped());
+ ASSERT(other.IsClamped());
+
+ // If this has a greater exponent than other append zero-bigits to this.
+ // After this call exponent_ <= other.exponent_.
+ Align(other);
+
+ // There are two possibilities:
+ // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
+ // bbbbb 00000000
+ // ----------------
+ // ccccccccccc 0000
+ // or
+ // aaaaaaaaaa 0000
+ // bbbbbbbbb 0000000
+ // -----------------
+ // cccccccccccc 0000
+ // In both cases we might need a carry bigit.
+
+ EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
+ Chunk carry = 0;
+ int bigit_pos = other.exponent_ - exponent_;
+ ASSERT(bigit_pos >= 0);
+ for (int i = 0; i < other.used_digits_; ++i) {
+ Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
+ bigits_[bigit_pos] = sum & kBigitMask;
+ carry = sum >> kBigitSize;
+ bigit_pos++;
+ }
+
+ while (carry != 0) {
+ Chunk sum = bigits_[bigit_pos] + carry;
+ bigits_[bigit_pos] = sum & kBigitMask;
+ carry = sum >> kBigitSize;
+ bigit_pos++;
+ }
+ used_digits_ = Max(bigit_pos, used_digits_);
+ ASSERT(IsClamped());
+}
+
+
+void Bignum::SubtractBignum(const Bignum& other) {
+ ASSERT(IsClamped());
+ ASSERT(other.IsClamped());
+ // We require this to be bigger than other.
+ ASSERT(LessEqual(other, *this));
+
+ Align(other);
+
+ int offset = other.exponent_ - exponent_;
+ Chunk borrow = 0;
+ int i;
+ for (i = 0; i < other.used_digits_; ++i) {
+ ASSERT((borrow == 0) || (borrow == 1));
+ Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
+ bigits_[i + offset] = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ }
+ while (borrow != 0) {
+ Chunk difference = bigits_[i + offset] - borrow;
+ bigits_[i + offset] = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ ++i;
+ }
+ Clamp();
+}
+
+
+void Bignum::ShiftLeft(int shift_amount) {
+ if (used_digits_ == 0) return;
+ exponent_ += shift_amount / kBigitSize;
+ int local_shift = shift_amount % kBigitSize;
+ EnsureCapacity(used_digits_ + 1);
+ BigitsShiftLeft(local_shift);
+}
+
+
+void Bignum::MultiplyByUInt32(uint32_t factor) {
+ if (factor == 1) return;
+ if (factor == 0) {
+ Zero();
+ return;
+ }
+ if (used_digits_ == 0) return;
+
+ // The product of a bigit with the factor is of size kBigitSize + 32.
+ // Assert that this number + 1 (for the carry) fits into double chunk.
+ ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
+ DoubleChunk carry = 0;
+ for (int i = 0; i < used_digits_; ++i) {
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
+ bigits_[i] = static_cast<Chunk>(product & kBigitMask);
+ carry = (product >> kBigitSize);
+ }
+ while (carry != 0) {
+ EnsureCapacity(used_digits_ + 1);
+ bigits_[used_digits_] = carry & kBigitMask;
+ used_digits_++;
+ carry >>= kBigitSize;
+ }
+}
+
+
+void Bignum::MultiplyByUInt64(uint64_t factor) {
+ if (factor == 1) return;
+ if (factor == 0) {
+ Zero();
+ return;
+ }
+ ASSERT(kBigitSize < 32);
+ uint64_t carry = 0;
+ uint64_t low = factor & 0xFFFFFFFF;
+ uint64_t high = factor >> 32;
+ for (int i = 0; i < used_digits_; ++i) {
+ uint64_t product_low = low * bigits_[i];
+ uint64_t product_high = high * bigits_[i];
+ uint64_t tmp = (carry & kBigitMask) + product_low;
+ bigits_[i] = tmp & kBigitMask;
+ carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
+ (product_high << (32 - kBigitSize));
+ }
+ while (carry != 0) {
+ EnsureCapacity(used_digits_ + 1);
+ bigits_[used_digits_] = carry & kBigitMask;
+ used_digits_++;
+ carry >>= kBigitSize;
+ }
+}
+
+
+void Bignum::MultiplyByPowerOfTen(int exponent) {
+ const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
+ const uint16_t kFive1 = 5;
+ const uint16_t kFive2 = kFive1 * 5;
+ const uint16_t kFive3 = kFive2 * 5;
+ const uint16_t kFive4 = kFive3 * 5;
+ const uint16_t kFive5 = kFive4 * 5;
+ const uint16_t kFive6 = kFive5 * 5;
+ const uint32_t kFive7 = kFive6 * 5;
+ const uint32_t kFive8 = kFive7 * 5;
+ const uint32_t kFive9 = kFive8 * 5;
+ const uint32_t kFive10 = kFive9 * 5;
+ const uint32_t kFive11 = kFive10 * 5;
+ const uint32_t kFive12 = kFive11 * 5;
+ const uint32_t kFive13 = kFive12 * 5;
+ const uint32_t kFive1_to_12[] =
+ { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
+ kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
+
+ ASSERT(exponent >= 0);
+ if (exponent == 0) return;
+ if (used_digits_ == 0) return;
+
+ // We shift by exponent at the end just before returning.
+ int remaining_exponent = exponent;
+ while (remaining_exponent >= 27) {
+ MultiplyByUInt64(kFive27);
+ remaining_exponent -= 27;
+ }
+ while (remaining_exponent >= 13) {
+ MultiplyByUInt32(kFive13);
+ remaining_exponent -= 13;
+ }
+ if (remaining_exponent > 0) {
+ MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
+ }
+ ShiftLeft(exponent);
+}
+
+
+void Bignum::Square() {
+ ASSERT(IsClamped());
+ int product_length = 2 * used_digits_;
+ EnsureCapacity(product_length);
+
+ // Comba multiplication: compute each column separately.
+ // Example: r = a2a1a0 * b2b1b0.
+ // r = 1 * a0b0 +
+ // 10 * (a1b0 + a0b1) +
+ // 100 * (a2b0 + a1b1 + a0b2) +
+ // 1000 * (a2b1 + a1b2) +
+ // 10000 * a2b2
+ //
+ // In the worst case we have to accumulate nb-digits products of digit*digit.
+ //
+ // Assert that the additional number of bits in a DoubleChunk are enough to
+ // sum up used_digits of Bigit*Bigit.
+ if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
+ UNIMPLEMENTED();
+ }
+ DoubleChunk accumulator = 0;
+ // First shift the digits so we don't overwrite them.
+ int copy_offset = used_digits_;
+ for (int i = 0; i < used_digits_; ++i) {
+ bigits_[copy_offset + i] = bigits_[i];
+ }
+ // We have two loops to avoid some 'if's in the loop.
+ for (int i = 0; i < used_digits_; ++i) {
+ // Process temporary digit i with power i.
+ // The sum of the two indices must be equal to i.
+ int bigit_index1 = i;
+ int bigit_index2 = 0;
+ // Sum all of the sub-products.
+ while (bigit_index1 >= 0) {
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1];
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2];
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
+ bigit_index1--;
+ bigit_index2++;
+ }
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
+ accumulator >>= kBigitSize;
+ }
+ for (int i = used_digits_; i < product_length; ++i) {
+ int bigit_index1 = used_digits_ - 1;
+ int bigit_index2 = i - bigit_index1;
+ // Invariant: sum of both indices is again equal to i.
+ // Inner loop runs 0 times on last iteration, emptying accumulator.
+ while (bigit_index2 < used_digits_) {
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1];
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2];
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
+ bigit_index1--;
+ bigit_index2++;
+ }
+ // The overwritten bigits_[i] will never be read in further loop iterations,
+ // because bigit_index1 and bigit_index2 are always greater
+ // than i - used_digits_.
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
+ accumulator >>= kBigitSize;
+ }
+ // Since the result was guaranteed to lie inside the number the
+ // accumulator must be 0 now.
+ ASSERT(accumulator == 0);
+
+ // Don't forget to update the used_digits and the exponent.
+ used_digits_ = product_length;
+ exponent_ *= 2;
+ Clamp();
+}
+
+
+void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
+ ASSERT(base != 0);
+ ASSERT(power_exponent >= 0);
+ if (power_exponent == 0) {
+ AssignUInt16(1);
+ return;
+ }
+ Zero();
+ int shifts = 0;
+ // We expect base to be in range 2-32, and most often to be 10.
+ // It does not make much sense to implement different algorithms for counting
+ // the bits.
+ while ((base & 1) == 0) {
+ base >>= 1;
+ shifts++;
+ }
+ int bit_size = 0;
+ int tmp_base = base;
+ while (tmp_base != 0) {
+ tmp_base >>= 1;
+ bit_size++;
+ }
+ int final_size = bit_size * power_exponent;
+ // 1 extra bigit for the shifting, and one for rounded final_size.
+ EnsureCapacity(final_size / kBigitSize + 2);
+
+ // Left to Right exponentiation.
+ int mask = 1;
+ while (power_exponent >= mask) mask <<= 1;
+
+ // The mask is now pointing to the bit above the most significant 1-bit of
+ // power_exponent.
+ // Get rid of first 1-bit;
+ mask >>= 2;
+ uint64_t this_value = base;
+
+ bool delayed_multipliciation = false;
+ const uint64_t max_32bits = 0xFFFFFFFF;
+ while (mask != 0 && this_value <= max_32bits) {
+ this_value = this_value * this_value;
+ // Verify that there is enough space in this_value to perform the
+ // multiplication. The first bit_size bits must be 0.
+ if ((power_exponent & mask) != 0) {
+ uint64_t base_bits_mask =
+ ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
+ bool high_bits_zero = (this_value & base_bits_mask) == 0;
+ if (high_bits_zero) {
+ this_value *= base;
+ } else {
+ delayed_multipliciation = true;
+ }
+ }
+ mask >>= 1;
+ }
+ AssignUInt64(this_value);
+ if (delayed_multipliciation) {
+ MultiplyByUInt32(base);
+ }
+
+ // Now do the same thing as a bignum.
+ while (mask != 0) {
+ Square();
+ if ((power_exponent & mask) != 0) {
+ MultiplyByUInt32(base);
+ }
+ mask >>= 1;
+ }
+
+ // And finally add the saved shifts.
+ ShiftLeft(shifts * power_exponent);
+}
+
+
+// Precondition: this/other < 16bit.
+uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
+ ASSERT(IsClamped());
+ ASSERT(other.IsClamped());
+ ASSERT(other.used_digits_ > 0);
+
+ // Easy case: if we have less digits than the divisor than the result is 0.
+ // Note: this handles the case where this == 0, too.
+ if (BigitLength() < other.BigitLength()) {
+ return 0;
+ }
+
+ Align(other);
+
+ uint16_t result = 0;
+
+ // Start by removing multiples of 'other' until both numbers have the same
+ // number of digits.
+ while (BigitLength() > other.BigitLength()) {
+ // This naive approach is extremely inefficient if the this divided other
+ // might be big. This function is implemented for doubleToString where
+ // the result should be small (less than 10).
+ ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
+ // Remove the multiples of the first digit.
+ // Example this = 23 and other equals 9. -> Remove 2 multiples.
+ result += bigits_[used_digits_ - 1];
+ SubtractTimes(other, bigits_[used_digits_ - 1]);
+ }
+
+ ASSERT(BigitLength() == other.BigitLength());
+
+ // Both bignums are at the same length now.
+ // Since other has more than 0 digits we know that the access to
+ // bigits_[used_digits_ - 1] is safe.
+ Chunk this_bigit = bigits_[used_digits_ - 1];
+ Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
+
+ if (other.used_digits_ == 1) {
+ // Shortcut for easy (and common) case.
+ int quotient = this_bigit / other_bigit;
+ bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
+ result += quotient;
+ Clamp();
+ return result;
+ }
+
+ int division_estimate = this_bigit / (other_bigit + 1);
+ result += division_estimate;
+ SubtractTimes(other, division_estimate);
+
+ if (other_bigit * (division_estimate + 1) > this_bigit) {
+ // No need to even try to subtract. Even if other's remaining digits were 0
+ // another subtraction would be too much.
+ return result;
+ }
+
+ while (LessEqual(other, *this)) {
+ SubtractBignum(other);
+ result++;
+ }
+ return result;
+}
+
+
+template<typename S>
+static int SizeInHexChars(S number) {
+ ASSERT(number > 0);
+ int result = 0;
+ while (number != 0) {
+ number >>= 4;
+ result++;
+ }
+ return result;
+}
+
+
+static char HexCharOfValue(int value) {
+ ASSERT(0 <= value && value <= 16);
+ if (value < 10) return value + '0';
+ return value - 10 + 'A';
+}
+
+
+bool Bignum::ToHexString(char* buffer, int buffer_size) const {
+ ASSERT(IsClamped());
+ // Each bigit must be printable as separate hex-character.
+ ASSERT(kBigitSize % 4 == 0);
+ const int kHexCharsPerBigit = kBigitSize / 4;
+
+ if (used_digits_ == 0) {
+ if (buffer_size < 2) return false;
+ buffer[0] = '0';
+ buffer[1] = '\0';
+ return true;
+ }
+ // We add 1 for the terminating '\0' character.
+ int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
+ SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
+ if (needed_chars > buffer_size) return false;
+ int string_index = needed_chars - 1;
+ buffer[string_index--] = '\0';
+ for (int i = 0; i < exponent_; ++i) {
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
+ buffer[string_index--] = '0';
+ }
+ }
+ for (int i = 0; i < used_digits_ - 1; ++i) {
+ Chunk current_bigit = bigits_[i];
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
+ buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
+ current_bigit >>= 4;
+ }
+ }
+ // And finally the last bigit.
+ Chunk most_significant_bigit = bigits_[used_digits_ - 1];
+ while (most_significant_bigit != 0) {
+ buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
+ most_significant_bigit >>= 4;
+ }
+ return true;
+}
+
+
+Bignum::Chunk Bignum::BigitAt(int index) const {
+ if (index >= BigitLength()) return 0;
+ if (index < exponent_) return 0;
+ return bigits_[index - exponent_];
+}
+
+
+int Bignum::Compare(const Bignum& a, const Bignum& b) {
+ ASSERT(a.IsClamped());
+ ASSERT(b.IsClamped());
+ int bigit_length_a = a.BigitLength();
+ int bigit_length_b = b.BigitLength();
+ if (bigit_length_a < bigit_length_b) return -1;
+ if (bigit_length_a > bigit_length_b) return +1;
+ for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
+ Chunk bigit_a = a.BigitAt(i);
+ Chunk bigit_b = b.BigitAt(i);
+ if (bigit_a < bigit_b) return -1;
+ if (bigit_a > bigit_b) return +1;
+ // Otherwise they are equal up to this digit. Try the next digit.
+ }
+ return 0;
+}
+
+
+int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
+ ASSERT(a.IsClamped());
+ ASSERT(b.IsClamped());
+ ASSERT(c.IsClamped());
+ if (a.BigitLength() < b.BigitLength()) {
+ return PlusCompare(b, a, c);
+ }
+ if (a.BigitLength() + 1 < c.BigitLength()) return -1;
+ if (a.BigitLength() > c.BigitLength()) return +1;
+ // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
+ // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
+ // of 'a'.
+ if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
+ return -1;
+ }
+
+ Chunk borrow = 0;
+ // Starting at min_exponent all digits are == 0. So no need to compare them.
+ int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
+ for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
+ Chunk chunk_a = a.BigitAt(i);
+ Chunk chunk_b = b.BigitAt(i);
+ Chunk chunk_c = c.BigitAt(i);
+ Chunk sum = chunk_a + chunk_b;
+ if (sum > chunk_c + borrow) {
+ return +1;
+ } else {
+ borrow = chunk_c + borrow - sum;
+ if (borrow > 1) return -1;
+ borrow <<= kBigitSize;
+ }
+ }
+ if (borrow == 0) return 0;
+ return -1;
+}
+
+
+void Bignum::Clamp() {
+ while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
+ used_digits_--;
+ }
+ if (used_digits_ == 0) {
+ // Zero.
+ exponent_ = 0;
+ }
+}
+
+
+bool Bignum::IsClamped() const {
+ return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
+}
+
+
+void Bignum::Zero() {
+ for (int i = 0; i < used_digits_; ++i) {
+ bigits_[i] = 0;
+ }
+ used_digits_ = 0;
+ exponent_ = 0;
+}
+
+
+void Bignum::Align(const Bignum& other) {
+ if (exponent_ > other.exponent_) {
+ // If "X" represents a "hidden" digit (by the exponent) then we are in the
+ // following case (a == this, b == other):
+ // a: aaaaaaXXXX or a: aaaaaXXX
+ // b: bbbbbbX b: bbbbbbbbXX
+ // We replace some of the hidden digits (X) of a with 0 digits.
+ // a: aaaaaa000X or a: aaaaa0XX
+ int zero_digits = exponent_ - other.exponent_;
+ EnsureCapacity(used_digits_ + zero_digits);
+ for (int i = used_digits_ - 1; i >= 0; --i) {
+ bigits_[i + zero_digits] = bigits_[i];
+ }
+ for (int i = 0; i < zero_digits; ++i) {
+ bigits_[i] = 0;
+ }
+ used_digits_ += zero_digits;
+ exponent_ -= zero_digits;
+ ASSERT(used_digits_ >= 0);
+ ASSERT(exponent_ >= 0);
+ }
+}
+
+
+void Bignum::BigitsShiftLeft(int shift_amount) {
+ ASSERT(shift_amount < kBigitSize);
+ ASSERT(shift_amount >= 0);
+ Chunk carry = 0;
+ for (int i = 0; i < used_digits_; ++i) {
+ Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
+ bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
+ carry = new_carry;
+ }
+ if (carry != 0) {
+ bigits_[used_digits_] = carry;
+ used_digits_++;
+ }
+}
+
+
+void Bignum::SubtractTimes(const Bignum& other, int factor) {
+ ASSERT(exponent_ <= other.exponent_);
+ if (factor < 3) {
+ for (int i = 0; i < factor; ++i) {
+ SubtractBignum(other);
+ }
+ return;
+ }
+ Chunk borrow = 0;
+ int exponent_diff = other.exponent_ - exponent_;
+ for (int i = 0; i < other.used_digits_; ++i) {
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
+ DoubleChunk remove = borrow + product;
+ Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
+ bigits_[i + exponent_diff] = difference & kBigitMask;
+ borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
+ (remove >> kBigitSize));
+ }
+ for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
+ if (borrow == 0) return;
+ Chunk difference = bigits_[i] - borrow;
+ bigits_[i] = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ ++i;
+ }
+ Clamp();
+}
+
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/bignum.h b/src/3rdparty/double-conversion/bignum.h
new file mode 100644
index 0000000000..5ec3544f57
--- /dev/null
+++ b/src/3rdparty/double-conversion/bignum.h
@@ -0,0 +1,145 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_BIGNUM_H_
+#define DOUBLE_CONVERSION_BIGNUM_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+class Bignum {
+ public:
+ // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately.
+ // This bignum can encode much bigger numbers, since it contains an
+ // exponent.
+ static const int kMaxSignificantBits = 3584;
+
+ Bignum();
+ void AssignUInt16(uint16_t value);
+ void AssignUInt64(uint64_t value);
+ void AssignBignum(const Bignum& other);
+
+ void AssignDecimalString(Vector<const char> value);
+ void AssignHexString(Vector<const char> value);
+
+ void AssignPowerUInt16(uint16_t base, int exponent);
+
+ void AddUInt16(uint16_t operand);
+ void AddUInt64(uint64_t operand);
+ void AddBignum(const Bignum& other);
+ // Precondition: this >= other.
+ void SubtractBignum(const Bignum& other);
+
+ void Square();
+ void ShiftLeft(int shift_amount);
+ void MultiplyByUInt32(uint32_t factor);
+ void MultiplyByUInt64(uint64_t factor);
+ void MultiplyByPowerOfTen(int exponent);
+ void Times10() { return MultiplyByUInt32(10); }
+ // Pseudocode:
+ // int result = this / other;
+ // this = this % other;
+ // In the worst case this function is in O(this/other).
+ uint16_t DivideModuloIntBignum(const Bignum& other);
+
+ bool ToHexString(char* buffer, int buffer_size) const;
+
+ // Returns
+ // -1 if a < b,
+ // 0 if a == b, and
+ // +1 if a > b.
+ static int Compare(const Bignum& a, const Bignum& b);
+ static bool Equal(const Bignum& a, const Bignum& b) {
+ return Compare(a, b) == 0;
+ }
+ static bool LessEqual(const Bignum& a, const Bignum& b) {
+ return Compare(a, b) <= 0;
+ }
+ static bool Less(const Bignum& a, const Bignum& b) {
+ return Compare(a, b) < 0;
+ }
+ // Returns Compare(a + b, c);
+ static int PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c);
+ // Returns a + b == c
+ static bool PlusEqual(const Bignum& a, const Bignum& b, const Bignum& c) {
+ return PlusCompare(a, b, c) == 0;
+ }
+ // Returns a + b <= c
+ static bool PlusLessEqual(const Bignum& a, const Bignum& b, const Bignum& c) {
+ return PlusCompare(a, b, c) <= 0;
+ }
+ // Returns a + b < c
+ static bool PlusLess(const Bignum& a, const Bignum& b, const Bignum& c) {
+ return PlusCompare(a, b, c) < 0;
+ }
+ private:
+ typedef uint32_t Chunk;
+ typedef uint64_t DoubleChunk;
+
+ static const int kChunkSize = sizeof(Chunk) * 8;
+ static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8;
+ // With bigit size of 28 we loose some bits, but a double still fits easily
+ // into two chunks, and more importantly we can use the Comba multiplication.
+ static const int kBigitSize = 28;
+ static const Chunk kBigitMask = (1 << kBigitSize) - 1;
+ // Every instance allocates kBigitLength chunks on the stack. Bignums cannot
+ // grow. There are no checks if the stack-allocated space is sufficient.
+ static const int kBigitCapacity = kMaxSignificantBits / kBigitSize;
+
+ void EnsureCapacity(int size) {
+ if (size > kBigitCapacity) {
+ UNREACHABLE();
+ }
+ }
+ void Align(const Bignum& other);
+ void Clamp();
+ bool IsClamped() const;
+ void Zero();
+ // Requires this to have enough capacity (no tests done).
+ // Updates used_digits_ if necessary.
+ // shift_amount must be < kBigitSize.
+ void BigitsShiftLeft(int shift_amount);
+ // BigitLength includes the "hidden" digits encoded in the exponent.
+ int BigitLength() const { return used_digits_ + exponent_; }
+ Chunk BigitAt(int index) const;
+ void SubtractTimes(const Bignum& other, int factor);
+
+ Chunk bigits_buffer_[kBigitCapacity];
+ // A vector backed by bigits_buffer_. This way accesses to the array are
+ // checked for out-of-bounds errors.
+ Vector<Chunk> bigits_;
+ int used_digits_;
+ // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
+ int exponent_;
+
+ DISALLOW_COPY_AND_ASSIGN(Bignum);
+};
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_BIGNUM_H_
diff --git a/src/3rdparty/double-conversion/cached-powers.cc b/src/3rdparty/double-conversion/cached-powers.cc
new file mode 100644
index 0000000000..c676429194
--- /dev/null
+++ b/src/3rdparty/double-conversion/cached-powers.cc
@@ -0,0 +1,175 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdarg.h>
+#include <limits.h>
+#include <math.h>
+
+#include "utils.h"
+
+#include "cached-powers.h"
+
+namespace double_conversion {
+
+struct CachedPower {
+ uint64_t significand;
+ int16_t binary_exponent;
+ int16_t decimal_exponent;
+};
+
+static const CachedPower kCachedPowers[] = {
+ {UINT64_2PART_C(0xfa8fd5a0, 081c0288), -1220, -348},
+ {UINT64_2PART_C(0xbaaee17f, a23ebf76), -1193, -340},
+ {UINT64_2PART_C(0x8b16fb20, 3055ac76), -1166, -332},
+ {UINT64_2PART_C(0xcf42894a, 5dce35ea), -1140, -324},
+ {UINT64_2PART_C(0x9a6bb0aa, 55653b2d), -1113, -316},
+ {UINT64_2PART_C(0xe61acf03, 3d1a45df), -1087, -308},
+ {UINT64_2PART_C(0xab70fe17, c79ac6ca), -1060, -300},
+ {UINT64_2PART_C(0xff77b1fc, bebcdc4f), -1034, -292},
+ {UINT64_2PART_C(0xbe5691ef, 416bd60c), -1007, -284},
+ {UINT64_2PART_C(0x8dd01fad, 907ffc3c), -980, -276},
+ {UINT64_2PART_C(0xd3515c28, 31559a83), -954, -268},
+ {UINT64_2PART_C(0x9d71ac8f, ada6c9b5), -927, -260},
+ {UINT64_2PART_C(0xea9c2277, 23ee8bcb), -901, -252},
+ {UINT64_2PART_C(0xaecc4991, 4078536d), -874, -244},
+ {UINT64_2PART_C(0x823c1279, 5db6ce57), -847, -236},
+ {UINT64_2PART_C(0xc2109436, 4dfb5637), -821, -228},
+ {UINT64_2PART_C(0x9096ea6f, 3848984f), -794, -220},
+ {UINT64_2PART_C(0xd77485cb, 25823ac7), -768, -212},
+ {UINT64_2PART_C(0xa086cfcd, 97bf97f4), -741, -204},
+ {UINT64_2PART_C(0xef340a98, 172aace5), -715, -196},
+ {UINT64_2PART_C(0xb23867fb, 2a35b28e), -688, -188},
+ {UINT64_2PART_C(0x84c8d4df, d2c63f3b), -661, -180},
+ {UINT64_2PART_C(0xc5dd4427, 1ad3cdba), -635, -172},
+ {UINT64_2PART_C(0x936b9fce, bb25c996), -608, -164},
+ {UINT64_2PART_C(0xdbac6c24, 7d62a584), -582, -156},
+ {UINT64_2PART_C(0xa3ab6658, 0d5fdaf6), -555, -148},
+ {UINT64_2PART_C(0xf3e2f893, dec3f126), -529, -140},
+ {UINT64_2PART_C(0xb5b5ada8, aaff80b8), -502, -132},
+ {UINT64_2PART_C(0x87625f05, 6c7c4a8b), -475, -124},
+ {UINT64_2PART_C(0xc9bcff60, 34c13053), -449, -116},
+ {UINT64_2PART_C(0x964e858c, 91ba2655), -422, -108},
+ {UINT64_2PART_C(0xdff97724, 70297ebd), -396, -100},
+ {UINT64_2PART_C(0xa6dfbd9f, b8e5b88f), -369, -92},
+ {UINT64_2PART_C(0xf8a95fcf, 88747d94), -343, -84},
+ {UINT64_2PART_C(0xb9447093, 8fa89bcf), -316, -76},
+ {UINT64_2PART_C(0x8a08f0f8, bf0f156b), -289, -68},
+ {UINT64_2PART_C(0xcdb02555, 653131b6), -263, -60},
+ {UINT64_2PART_C(0x993fe2c6, d07b7fac), -236, -52},
+ {UINT64_2PART_C(0xe45c10c4, 2a2b3b06), -210, -44},
+ {UINT64_2PART_C(0xaa242499, 697392d3), -183, -36},
+ {UINT64_2PART_C(0xfd87b5f2, 8300ca0e), -157, -28},
+ {UINT64_2PART_C(0xbce50864, 92111aeb), -130, -20},
+ {UINT64_2PART_C(0x8cbccc09, 6f5088cc), -103, -12},
+ {UINT64_2PART_C(0xd1b71758, e219652c), -77, -4},
+ {UINT64_2PART_C(0x9c400000, 00000000), -50, 4},
+ {UINT64_2PART_C(0xe8d4a510, 00000000), -24, 12},
+ {UINT64_2PART_C(0xad78ebc5, ac620000), 3, 20},
+ {UINT64_2PART_C(0x813f3978, f8940984), 30, 28},
+ {UINT64_2PART_C(0xc097ce7b, c90715b3), 56, 36},
+ {UINT64_2PART_C(0x8f7e32ce, 7bea5c70), 83, 44},
+ {UINT64_2PART_C(0xd5d238a4, abe98068), 109, 52},
+ {UINT64_2PART_C(0x9f4f2726, 179a2245), 136, 60},
+ {UINT64_2PART_C(0xed63a231, d4c4fb27), 162, 68},
+ {UINT64_2PART_C(0xb0de6538, 8cc8ada8), 189, 76},
+ {UINT64_2PART_C(0x83c7088e, 1aab65db), 216, 84},
+ {UINT64_2PART_C(0xc45d1df9, 42711d9a), 242, 92},
+ {UINT64_2PART_C(0x924d692c, a61be758), 269, 100},
+ {UINT64_2PART_C(0xda01ee64, 1a708dea), 295, 108},
+ {UINT64_2PART_C(0xa26da399, 9aef774a), 322, 116},
+ {UINT64_2PART_C(0xf209787b, b47d6b85), 348, 124},
+ {UINT64_2PART_C(0xb454e4a1, 79dd1877), 375, 132},
+ {UINT64_2PART_C(0x865b8692, 5b9bc5c2), 402, 140},
+ {UINT64_2PART_C(0xc83553c5, c8965d3d), 428, 148},
+ {UINT64_2PART_C(0x952ab45c, fa97a0b3), 455, 156},
+ {UINT64_2PART_C(0xde469fbd, 99a05fe3), 481, 164},
+ {UINT64_2PART_C(0xa59bc234, db398c25), 508, 172},
+ {UINT64_2PART_C(0xf6c69a72, a3989f5c), 534, 180},
+ {UINT64_2PART_C(0xb7dcbf53, 54e9bece), 561, 188},
+ {UINT64_2PART_C(0x88fcf317, f22241e2), 588, 196},
+ {UINT64_2PART_C(0xcc20ce9b, d35c78a5), 614, 204},
+ {UINT64_2PART_C(0x98165af3, 7b2153df), 641, 212},
+ {UINT64_2PART_C(0xe2a0b5dc, 971f303a), 667, 220},
+ {UINT64_2PART_C(0xa8d9d153, 5ce3b396), 694, 228},
+ {UINT64_2PART_C(0xfb9b7cd9, a4a7443c), 720, 236},
+ {UINT64_2PART_C(0xbb764c4c, a7a44410), 747, 244},
+ {UINT64_2PART_C(0x8bab8eef, b6409c1a), 774, 252},
+ {UINT64_2PART_C(0xd01fef10, a657842c), 800, 260},
+ {UINT64_2PART_C(0x9b10a4e5, e9913129), 827, 268},
+ {UINT64_2PART_C(0xe7109bfb, a19c0c9d), 853, 276},
+ {UINT64_2PART_C(0xac2820d9, 623bf429), 880, 284},
+ {UINT64_2PART_C(0x80444b5e, 7aa7cf85), 907, 292},
+ {UINT64_2PART_C(0xbf21e440, 03acdd2d), 933, 300},
+ {UINT64_2PART_C(0x8e679c2f, 5e44ff8f), 960, 308},
+ {UINT64_2PART_C(0xd433179d, 9c8cb841), 986, 316},
+ {UINT64_2PART_C(0x9e19db92, b4e31ba9), 1013, 324},
+ {UINT64_2PART_C(0xeb96bf6e, badf77d9), 1039, 332},
+ {UINT64_2PART_C(0xaf87023b, 9bf0ee6b), 1066, 340},
+};
+
+static const int kCachedPowersLength = ARRAY_SIZE(kCachedPowers);
+static const int kCachedPowersOffset = 348; // -1 * the first decimal_exponent.
+static const double kD_1_LOG2_10 = 0.30102999566398114; // 1 / lg(10)
+// Difference between the decimal exponents in the table above.
+const int PowersOfTenCache::kDecimalExponentDistance = 8;
+const int PowersOfTenCache::kMinDecimalExponent = -348;
+const int PowersOfTenCache::kMaxDecimalExponent = 340;
+
+void PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
+ int min_exponent,
+ int max_exponent,
+ DiyFp* power,
+ int* decimal_exponent) {
+ int kQ = DiyFp::kSignificandSize;
+ double k = ceil((min_exponent + kQ - 1) * kD_1_LOG2_10);
+ int foo = kCachedPowersOffset;
+ int index =
+ (foo + static_cast<int>(k) - 1) / kDecimalExponentDistance + 1;
+ ASSERT(0 <= index && index < kCachedPowersLength);
+ CachedPower cached_power = kCachedPowers[index];
+ ASSERT(min_exponent <= cached_power.binary_exponent);
+ ASSERT(cached_power.binary_exponent <= max_exponent);
+ *decimal_exponent = cached_power.decimal_exponent;
+ *power = DiyFp(cached_power.significand, cached_power.binary_exponent);
+}
+
+
+void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent,
+ DiyFp* power,
+ int* found_exponent) {
+ ASSERT(kMinDecimalExponent <= requested_exponent);
+ ASSERT(requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance);
+ int index =
+ (requested_exponent + kCachedPowersOffset) / kDecimalExponentDistance;
+ CachedPower cached_power = kCachedPowers[index];
+ *power = DiyFp(cached_power.significand, cached_power.binary_exponent);
+ *found_exponent = cached_power.decimal_exponent;
+ ASSERT(*found_exponent <= requested_exponent);
+ ASSERT(requested_exponent < *found_exponent + kDecimalExponentDistance);
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/cached-powers.h b/src/3rdparty/double-conversion/cached-powers.h
new file mode 100644
index 0000000000..61a50614cf
--- /dev/null
+++ b/src/3rdparty/double-conversion/cached-powers.h
@@ -0,0 +1,64 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_CACHED_POWERS_H_
+#define DOUBLE_CONVERSION_CACHED_POWERS_H_
+
+#include "diy-fp.h"
+
+namespace double_conversion {
+
+class PowersOfTenCache {
+ public:
+
+ // Not all powers of ten are cached. The decimal exponent of two neighboring
+ // cached numbers will differ by kDecimalExponentDistance.
+ static const int kDecimalExponentDistance;
+
+ static const int kMinDecimalExponent;
+ static const int kMaxDecimalExponent;
+
+ // Returns a cached power-of-ten with a binary exponent in the range
+ // [min_exponent; max_exponent] (boundaries included).
+ static void GetCachedPowerForBinaryExponentRange(int min_exponent,
+ int max_exponent,
+ DiyFp* power,
+ int* decimal_exponent);
+
+ // Returns a cached power of ten x ~= 10^k such that
+ // k <= decimal_exponent < k + kCachedPowersDecimalDistance.
+ // The given decimal_exponent must satisfy
+ // kMinDecimalExponent <= requested_exponent, and
+ // requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance.
+ static void GetCachedPowerForDecimalExponent(int requested_exponent,
+ DiyFp* power,
+ int* found_exponent);
+};
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_CACHED_POWERS_H_
diff --git a/src/3rdparty/double-conversion/diy-fp.cc b/src/3rdparty/double-conversion/diy-fp.cc
new file mode 100644
index 0000000000..ddd1891b16
--- /dev/null
+++ b/src/3rdparty/double-conversion/diy-fp.cc
@@ -0,0 +1,57 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+#include "diy-fp.h"
+#include "utils.h"
+
+namespace double_conversion {
+
+void DiyFp::Multiply(const DiyFp& other) {
+ // Simply "emulates" a 128 bit multiplication.
+ // However: the resulting number only contains 64 bits. The least
+ // significant 64 bits are only used for rounding the most significant 64
+ // bits.
+ const uint64_t kM32 = 0xFFFFFFFFU;
+ uint64_t a = f_ >> 32;
+ uint64_t b = f_ & kM32;
+ uint64_t c = other.f_ >> 32;
+ uint64_t d = other.f_ & kM32;
+ uint64_t ac = a * c;
+ uint64_t bc = b * c;
+ uint64_t ad = a * d;
+ uint64_t bd = b * d;
+ uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32);
+ // By adding 1U << 31 to tmp we round the final result.
+ // Halfway cases will be round up.
+ tmp += 1U << 31;
+ uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
+ e_ += other.e_ + 64;
+ f_ = result_f;
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/diy-fp.h b/src/3rdparty/double-conversion/diy-fp.h
new file mode 100644
index 0000000000..9dcf8fbdba
--- /dev/null
+++ b/src/3rdparty/double-conversion/diy-fp.h
@@ -0,0 +1,118 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_DIY_FP_H_
+#define DOUBLE_CONVERSION_DIY_FP_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+// This "Do It Yourself Floating Point" class implements a floating-point number
+// with a uint64 significand and an int exponent. Normalized DiyFp numbers will
+// have the most significant bit of the significand set.
+// Multiplication and Subtraction do not normalize their results.
+// DiyFp are not designed to contain special doubles (NaN and Infinity).
+class DiyFp {
+ public:
+ static const int kSignificandSize = 64;
+
+ DiyFp() : f_(0), e_(0) {}
+ DiyFp(uint64_t f, int e) : f_(f), e_(e) {}
+
+ // this = this - other.
+ // The exponents of both numbers must be the same and the significand of this
+ // must be bigger than the significand of other.
+ // The result will not be normalized.
+ void Subtract(const DiyFp& other) {
+ ASSERT(e_ == other.e_);
+ ASSERT(f_ >= other.f_);
+ f_ -= other.f_;
+ }
+
+ // Returns a - b.
+ // The exponents of both numbers must be the same and this must be bigger
+ // than other. The result will not be normalized.
+ static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
+ DiyFp result = a;
+ result.Subtract(b);
+ return result;
+ }
+
+
+ // this = this * other.
+ void Multiply(const DiyFp& other);
+
+ // returns a * b;
+ static DiyFp Times(const DiyFp& a, const DiyFp& b) {
+ DiyFp result = a;
+ result.Multiply(b);
+ return result;
+ }
+
+ void Normalize() {
+ ASSERT(f_ != 0);
+ uint64_t f = f_;
+ int e = e_;
+
+ // This method is mainly called for normalizing boundaries. In general
+ // boundaries need to be shifted by 10 bits. We thus optimize for this case.
+ const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000);
+ while ((f & k10MSBits) == 0) {
+ f <<= 10;
+ e -= 10;
+ }
+ while ((f & kUint64MSB) == 0) {
+ f <<= 1;
+ e--;
+ }
+ f_ = f;
+ e_ = e;
+ }
+
+ static DiyFp Normalize(const DiyFp& a) {
+ DiyFp result = a;
+ result.Normalize();
+ return result;
+ }
+
+ uint64_t f() const { return f_; }
+ int e() const { return e_; }
+
+ void set_f(uint64_t new_value) { f_ = new_value; }
+ void set_e(int new_value) { e_ = new_value; }
+
+ private:
+ static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000);
+
+ uint64_t f_;
+ int e_;
+};
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_DIY_FP_H_
diff --git a/src/3rdparty/double-conversion/double-conversion.cc b/src/3rdparty/double-conversion/double-conversion.cc
new file mode 100644
index 0000000000..a79fe92d22
--- /dev/null
+++ b/src/3rdparty/double-conversion/double-conversion.cc
@@ -0,0 +1,889 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <limits.h>
+#include <math.h>
+
+#include "double-conversion.h"
+
+#include "bignum-dtoa.h"
+#include "fast-dtoa.h"
+#include "fixed-dtoa.h"
+#include "ieee.h"
+#include "strtod.h"
+#include "utils.h"
+
+namespace double_conversion {
+
+const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
+ int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
+ static DoubleToStringConverter converter(flags,
+ "Infinity",
+ "NaN",
+ 'e',
+ -6, 21,
+ 6, 0);
+ return converter;
+}
+
+
+bool DoubleToStringConverter::HandleSpecialValues(
+ double value,
+ StringBuilder* result_builder) const {
+ Double double_inspect(value);
+ if (double_inspect.IsInfinite()) {
+ if (infinity_symbol_ == NULL) return false;
+ if (value < 0) {
+ result_builder->AddCharacter('-');
+ }
+ result_builder->AddString(infinity_symbol_);
+ return true;
+ }
+ if (double_inspect.IsNan()) {
+ if (nan_symbol_ == NULL) return false;
+ result_builder->AddString(nan_symbol_);
+ return true;
+ }
+ return false;
+}
+
+
+void DoubleToStringConverter::CreateExponentialRepresentation(
+ const char* decimal_digits,
+ int length,
+ int exponent,
+ StringBuilder* result_builder) const {
+ ASSERT(length != 0);
+ result_builder->AddCharacter(decimal_digits[0]);
+ if (length != 1) {
+ result_builder->AddCharacter('.');
+ result_builder->AddSubstring(&decimal_digits[1], length-1);
+ }
+ result_builder->AddCharacter(exponent_character_);
+ if (exponent < 0) {
+ result_builder->AddCharacter('-');
+ exponent = -exponent;
+ } else {
+ if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
+ result_builder->AddCharacter('+');
+ }
+ }
+ if (exponent == 0) {
+ result_builder->AddCharacter('0');
+ return;
+ }
+ ASSERT(exponent < 1e4);
+ const int kMaxExponentLength = 5;
+ char buffer[kMaxExponentLength + 1];
+ buffer[kMaxExponentLength] = '\0';
+ int first_char_pos = kMaxExponentLength;
+ while (exponent > 0) {
+ buffer[--first_char_pos] = '0' + (exponent % 10);
+ exponent /= 10;
+ }
+ result_builder->AddSubstring(&buffer[first_char_pos],
+ kMaxExponentLength - first_char_pos);
+}
+
+
+void DoubleToStringConverter::CreateDecimalRepresentation(
+ const char* decimal_digits,
+ int length,
+ int decimal_point,
+ int digits_after_point,
+ StringBuilder* result_builder) const {
+ // Create a representation that is padded with zeros if needed.
+ if (decimal_point <= 0) {
+ // "0.00000decimal_rep".
+ result_builder->AddCharacter('0');
+ if (digits_after_point > 0) {
+ result_builder->AddCharacter('.');
+ result_builder->AddPadding('0', -decimal_point);
+ ASSERT(length <= digits_after_point - (-decimal_point));
+ result_builder->AddSubstring(decimal_digits, length);
+ int remaining_digits = digits_after_point - (-decimal_point) - length;
+ result_builder->AddPadding('0', remaining_digits);
+ }
+ } else if (decimal_point >= length) {
+ // "decimal_rep0000.00000" or "decimal_rep.0000"
+ result_builder->AddSubstring(decimal_digits, length);
+ result_builder->AddPadding('0', decimal_point - length);
+ if (digits_after_point > 0) {
+ result_builder->AddCharacter('.');
+ result_builder->AddPadding('0', digits_after_point);
+ }
+ } else {
+ // "decima.l_rep000"
+ ASSERT(digits_after_point > 0);
+ result_builder->AddSubstring(decimal_digits, decimal_point);
+ result_builder->AddCharacter('.');
+ ASSERT(length - decimal_point <= digits_after_point);
+ result_builder->AddSubstring(&decimal_digits[decimal_point],
+ length - decimal_point);
+ int remaining_digits = digits_after_point - (length - decimal_point);
+ result_builder->AddPadding('0', remaining_digits);
+ }
+ if (digits_after_point == 0) {
+ if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
+ result_builder->AddCharacter('.');
+ }
+ if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
+ result_builder->AddCharacter('0');
+ }
+ }
+}
+
+
+bool DoubleToStringConverter::ToShortestIeeeNumber(
+ double value,
+ StringBuilder* result_builder,
+ DoubleToStringConverter::DtoaMode mode) const {
+ ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE);
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ int decimal_point;
+ bool sign;
+ const int kDecimalRepCapacity = kBase10MaximalLength + 1;
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+
+ DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+
+ bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ int exponent = decimal_point - 1;
+ if ((decimal_in_shortest_low_ <= exponent) &&
+ (exponent < decimal_in_shortest_high_)) {
+ CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
+ decimal_point,
+ Max(0, decimal_rep_length - decimal_point),
+ result_builder);
+ } else {
+ CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
+ result_builder);
+ }
+ return true;
+}
+
+
+bool DoubleToStringConverter::ToFixed(double value,
+ int requested_digits,
+ StringBuilder* result_builder) const {
+ ASSERT(kMaxFixedDigitsBeforePoint == 60);
+ const double kFirstNonFixed = 1e60;
+
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
+ if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
+
+ // Find a sufficiently precise decimal representation of n.
+ int decimal_point;
+ bool sign;
+ // Add space for the '\0' byte.
+ const int kDecimalRepCapacity =
+ kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+ DoubleToAscii(value, FIXED, requested_digits,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+
+ bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
+ requested_digits, result_builder);
+ return true;
+}
+
+
+bool DoubleToStringConverter::ToExponential(
+ double value,
+ int requested_digits,
+ StringBuilder* result_builder) const {
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ if (requested_digits < -1) return false;
+ if (requested_digits > kMaxExponentialDigits) return false;
+
+ int decimal_point;
+ bool sign;
+ // Add space for digit before the decimal point and the '\0' character.
+ const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
+ ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+
+ if (requested_digits == -1) {
+ DoubleToAscii(value, SHORTEST, 0,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+ } else {
+ DoubleToAscii(value, PRECISION, requested_digits + 1,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+ ASSERT(decimal_rep_length <= requested_digits + 1);
+
+ for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
+ decimal_rep[i] = '0';
+ }
+ decimal_rep_length = requested_digits + 1;
+ }
+
+ bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ int exponent = decimal_point - 1;
+ CreateExponentialRepresentation(decimal_rep,
+ decimal_rep_length,
+ exponent,
+ result_builder);
+ return true;
+}
+
+
+bool DoubleToStringConverter::ToPrecision(double value,
+ int precision,
+ StringBuilder* result_builder) const {
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
+ return false;
+ }
+
+ // Find a sufficiently precise decimal representation of n.
+ int decimal_point;
+ bool sign;
+ // Add one for the terminating null character.
+ const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+
+ DoubleToAscii(value, PRECISION, precision,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+ ASSERT(decimal_rep_length <= precision);
+
+ bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ // The exponent if we print the number as x.xxeyyy. That is with the
+ // decimal point after the first digit.
+ int exponent = decimal_point - 1;
+
+ int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
+ if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
+ (decimal_point - precision + extra_zero >
+ max_trailing_padding_zeroes_in_precision_mode_)) {
+ // Fill buffer to contain 'precision' digits.
+ // Usually the buffer is already at the correct length, but 'DoubleToAscii'
+ // is allowed to return less characters.
+ for (int i = decimal_rep_length; i < precision; ++i) {
+ decimal_rep[i] = '0';
+ }
+
+ CreateExponentialRepresentation(decimal_rep,
+ precision,
+ exponent,
+ result_builder);
+ } else {
+ CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
+ Max(0, precision - decimal_point),
+ result_builder);
+ }
+ return true;
+}
+
+
+static BignumDtoaMode DtoaToBignumDtoaMode(
+ DoubleToStringConverter::DtoaMode dtoa_mode) {
+ switch (dtoa_mode) {
+ case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST;
+ case DoubleToStringConverter::SHORTEST_SINGLE:
+ return BIGNUM_DTOA_SHORTEST_SINGLE;
+ case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED;
+ case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
+ default:
+ UNREACHABLE();
+ return BIGNUM_DTOA_SHORTEST; // To silence compiler.
+ }
+}
+
+
+void DoubleToStringConverter::DoubleToAscii(double v,
+ DtoaMode mode,
+ int requested_digits,
+ char* buffer,
+ int buffer_length,
+ bool* sign,
+ int* length,
+ int* point) {
+ Vector<char> vector(buffer, buffer_length);
+ ASSERT(!Double(v).IsSpecial());
+ ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0);
+
+ if (Double(v).Sign() < 0) {
+ *sign = true;
+ v = -v;
+ } else {
+ *sign = false;
+ }
+
+ if (mode == PRECISION && requested_digits == 0) {
+ vector[0] = '\0';
+ *length = 0;
+ return;
+ }
+
+ if (v == 0) {
+ vector[0] = '0';
+ vector[1] = '\0';
+ *length = 1;
+ *point = 1;
+ return;
+ }
+
+ bool fast_worked;
+ switch (mode) {
+ case SHORTEST:
+ fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
+ break;
+ case SHORTEST_SINGLE:
+ fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0,
+ vector, length, point);
+ break;
+ case FIXED:
+ fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
+ break;
+ case PRECISION:
+ fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
+ vector, length, point);
+ break;
+ default:
+ UNREACHABLE();
+ fast_worked = false;
+ }
+ if (fast_worked) return;
+
+ // If the fast dtoa didn't succeed use the slower bignum version.
+ BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
+ BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
+ vector[*length] = '\0';
+}
+
+
+// Consumes the given substring from the iterator.
+// Returns false, if the substring does not match.
+static bool ConsumeSubString(const char** current,
+ const char* end,
+ const char* substring) {
+ ASSERT(**current == *substring);
+ for (substring++; *substring != '\0'; substring++) {
+ ++*current;
+ if (*current == end || **current != *substring) return false;
+ }
+ ++*current;
+ return true;
+}
+
+
+// Maximum number of significant digits in decimal representation.
+// The longest possible double in decimal representation is
+// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
+// (768 digits). If we parse a number whose first digits are equal to a
+// mean of 2 adjacent doubles (that could have up to 769 digits) the result
+// must be rounded to the bigger one unless the tail consists of zeros, so
+// we don't need to preserve all the digits.
+const int kMaxSignificantDigits = 772;
+
+
+// Returns true if a nonspace found and false if the end has reached.
+static inline bool AdvanceToNonspace(const char** current, const char* end) {
+ while (*current != end) {
+ if (**current != ' ') return true;
+ ++*current;
+ }
+ return false;
+}
+
+
+static bool isDigit(int x, int radix) {
+ return (x >= '0' && x <= '9' && x < '0' + radix)
+ || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
+ || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
+}
+
+
+static double SignedZero(bool sign) {
+ return sign ? -0.0 : 0.0;
+}
+
+
+// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
+template <int radix_log_2>
+static double RadixStringToIeee(const char* current,
+ const char* end,
+ bool sign,
+ bool allow_trailing_junk,
+ double junk_string_value,
+ bool read_as_double,
+ const char** trailing_pointer) {
+ ASSERT(current != end);
+
+ const int kDoubleSize = Double::kSignificandSize;
+ const int kSingleSize = Single::kSignificandSize;
+ const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
+
+ // Skip leading 0s.
+ while (*current == '0') {
+ ++current;
+ if (current == end) {
+ *trailing_pointer = end;
+ return SignedZero(sign);
+ }
+ }
+
+ int64_t number = 0;
+ int exponent = 0;
+ const int radix = (1 << radix_log_2);
+
+ do {
+ int digit;
+ if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
+ digit = static_cast<char>(*current) - '0';
+ } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
+ digit = static_cast<char>(*current) - 'a' + 10;
+ } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
+ digit = static_cast<char>(*current) - 'A' + 10;
+ } else {
+ if (allow_trailing_junk || !AdvanceToNonspace(&current, end)) {
+ break;
+ } else {
+ return junk_string_value;
+ }
+ }
+
+ number = number * radix + digit;
+ int overflow = static_cast<int>(number >> kSignificandSize);
+ if (overflow != 0) {
+ // Overflow occurred. Need to determine which direction to round the
+ // result.
+ int overflow_bits_count = 1;
+ while (overflow > 1) {
+ overflow_bits_count++;
+ overflow >>= 1;
+ }
+
+ int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
+ int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
+ number >>= overflow_bits_count;
+ exponent = overflow_bits_count;
+
+ bool zero_tail = true;
+ while (true) {
+ ++current;
+ if (current == end || !isDigit(*current, radix)) break;
+ zero_tail = zero_tail && *current == '0';
+ exponent += radix_log_2;
+ }
+
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value;
+ }
+
+ int middle_value = (1 << (overflow_bits_count - 1));
+ if (dropped_bits > middle_value) {
+ number++; // Rounding up.
+ } else if (dropped_bits == middle_value) {
+ // Rounding to even to consistency with decimals: half-way case rounds
+ // up if significant part is odd and down otherwise.
+ if ((number & 1) != 0 || !zero_tail) {
+ number++; // Rounding up.
+ }
+ }
+
+ // Rounding up may cause overflow.
+ if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
+ exponent++;
+ number >>= 1;
+ }
+ break;
+ }
+ ++current;
+ } while (current != end);
+
+ ASSERT(number < ((int64_t)1 << kSignificandSize));
+ ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
+
+ *trailing_pointer = current;
+
+ if (exponent == 0) {
+ if (sign) {
+ if (number == 0) return -0.0;
+ number = -number;
+ }
+ return static_cast<double>(number);
+ }
+
+ ASSERT(number != 0);
+ return Double(DiyFp(number, exponent)).value();
+}
+
+
+double StringToDoubleConverter::StringToIeee(
+ const char* input,
+ int length,
+ int* processed_characters_count,
+ bool read_as_double) {
+ const char* current = input;
+ const char* end = input + length;
+
+ *processed_characters_count = 0;
+
+ const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
+ const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
+ const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
+ const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
+
+ // To make sure that iterator dereferencing is valid the following
+ // convention is used:
+ // 1. Each '++current' statement is followed by check for equality to 'end'.
+ // 2. If AdvanceToNonspace returned false then current == end.
+ // 3. If 'current' becomes equal to 'end' the function returns or goes to
+ // 'parsing_done'.
+ // 4. 'current' is not dereferenced after the 'parsing_done' label.
+ // 5. Code before 'parsing_done' may rely on 'current != end'.
+ if (current == end) return empty_string_value_;
+
+ if (allow_leading_spaces || allow_trailing_spaces) {
+ if (!AdvanceToNonspace(&current, end)) {
+ *processed_characters_count = current - input;
+ return empty_string_value_;
+ }
+ if (!allow_leading_spaces && (input != current)) {
+ // No leading spaces allowed, but AdvanceToNonspace moved forward.
+ return junk_string_value_;
+ }
+ }
+
+ // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
+ const int kBufferSize = kMaxSignificantDigits + 10;
+ char buffer[kBufferSize]; // NOLINT: size is known at compile time.
+ int buffer_pos = 0;
+
+ // Exponent will be adjusted if insignificant digits of the integer part
+ // or insignificant leading zeros of the fractional part are dropped.
+ int exponent = 0;
+ int significant_digits = 0;
+ int insignificant_digits = 0;
+ bool nonzero_digit_dropped = false;
+
+ bool sign = false;
+
+ if (*current == '+' || *current == '-') {
+ sign = (*current == '-');
+ ++current;
+ const char* next_non_space = current;
+ // Skip following spaces (if allowed).
+ if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
+ if (!allow_spaces_after_sign && (current != next_non_space)) {
+ return junk_string_value_;
+ }
+ current = next_non_space;
+ }
+
+ if (infinity_symbol_ != NULL) {
+ if (*current == infinity_symbol_[0]) {
+ if (!ConsumeSubString(&current, end, infinity_symbol_)) {
+ return junk_string_value_;
+ }
+
+ if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+ return junk_string_value_;
+ }
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value_;
+ }
+
+ ASSERT(buffer_pos == 0);
+ *processed_characters_count = current - input;
+ return sign ? -Double::Infinity() : Double::Infinity();
+ }
+ }
+
+ if (nan_symbol_ != NULL) {
+ if (*current == nan_symbol_[0]) {
+ if (!ConsumeSubString(&current, end, nan_symbol_)) {
+ return junk_string_value_;
+ }
+
+ if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+ return junk_string_value_;
+ }
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value_;
+ }
+
+ ASSERT(buffer_pos == 0);
+ *processed_characters_count = current - input;
+ return sign ? -Double::NaN() : Double::NaN();
+ }
+ }
+
+ bool leading_zero = false;
+ if (*current == '0') {
+ ++current;
+ if (current == end) {
+ *processed_characters_count = current - input;
+ return SignedZero(sign);
+ }
+
+ leading_zero = true;
+
+ // It could be hexadecimal value.
+ if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
+ ++current;
+ if (current == end || !isDigit(*current, 16)) {
+ return junk_string_value_; // "0x".
+ }
+
+ const char* tail_pointer = NULL;
+ double result = RadixStringToIeee<4>(current,
+ end,
+ sign,
+ allow_trailing_junk,
+ junk_string_value_,
+ read_as_double,
+ &tail_pointer);
+ if (tail_pointer != NULL) {
+ if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end);
+ *processed_characters_count = tail_pointer - input;
+ }
+ return result;
+ }
+
+ // Ignore leading zeros in the integer part.
+ while (*current == '0') {
+ ++current;
+ if (current == end) {
+ *processed_characters_count = current - input;
+ return SignedZero(sign);
+ }
+ }
+ }
+
+ bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
+
+ // Copy significant digits of the integer part (if any) to the buffer.
+ while (*current >= '0' && *current <= '9') {
+ if (significant_digits < kMaxSignificantDigits) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ significant_digits++;
+ // Will later check if it's an octal in the buffer.
+ } else {
+ insignificant_digits++; // Move the digit into the exponential part.
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+ }
+ octal = octal && *current < '8';
+ ++current;
+ if (current == end) goto parsing_done;
+ }
+
+ if (significant_digits == 0) {
+ octal = false;
+ }
+
+ if (*current == '.') {
+ if (octal && !allow_trailing_junk) return junk_string_value_;
+ if (octal) goto parsing_done;
+
+ ++current;
+ if (current == end) {
+ if (significant_digits == 0 && !leading_zero) {
+ return junk_string_value_;
+ } else {
+ goto parsing_done;
+ }
+ }
+
+ if (significant_digits == 0) {
+ // octal = false;
+ // Integer part consists of 0 or is absent. Significant digits start after
+ // leading zeros (if any).
+ while (*current == '0') {
+ ++current;
+ if (current == end) {
+ *processed_characters_count = current - input;
+ return SignedZero(sign);
+ }
+ exponent--; // Move this 0 into the exponent.
+ }
+ }
+
+ // There is a fractional part.
+ // We don't emit a '.', but adjust the exponent instead.
+ while (*current >= '0' && *current <= '9') {
+ if (significant_digits < kMaxSignificantDigits) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ significant_digits++;
+ exponent--;
+ } else {
+ // Ignore insignificant digits in the fractional part.
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+ }
+ ++current;
+ if (current == end) goto parsing_done;
+ }
+ }
+
+ if (!leading_zero && exponent == 0 && significant_digits == 0) {
+ // If leading_zeros is true then the string contains zeros.
+ // If exponent < 0 then string was [+-]\.0*...
+ // If significant_digits != 0 the string is not equal to 0.
+ // Otherwise there are no digits in the string.
+ return junk_string_value_;
+ }
+
+ // Parse exponential part.
+ if (*current == 'e' || *current == 'E') {
+ if (octal && !allow_trailing_junk) return junk_string_value_;
+ if (octal) goto parsing_done;
+ ++current;
+ if (current == end) {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return junk_string_value_;
+ }
+ }
+ char sign = '+';
+ if (*current == '+' || *current == '-') {
+ sign = static_cast<char>(*current);
+ ++current;
+ if (current == end) {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return junk_string_value_;
+ }
+ }
+ }
+
+ if (current == end || *current < '0' || *current > '9') {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return junk_string_value_;
+ }
+ }
+
+ const int max_exponent = INT_MAX / 2;
+ ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
+ int num = 0;
+ do {
+ // Check overflow.
+ int digit = *current - '0';
+ if (num >= max_exponent / 10
+ && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
+ num = max_exponent;
+ } else {
+ num = num * 10 + digit;
+ }
+ ++current;
+ } while (current != end && *current >= '0' && *current <= '9');
+
+ exponent += (sign == '-' ? -num : num);
+ }
+
+ if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+ return junk_string_value_;
+ }
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value_;
+ }
+ if (allow_trailing_spaces) {
+ AdvanceToNonspace(&current, end);
+ }
+
+ parsing_done:
+ exponent += insignificant_digits;
+
+ if (octal) {
+ double result;
+ const char* tail_pointer = NULL;
+ result = RadixStringToIeee<3>(buffer,
+ buffer + buffer_pos,
+ sign,
+ allow_trailing_junk,
+ junk_string_value_,
+ read_as_double,
+ &tail_pointer);
+ ASSERT(tail_pointer != NULL);
+ *processed_characters_count = current - input;
+ return result;
+ }
+
+ if (nonzero_digit_dropped) {
+ buffer[buffer_pos++] = '1';
+ exponent--;
+ }
+
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos] = '\0';
+
+ double converted;
+ if (read_as_double) {
+ converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
+ } else {
+ converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
+ }
+ *processed_characters_count = current - input;
+ return sign? -converted: converted;
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/double-conversion.h b/src/3rdparty/double-conversion/double-conversion.h
new file mode 100644
index 0000000000..f98edae75a
--- /dev/null
+++ b/src/3rdparty/double-conversion/double-conversion.h
@@ -0,0 +1,536 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
+#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+class DoubleToStringConverter {
+ public:
+ // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
+ // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
+ // function returns false.
+ static const int kMaxFixedDigitsBeforePoint = 60;
+ static const int kMaxFixedDigitsAfterPoint = 60;
+
+ // When calling ToExponential with a requested_digits
+ // parameter > kMaxExponentialDigits then the function returns false.
+ static const int kMaxExponentialDigits = 120;
+
+ // When calling ToPrecision with a requested_digits
+ // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
+ // then the function returns false.
+ static const int kMinPrecisionDigits = 1;
+ static const int kMaxPrecisionDigits = 120;
+
+ enum Flags {
+ NO_FLAGS = 0,
+ EMIT_POSITIVE_EXPONENT_SIGN = 1,
+ EMIT_TRAILING_DECIMAL_POINT = 2,
+ EMIT_TRAILING_ZERO_AFTER_POINT = 4,
+ UNIQUE_ZERO = 8
+ };
+
+ // Flags should be a bit-or combination of the possible Flags-enum.
+ // - NO_FLAGS: no special flags.
+ // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
+ // form, emits a '+' for positive exponents. Example: 1.2e+2.
+ // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
+ // converted into decimal format then a trailing decimal point is appended.
+ // Example: 2345.0 is converted to "2345.".
+ // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
+ // emits a trailing '0'-character. This flag requires the
+ // EXMIT_TRAILING_DECIMAL_POINT flag.
+ // Example: 2345.0 is converted to "2345.0".
+ // - UNIQUE_ZERO: "-0.0" is converted to "0.0".
+ //
+ // Infinity symbol and nan_symbol provide the string representation for these
+ // special values. If the string is NULL and the special value is encountered
+ // then the conversion functions return false.
+ //
+ // The exponent_character is used in exponential representations. It is
+ // usually 'e' or 'E'.
+ //
+ // When converting to the shortest representation the converter will
+ // represent input numbers in decimal format if they are in the interval
+ // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
+ // (lower boundary included, greater boundary excluded).
+ // Example: with decimal_in_shortest_low = -6 and
+ // decimal_in_shortest_high = 21:
+ // ToShortest(0.000001) -> "0.000001"
+ // ToShortest(0.0000001) -> "1e-7"
+ // ToShortest(111111111111111111111.0) -> "111111111111111110000"
+ // ToShortest(100000000000000000000.0) -> "100000000000000000000"
+ // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
+ //
+ // When converting to precision mode the converter may add
+ // max_leading_padding_zeroes before returning the number in exponential
+ // format.
+ // Example with max_leading_padding_zeroes_in_precision_mode = 6.
+ // ToPrecision(0.0000012345, 2) -> "0.0000012"
+ // ToPrecision(0.00000012345, 2) -> "1.2e-7"
+ // Similarily the converter may add up to
+ // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
+ // returning an exponential representation. A zero added by the
+ // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
+ // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
+ // ToPrecision(230.0, 2) -> "230"
+ // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
+ // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
+ DoubleToStringConverter(int flags,
+ const char* infinity_symbol,
+ const char* nan_symbol,
+ char exponent_character,
+ int decimal_in_shortest_low,
+ int decimal_in_shortest_high,
+ int max_leading_padding_zeroes_in_precision_mode,
+ int max_trailing_padding_zeroes_in_precision_mode)
+ : flags_(flags),
+ infinity_symbol_(infinity_symbol),
+ nan_symbol_(nan_symbol),
+ exponent_character_(exponent_character),
+ decimal_in_shortest_low_(decimal_in_shortest_low),
+ decimal_in_shortest_high_(decimal_in_shortest_high),
+ max_leading_padding_zeroes_in_precision_mode_(
+ max_leading_padding_zeroes_in_precision_mode),
+ max_trailing_padding_zeroes_in_precision_mode_(
+ max_trailing_padding_zeroes_in_precision_mode) {
+ // When 'trailing zero after the point' is set, then 'trailing point'
+ // must be set too.
+ ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
+ !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
+ }
+
+ // Returns a converter following the EcmaScript specification.
+ static const DoubleToStringConverter& EcmaScriptConverter();
+
+ // Computes the shortest string of digits that correctly represent the input
+ // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
+ // (see constructor) it then either returns a decimal representation, or an
+ // exponential representation.
+ // Example with decimal_in_shortest_low = -6,
+ // decimal_in_shortest_high = 21,
+ // EMIT_POSITIVE_EXPONENT_SIGN activated, and
+ // EMIT_TRAILING_DECIMAL_POINT deactived:
+ // ToShortest(0.000001) -> "0.000001"
+ // ToShortest(0.0000001) -> "1e-7"
+ // ToShortest(111111111111111111111.0) -> "111111111111111110000"
+ // ToShortest(100000000000000000000.0) -> "100000000000000000000"
+ // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
+ //
+ // Note: the conversion may round the output if the returned string
+ // is accurate enough to uniquely identify the input-number.
+ // For example the most precise representation of the double 9e59 equals
+ // "899999999999999918767229449717619953810131273674690656206848", but
+ // the converter will return the shorter (but still correct) "9e59".
+ //
+ // Returns true if the conversion succeeds. The conversion always succeeds
+ // except when the input value is special and no infinity_symbol or
+ // nan_symbol has been given to the constructor.
+ bool ToShortest(double value, StringBuilder* result_builder) const {
+ return ToShortestIeeeNumber(value, result_builder, SHORTEST);
+ }
+
+ // Same as ToShortest, but for single-precision floats.
+ bool ToShortestSingle(float value, StringBuilder* result_builder) const {
+ return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
+ }
+
+
+ // Computes a decimal representation with a fixed number of digits after the
+ // decimal point. The last emitted digit is rounded.
+ //
+ // Examples:
+ // ToFixed(3.12, 1) -> "3.1"
+ // ToFixed(3.1415, 3) -> "3.142"
+ // ToFixed(1234.56789, 4) -> "1234.5679"
+ // ToFixed(1.23, 5) -> "1.23000"
+ // ToFixed(0.1, 4) -> "0.1000"
+ // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
+ // ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
+ // ToFixed(0.1, 17) -> "0.10000000000000001"
+ //
+ // If requested_digits equals 0, then the tail of the result depends on
+ // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
+ // Examples, for requested_digits == 0,
+ // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
+ // - false and false: then 123.45 -> 123
+ // 0.678 -> 1
+ // - true and false: then 123.45 -> 123.
+ // 0.678 -> 1.
+ // - true and true: then 123.45 -> 123.0
+ // 0.678 -> 1.0
+ //
+ // Returns true if the conversion succeeds. The conversion always succeeds
+ // except for the following cases:
+ // - the input value is special and no infinity_symbol or nan_symbol has
+ // been provided to the constructor,
+ // - 'value' > 10^kMaxFixedDigitsBeforePoint, or
+ // - 'requested_digits' > kMaxFixedDigitsAfterPoint.
+ // The last two conditions imply that the result will never contain more than
+ // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
+ // (one additional character for the sign, and one for the decimal point).
+ bool ToFixed(double value,
+ int requested_digits,
+ StringBuilder* result_builder) const;
+
+ // Computes a representation in exponential format with requested_digits
+ // after the decimal point. The last emitted digit is rounded.
+ // If requested_digits equals -1, then the shortest exponential representation
+ // is computed.
+ //
+ // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
+ // exponent_character set to 'e'.
+ // ToExponential(3.12, 1) -> "3.1e0"
+ // ToExponential(5.0, 3) -> "5.000e0"
+ // ToExponential(0.001, 2) -> "1.00e-3"
+ // ToExponential(3.1415, -1) -> "3.1415e0"
+ // ToExponential(3.1415, 4) -> "3.1415e0"
+ // ToExponential(3.1415, 3) -> "3.142e0"
+ // ToExponential(123456789000000, 3) -> "1.235e14"
+ // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
+ // ToExponential(1000000000000000019884624838656.0, 32) ->
+ // "1.00000000000000001988462483865600e30"
+ // ToExponential(1234, 0) -> "1e3"
+ //
+ // Returns true if the conversion succeeds. The conversion always succeeds
+ // except for the following cases:
+ // - the input value is special and no infinity_symbol or nan_symbol has
+ // been provided to the constructor,
+ // - 'requested_digits' > kMaxExponentialDigits.
+ // The last condition implies that the result will never contain more than
+ // kMaxExponentialDigits + 8 characters (the sign, the digit before the
+ // decimal point, the decimal point, the exponent character, the
+ // exponent's sign, and at most 3 exponent digits).
+ bool ToExponential(double value,
+ int requested_digits,
+ StringBuilder* result_builder) const;
+
+ // Computes 'precision' leading digits of the given 'value' and returns them
+ // either in exponential or decimal format, depending on
+ // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
+ // constructor).
+ // The last computed digit is rounded.
+ //
+ // Example with max_leading_padding_zeroes_in_precision_mode = 6.
+ // ToPrecision(0.0000012345, 2) -> "0.0000012"
+ // ToPrecision(0.00000012345, 2) -> "1.2e-7"
+ // Similarily the converter may add up to
+ // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
+ // returning an exponential representation. A zero added by the
+ // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
+ // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
+ // ToPrecision(230.0, 2) -> "230"
+ // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
+ // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
+ // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
+ // EMIT_TRAILING_ZERO_AFTER_POINT:
+ // ToPrecision(123450.0, 6) -> "123450"
+ // ToPrecision(123450.0, 5) -> "123450"
+ // ToPrecision(123450.0, 4) -> "123500"
+ // ToPrecision(123450.0, 3) -> "123000"
+ // ToPrecision(123450.0, 2) -> "1.2e5"
+ //
+ // Returns true if the conversion succeeds. The conversion always succeeds
+ // except for the following cases:
+ // - the input value is special and no infinity_symbol or nan_symbol has
+ // been provided to the constructor,
+ // - precision < kMinPericisionDigits
+ // - precision > kMaxPrecisionDigits
+ // The last condition implies that the result will never contain more than
+ // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
+ // exponent character, the exponent's sign, and at most 3 exponent digits).
+ bool ToPrecision(double value,
+ int precision,
+ StringBuilder* result_builder) const;
+
+ enum DtoaMode {
+ // Produce the shortest correct representation.
+ // For example the output of 0.299999999999999988897 is (the less accurate
+ // but correct) 0.3.
+ SHORTEST,
+ // Same as SHORTEST, but for single-precision floats.
+ SHORTEST_SINGLE,
+ // Produce a fixed number of digits after the decimal point.
+ // For instance fixed(0.1, 4) becomes 0.1000
+ // If the input number is big, the output will be big.
+ FIXED,
+ // Fixed number of digits (independent of the decimal point).
+ PRECISION
+ };
+
+ // The maximal number of digits that are needed to emit a double in base 10.
+ // A higher precision can be achieved by using more digits, but the shortest
+ // accurate representation of any double will never use more digits than
+ // kBase10MaximalLength.
+ // Note that DoubleToAscii null-terminates its input. So the given buffer
+ // should be at least kBase10MaximalLength + 1 characters long.
+ static const int kBase10MaximalLength = 17;
+
+ // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
+ // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
+ // after it has been casted to a single-precision float. That is, in this
+ // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
+ //
+ // The result should be interpreted as buffer * 10^(point-length).
+ //
+ // The output depends on the given mode:
+ // - SHORTEST: produce the least amount of digits for which the internal
+ // identity requirement is still satisfied. If the digits are printed
+ // (together with the correct exponent) then reading this number will give
+ // 'v' again. The buffer will choose the representation that is closest to
+ // 'v'. If there are two at the same distance, than the one farther away
+ // from 0 is chosen (halfway cases - ending with 5 - are rounded up).
+ // In this mode the 'requested_digits' parameter is ignored.
+ // - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
+ // - FIXED: produces digits necessary to print a given number with
+ // 'requested_digits' digits after the decimal point. The produced digits
+ // might be too short in which case the caller has to fill the remainder
+ // with '0's.
+ // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
+ // Halfway cases are rounded towards +/-Infinity (away from 0). The call
+ // toFixed(0.15, 2) thus returns buffer="2", point=0.
+ // The returned buffer may contain digits that would be truncated from the
+ // shortest representation of the input.
+ // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
+ // Even though the length of produced digits usually equals
+ // 'requested_digits', the function is allowed to return fewer digits, in
+ // which case the caller has to fill the missing digits with '0's.
+ // Halfway cases are again rounded away from 0.
+ // DoubleToAscii expects the given buffer to be big enough to hold all
+ // digits and a terminating null-character. In SHORTEST-mode it expects a
+ // buffer of at least kBase10MaximalLength + 1. In all other modes the
+ // requested_digits parameter and the padding-zeroes limit the size of the
+ // output. Don't forget the decimal point, the exponent character and the
+ // terminating null-character when computing the maximal output size.
+ // The given length is only used in debug mode to ensure the buffer is big
+ // enough.
+ static void DoubleToAscii(double v,
+ DtoaMode mode,
+ int requested_digits,
+ char* buffer,
+ int buffer_length,
+ bool* sign,
+ int* length,
+ int* point);
+
+ private:
+ // Implementation for ToShortest and ToShortestSingle.
+ bool ToShortestIeeeNumber(double value,
+ StringBuilder* result_builder,
+ DtoaMode mode) const;
+
+ // If the value is a special value (NaN or Infinity) constructs the
+ // corresponding string using the configured infinity/nan-symbol.
+ // If either of them is NULL or the value is not special then the
+ // function returns false.
+ bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
+ // Constructs an exponential representation (i.e. 1.234e56).
+ // The given exponent assumes a decimal point after the first decimal digit.
+ void CreateExponentialRepresentation(const char* decimal_digits,
+ int length,
+ int exponent,
+ StringBuilder* result_builder) const;
+ // Creates a decimal representation (i.e 1234.5678).
+ void CreateDecimalRepresentation(const char* decimal_digits,
+ int length,
+ int decimal_point,
+ int digits_after_point,
+ StringBuilder* result_builder) const;
+
+ const int flags_;
+ const char* const infinity_symbol_;
+ const char* const nan_symbol_;
+ const char exponent_character_;
+ const int decimal_in_shortest_low_;
+ const int decimal_in_shortest_high_;
+ const int max_leading_padding_zeroes_in_precision_mode_;
+ const int max_trailing_padding_zeroes_in_precision_mode_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
+};
+
+
+class StringToDoubleConverter {
+ public:
+ // Enumeration for allowing octals and ignoring junk when converting
+ // strings to numbers.
+ enum Flags {
+ NO_FLAGS = 0,
+ ALLOW_HEX = 1,
+ ALLOW_OCTALS = 2,
+ ALLOW_TRAILING_JUNK = 4,
+ ALLOW_LEADING_SPACES = 8,
+ ALLOW_TRAILING_SPACES = 16,
+ ALLOW_SPACES_AFTER_SIGN = 32
+ };
+
+ // Flags should be a bit-or combination of the possible Flags-enum.
+ // - NO_FLAGS: no special flags.
+ // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
+ // Ex: StringToDouble("0x1234") -> 4660.0
+ // In StringToDouble("0x1234.56") the characters ".56" are trailing
+ // junk. The result of the call is hence dependent on
+ // the ALLOW_TRAILING_JUNK flag and/or the junk value.
+ // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
+ // the string will not be parsed as "0" followed by junk.
+ //
+ // - ALLOW_OCTALS: recognizes the prefix "0" for octals:
+ // If a sequence of octal digits starts with '0', then the number is
+ // read as octal integer. Octal numbers may only be integers.
+ // Ex: StringToDouble("01234") -> 668.0
+ // StringToDouble("012349") -> 12349.0 // Not a sequence of octal
+ // // digits.
+ // In StringToDouble("01234.56") the characters ".56" are trailing
+ // junk. The result of the call is hence dependent on
+ // the ALLOW_TRAILING_JUNK flag and/or the junk value.
+ // In StringToDouble("01234e56") the characters "e56" are trailing
+ // junk, too.
+ // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
+ // a double literal.
+ // - ALLOW_LEADING_SPACES: skip over leading spaces.
+ // - ALLOW_TRAILING_SPACES: ignore trailing spaces.
+ // - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
+ // Ex: StringToDouble("- 123.2") -> -123.2.
+ // StringToDouble("+ 123.2") -> 123.2
+ //
+ // empty_string_value is returned when an empty string is given as input.
+ // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
+ // containing only spaces is converted to the 'empty_string_value', too.
+ //
+ // junk_string_value is returned when
+ // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
+ // part of a double-literal) is found.
+ // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
+ // double literal.
+ //
+ // infinity_symbol and nan_symbol are strings that are used to detect
+ // inputs that represent infinity and NaN. They can be null, in which case
+ // they are ignored.
+ // The conversion routine first reads any possible signs. Then it compares the
+ // following character of the input-string with the first character of
+ // the infinity, and nan-symbol. If either matches, the function assumes, that
+ // a match has been found, and expects the following input characters to match
+ // the remaining characters of the special-value symbol.
+ // This means that the following restrictions apply to special-value symbols:
+ // - they must not start with signs ('+', or '-'),
+ // - they must not have the same first character.
+ // - they must not start with digits.
+ //
+ // Examples:
+ // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
+ // empty_string_value = 0.0,
+ // junk_string_value = NaN,
+ // infinity_symbol = "infinity",
+ // nan_symbol = "nan":
+ // StringToDouble("0x1234") -> 4660.0.
+ // StringToDouble("0x1234K") -> 4660.0.
+ // StringToDouble("") -> 0.0 // empty_string_value.
+ // StringToDouble(" ") -> NaN // junk_string_value.
+ // StringToDouble(" 1") -> NaN // junk_string_value.
+ // StringToDouble("0x") -> NaN // junk_string_value.
+ // StringToDouble("-123.45") -> -123.45.
+ // StringToDouble("--123.45") -> NaN // junk_string_value.
+ // StringToDouble("123e45") -> 123e45.
+ // StringToDouble("123E45") -> 123e45.
+ // StringToDouble("123e+45") -> 123e45.
+ // StringToDouble("123E-45") -> 123e-45.
+ // StringToDouble("123e") -> 123.0 // trailing junk ignored.
+ // StringToDouble("123e-") -> 123.0 // trailing junk ignored.
+ // StringToDouble("+NaN") -> NaN // NaN string literal.
+ // StringToDouble("-infinity") -> -inf. // infinity literal.
+ // StringToDouble("Infinity") -> NaN // junk_string_value.
+ //
+ // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
+ // empty_string_value = 0.0,
+ // junk_string_value = NaN,
+ // infinity_symbol = NULL,
+ // nan_symbol = NULL:
+ // StringToDouble("0x1234") -> NaN // junk_string_value.
+ // StringToDouble("01234") -> 668.0.
+ // StringToDouble("") -> 0.0 // empty_string_value.
+ // StringToDouble(" ") -> 0.0 // empty_string_value.
+ // StringToDouble(" 1") -> 1.0
+ // StringToDouble("0x") -> NaN // junk_string_value.
+ // StringToDouble("0123e45") -> NaN // junk_string_value.
+ // StringToDouble("01239E45") -> 1239e45.
+ // StringToDouble("-infinity") -> NaN // junk_string_value.
+ // StringToDouble("NaN") -> NaN // junk_string_value.
+ StringToDoubleConverter(int flags,
+ double empty_string_value,
+ double junk_string_value,
+ const char* infinity_symbol,
+ const char* nan_symbol)
+ : flags_(flags),
+ empty_string_value_(empty_string_value),
+ junk_string_value_(junk_string_value),
+ infinity_symbol_(infinity_symbol),
+ nan_symbol_(nan_symbol) {
+ }
+
+ // Performs the conversion.
+ // The output parameter 'processed_characters_count' is set to the number
+ // of characters that have been processed to read the number.
+ // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
+ // in the 'processed_characters_count'. Trailing junk is never included.
+ double StringToDouble(const char* buffer,
+ int length,
+ int* processed_characters_count) {
+ return StringToIeee(buffer, length, processed_characters_count, true);
+ }
+
+ // Same as StringToDouble but reads a float.
+ // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
+ // due to potential double-rounding.
+ float StringToFloat(const char* buffer,
+ int length,
+ int* processed_characters_count) {
+ return static_cast<float>(StringToIeee(buffer, length,
+ processed_characters_count, false));
+ }
+
+ private:
+ const int flags_;
+ const double empty_string_value_;
+ const double junk_string_value_;
+ const char* const infinity_symbol_;
+ const char* const nan_symbol_;
+
+ double StringToIeee(const char* buffer,
+ int length,
+ int* processed_characters_count,
+ bool read_as_double);
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
+};
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
diff --git a/src/3rdparty/double-conversion/double-conversion.pri b/src/3rdparty/double-conversion/double-conversion.pri
new file mode 100644
index 0000000000..4ad5f9f7a7
--- /dev/null
+++ b/src/3rdparty/double-conversion/double-conversion.pri
@@ -0,0 +1,4 @@
+INCLUDEPATH += $$PWD
+VPATH += $$PWD
+SOURCES += $$PWD/*.cc
+HEADERS += $$PWD/*.h
diff --git a/src/3rdparty/double-conversion/fast-dtoa.cc b/src/3rdparty/double-conversion/fast-dtoa.cc
new file mode 100644
index 0000000000..1a0f823509
--- /dev/null
+++ b/src/3rdparty/double-conversion/fast-dtoa.cc
@@ -0,0 +1,664 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "fast-dtoa.h"
+
+#include "cached-powers.h"
+#include "diy-fp.h"
+#include "ieee.h"
+
+namespace double_conversion {
+
+// The minimal and maximal target exponent define the range of w's binary
+// exponent, where 'w' is the result of multiplying the input by a cached power
+// of ten.
+//
+// A different range might be chosen on a different platform, to optimize digit
+// generation, but a smaller range requires more powers of ten to be cached.
+static const int kMinimalTargetExponent = -60;
+static const int kMaximalTargetExponent = -32;
+
+
+// Adjusts the last digit of the generated number, and screens out generated
+// solutions that may be inaccurate. A solution may be inaccurate if it is
+// outside the safe interval, or if we cannot prove that it is closer to the
+// input than a neighboring representation of the same length.
+//
+// Input: * buffer containing the digits of too_high / 10^kappa
+// * the buffer's length
+// * distance_too_high_w == (too_high - w).f() * unit
+// * unsafe_interval == (too_high - too_low).f() * unit
+// * rest = (too_high - buffer * 10^kappa).f() * unit
+// * ten_kappa = 10^kappa * unit
+// * unit = the common multiplier
+// Output: returns true if the buffer is guaranteed to contain the closest
+// representable number to the input.
+// Modifies the generated digits in the buffer to approach (round towards) w.
+static bool RoundWeed(Vector<char> buffer,
+ int length,
+ uint64_t distance_too_high_w,
+ uint64_t unsafe_interval,
+ uint64_t rest,
+ uint64_t ten_kappa,
+ uint64_t unit) {
+ uint64_t small_distance = distance_too_high_w - unit;
+ uint64_t big_distance = distance_too_high_w + unit;
+ // Let w_low = too_high - big_distance, and
+ // w_high = too_high - small_distance.
+ // Note: w_low < w < w_high
+ //
+ // The real w (* unit) must lie somewhere inside the interval
+ // ]w_low; w_high[ (often written as "(w_low; w_high)")
+
+ // Basically the buffer currently contains a number in the unsafe interval
+ // ]too_low; too_high[ with too_low < w < too_high
+ //
+ // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ // ^v 1 unit ^ ^ ^ ^
+ // boundary_high --------------------- . . . .
+ // ^v 1 unit . . . .
+ // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
+ // . . ^ . .
+ // . big_distance . . .
+ // . . . . rest
+ // small_distance . . . .
+ // v . . . .
+ // w_high - - - - - - - - - - - - - - - - - - . . . .
+ // ^v 1 unit . . . .
+ // w ---------------------------------------- . . . .
+ // ^v 1 unit v . . .
+ // w_low - - - - - - - - - - - - - - - - - - - - - . . .
+ // . . v
+ // buffer --------------------------------------------------+-------+--------
+ // . .
+ // safe_interval .
+ // v .
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
+ // ^v 1 unit .
+ // boundary_low ------------------------- unsafe_interval
+ // ^v 1 unit v
+ // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ //
+ //
+ // Note that the value of buffer could lie anywhere inside the range too_low
+ // to too_high.
+ //
+ // boundary_low, boundary_high and w are approximations of the real boundaries
+ // and v (the input number). They are guaranteed to be precise up to one unit.
+ // In fact the error is guaranteed to be strictly less than one unit.
+ //
+ // Anything that lies outside the unsafe interval is guaranteed not to round
+ // to v when read again.
+ // Anything that lies inside the safe interval is guaranteed to round to v
+ // when read again.
+ // If the number inside the buffer lies inside the unsafe interval but not
+ // inside the safe interval then we simply do not know and bail out (returning
+ // false).
+ //
+ // Similarly we have to take into account the imprecision of 'w' when finding
+ // the closest representation of 'w'. If we have two potential
+ // representations, and one is closer to both w_low and w_high, then we know
+ // it is closer to the actual value v.
+ //
+ // By generating the digits of too_high we got the largest (closest to
+ // too_high) buffer that is still in the unsafe interval. In the case where
+ // w_high < buffer < too_high we try to decrement the buffer.
+ // This way the buffer approaches (rounds towards) w.
+ // There are 3 conditions that stop the decrementation process:
+ // 1) the buffer is already below w_high
+ // 2) decrementing the buffer would make it leave the unsafe interval
+ // 3) decrementing the buffer would yield a number below w_high and farther
+ // away than the current number. In other words:
+ // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
+ // Instead of using the buffer directly we use its distance to too_high.
+ // Conceptually rest ~= too_high - buffer
+ // We need to do the following tests in this order to avoid over- and
+ // underflows.
+ ASSERT(rest <= unsafe_interval);
+ while (rest < small_distance && // Negated condition 1
+ unsafe_interval - rest >= ten_kappa && // Negated condition 2
+ (rest + ten_kappa < small_distance || // buffer{-1} > w_high
+ small_distance - rest >= rest + ten_kappa - small_distance)) {
+ buffer[length - 1]--;
+ rest += ten_kappa;
+ }
+
+ // We have approached w+ as much as possible. We now test if approaching w-
+ // would require changing the buffer. If yes, then we have two possible
+ // representations close to w, but we cannot decide which one is closer.
+ if (rest < big_distance &&
+ unsafe_interval - rest >= ten_kappa &&
+ (rest + ten_kappa < big_distance ||
+ big_distance - rest > rest + ten_kappa - big_distance)) {
+ return false;
+ }
+
+ // Weeding test.
+ // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
+ // Since too_low = too_high - unsafe_interval this is equivalent to
+ // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
+ // Conceptually we have: rest ~= too_high - buffer
+ return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
+}
+
+
+// Rounds the buffer upwards if the result is closer to v by possibly adding
+// 1 to the buffer. If the precision of the calculation is not sufficient to
+// round correctly, return false.
+// The rounding might shift the whole buffer in which case the kappa is
+// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
+//
+// If 2*rest > ten_kappa then the buffer needs to be round up.
+// rest can have an error of +/- 1 unit. This function accounts for the
+// imprecision and returns false, if the rounding direction cannot be
+// unambiguously determined.
+//
+// Precondition: rest < ten_kappa.
+static bool RoundWeedCounted(Vector<char> buffer,
+ int length,
+ uint64_t rest,
+ uint64_t ten_kappa,
+ uint64_t unit,
+ int* kappa) {
+ ASSERT(rest < ten_kappa);
+ // The following tests are done in a specific order to avoid overflows. They
+ // will work correctly with any uint64 values of rest < ten_kappa and unit.
+ //
+ // If the unit is too big, then we don't know which way to round. For example
+ // a unit of 50 means that the real number lies within rest +/- 50. If
+ // 10^kappa == 40 then there is no way to tell which way to round.
+ if (unit >= ten_kappa) return false;
+ // Even if unit is just half the size of 10^kappa we are already completely
+ // lost. (And after the previous test we know that the expression will not
+ // over/underflow.)
+ if (ten_kappa - unit <= unit) return false;
+ // If 2 * (rest + unit) <= 10^kappa we can safely round down.
+ if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
+ return true;
+ }
+ // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
+ if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
+ // Increment the last digit recursively until we find a non '9' digit.
+ buffer[length - 1]++;
+ for (int i = length - 1; i > 0; --i) {
+ if (buffer[i] != '0' + 10) break;
+ buffer[i] = '0';
+ buffer[i - 1]++;
+ }
+ // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
+ // exception of the first digit all digits are now '0'. Simply switch the
+ // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
+ // the power (the kappa) is increased.
+ if (buffer[0] == '0' + 10) {
+ buffer[0] = '1';
+ (*kappa) += 1;
+ }
+ return true;
+ }
+ return false;
+}
+
+// Returns the biggest power of ten that is less than or equal to the given
+// number. We furthermore receive the maximum number of bits 'number' has.
+//
+// Returns power == 10^(exponent_plus_one-1) such that
+// power <= number < power * 10.
+// If number_bits == 0 then 0^(0-1) is returned.
+// The number of bits must be <= 32.
+// Precondition: number < (1 << (number_bits + 1)).
+
+// Inspired by the method for finding an integer log base 10 from here:
+// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
+static unsigned int const kSmallPowersOfTen[] =
+ {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
+ 1000000000};
+
+static void BiggestPowerTen(uint32_t number,
+ int number_bits,
+ uint32_t* power,
+ int* exponent_plus_one) {
+ ASSERT(number < (1u << (number_bits + 1)));
+ // 1233/4096 is approximately 1/lg(10).
+ int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
+ // We increment to skip over the first entry in the kPowersOf10 table.
+ // Note: kPowersOf10[i] == 10^(i-1).
+ exponent_plus_one_guess++;
+ // We don't have any guarantees that 2^number_bits <= number.
+ // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see
+ // number < (2^number_bits - 1), but I haven't encountered
+ // number < (2^number_bits - 2) yet.
+ while (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
+ exponent_plus_one_guess--;
+ }
+ *power = kSmallPowersOfTen[exponent_plus_one_guess];
+ *exponent_plus_one = exponent_plus_one_guess;
+}
+
+// Generates the digits of input number w.
+// w is a floating-point number (DiyFp), consisting of a significand and an
+// exponent. Its exponent is bounded by kMinimalTargetExponent and
+// kMaximalTargetExponent.
+// Hence -60 <= w.e() <= -32.
+//
+// Returns false if it fails, in which case the generated digits in the buffer
+// should not be used.
+// Preconditions:
+// * low, w and high are correct up to 1 ulp (unit in the last place). That
+// is, their error must be less than a unit of their last digits.
+// * low.e() == w.e() == high.e()
+// * low < w < high, and taking into account their error: low~ <= high~
+// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
+// Postconditions: returns false if procedure fails.
+// otherwise:
+// * buffer is not null-terminated, but len contains the number of digits.
+// * buffer contains the shortest possible decimal digit-sequence
+// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
+// correct values of low and high (without their error).
+// * if more than one decimal representation gives the minimal number of
+// decimal digits then the one closest to W (where W is the correct value
+// of w) is chosen.
+// Remark: this procedure takes into account the imprecision of its input
+// numbers. If the precision is not enough to guarantee all the postconditions
+// then false is returned. This usually happens rarely (~0.5%).
+//
+// Say, for the sake of example, that
+// w.e() == -48, and w.f() == 0x1234567890abcdef
+// w's value can be computed by w.f() * 2^w.e()
+// We can obtain w's integral digits by simply shifting w.f() by -w.e().
+// -> w's integral part is 0x1234
+// w's fractional part is therefore 0x567890abcdef.
+// Printing w's integral part is easy (simply print 0x1234 in decimal).
+// In order to print its fraction we repeatedly multiply the fraction by 10 and
+// get each digit. Example the first digit after the point would be computed by
+// (0x567890abcdef * 10) >> 48. -> 3
+// The whole thing becomes slightly more complicated because we want to stop
+// once we have enough digits. That is, once the digits inside the buffer
+// represent 'w' we can stop. Everything inside the interval low - high
+// represents w. However we have to pay attention to low, high and w's
+// imprecision.
+static bool DigitGen(DiyFp low,
+ DiyFp w,
+ DiyFp high,
+ Vector<char> buffer,
+ int* length,
+ int* kappa) {
+ ASSERT(low.e() == w.e() && w.e() == high.e());
+ ASSERT(low.f() + 1 <= high.f() - 1);
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
+ // low, w and high are imprecise, but by less than one ulp (unit in the last
+ // place).
+ // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
+ // the new numbers are outside of the interval we want the final
+ // representation to lie in.
+ // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
+ // numbers that are certain to lie in the interval. We will use this fact
+ // later on.
+ // We will now start by generating the digits within the uncertain
+ // interval. Later we will weed out representations that lie outside the safe
+ // interval and thus _might_ lie outside the correct interval.
+ uint64_t unit = 1;
+ DiyFp too_low = DiyFp(low.f() - unit, low.e());
+ DiyFp too_high = DiyFp(high.f() + unit, high.e());
+ // too_low and too_high are guaranteed to lie outside the interval we want the
+ // generated number in.
+ DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
+ // We now cut the input number into two parts: the integral digits and the
+ // fractionals. We will not write any decimal separator though, but adapt
+ // kappa instead.
+ // Reminder: we are currently computing the digits (stored inside the buffer)
+ // such that: too_low < buffer * 10^kappa < too_high
+ // We use too_high for the digit_generation and stop as soon as possible.
+ // If we stop early we effectively round down.
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
+ // Division by one is a shift.
+ uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
+ // Modulo by one is an and.
+ uint64_t fractionals = too_high.f() & (one.f() - 1);
+ uint32_t divisor;
+ int divisor_exponent_plus_one;
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
+ &divisor, &divisor_exponent_plus_one);
+ *kappa = divisor_exponent_plus_one;
+ *length = 0;
+ // Loop invariant: buffer = too_high / 10^kappa (integer division)
+ // The invariant holds for the first iteration: kappa has been initialized
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten
+ // that is smaller than integrals.
+ while (*kappa > 0) {
+ int digit = integrals / divisor;
+ buffer[*length] = '0' + digit;
+ (*length)++;
+ integrals %= divisor;
+ (*kappa)--;
+ // Note that kappa now equals the exponent of the divisor and that the
+ // invariant thus holds again.
+ uint64_t rest =
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
+ // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
+ // Reminder: unsafe_interval.e() == one.e()
+ if (rest < unsafe_interval.f()) {
+ // Rounding down (by not emitting the remaining digits) yields a number
+ // that lies within the unsafe interval.
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
+ unsafe_interval.f(), rest,
+ static_cast<uint64_t>(divisor) << -one.e(), unit);
+ }
+ divisor /= 10;
+ }
+
+ // The integrals have been generated. We are at the point of the decimal
+ // separator. In the following loop we simply multiply the remaining digits by
+ // 10 and divide by one. We just need to pay attention to multiply associated
+ // data (like the interval or 'unit'), too.
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60
+ // and thus one.e >= -60.
+ ASSERT(one.e() >= -60);
+ ASSERT(fractionals < one.f());
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
+ while (true) {
+ fractionals *= 10;
+ unit *= 10;
+ unsafe_interval.set_f(unsafe_interval.f() * 10);
+ // Integer division by one.
+ int digit = static_cast<int>(fractionals >> -one.e());
+ buffer[*length] = '0' + digit;
+ (*length)++;
+ fractionals &= one.f() - 1; // Modulo by one.
+ (*kappa)--;
+ if (fractionals < unsafe_interval.f()) {
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
+ unsafe_interval.f(), fractionals, one.f(), unit);
+ }
+ }
+}
+
+
+
+// Generates (at most) requested_digits digits of input number w.
+// w is a floating-point number (DiyFp), consisting of a significand and an
+// exponent. Its exponent is bounded by kMinimalTargetExponent and
+// kMaximalTargetExponent.
+// Hence -60 <= w.e() <= -32.
+//
+// Returns false if it fails, in which case the generated digits in the buffer
+// should not be used.
+// Preconditions:
+// * w is correct up to 1 ulp (unit in the last place). That
+// is, its error must be strictly less than a unit of its last digit.
+// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
+//
+// Postconditions: returns false if procedure fails.
+// otherwise:
+// * buffer is not null-terminated, but length contains the number of
+// digits.
+// * the representation in buffer is the most precise representation of
+// requested_digits digits.
+// * buffer contains at most requested_digits digits of w. If there are less
+// than requested_digits digits then some trailing '0's have been removed.
+// * kappa is such that
+// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
+//
+// Remark: This procedure takes into account the imprecision of its input
+// numbers. If the precision is not enough to guarantee all the postconditions
+// then false is returned. This usually happens rarely, but the failure-rate
+// increases with higher requested_digits.
+static bool DigitGenCounted(DiyFp w,
+ int requested_digits,
+ Vector<char> buffer,
+ int* length,
+ int* kappa) {
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
+ ASSERT(kMinimalTargetExponent >= -60);
+ ASSERT(kMaximalTargetExponent <= -32);
+ // w is assumed to have an error less than 1 unit. Whenever w is scaled we
+ // also scale its error.
+ uint64_t w_error = 1;
+ // We cut the input number into two parts: the integral digits and the
+ // fractional digits. We don't emit any decimal separator, but adapt kappa
+ // instead. Example: instead of writing "1.2" we put "12" into the buffer and
+ // increase kappa by 1.
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
+ // Division by one is a shift.
+ uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
+ // Modulo by one is an and.
+ uint64_t fractionals = w.f() & (one.f() - 1);
+ uint32_t divisor;
+ int divisor_exponent_plus_one;
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
+ &divisor, &divisor_exponent_plus_one);
+ *kappa = divisor_exponent_plus_one;
+ *length = 0;
+
+ // Loop invariant: buffer = w / 10^kappa (integer division)
+ // The invariant holds for the first iteration: kappa has been initialized
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten
+ // that is smaller than 'integrals'.
+ while (*kappa > 0) {
+ int digit = integrals / divisor;
+ buffer[*length] = '0' + digit;
+ (*length)++;
+ requested_digits--;
+ integrals %= divisor;
+ (*kappa)--;
+ // Note that kappa now equals the exponent of the divisor and that the
+ // invariant thus holds again.
+ if (requested_digits == 0) break;
+ divisor /= 10;
+ }
+
+ if (requested_digits == 0) {
+ uint64_t rest =
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
+ return RoundWeedCounted(buffer, *length, rest,
+ static_cast<uint64_t>(divisor) << -one.e(), w_error,
+ kappa);
+ }
+
+ // The integrals have been generated. We are at the point of the decimal
+ // separator. In the following loop we simply multiply the remaining digits by
+ // 10 and divide by one. We just need to pay attention to multiply associated
+ // data (the 'unit'), too.
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60
+ // and thus one.e >= -60.
+ ASSERT(one.e() >= -60);
+ ASSERT(fractionals < one.f());
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
+ while (requested_digits > 0 && fractionals > w_error) {
+ fractionals *= 10;
+ w_error *= 10;
+ // Integer division by one.
+ int digit = static_cast<int>(fractionals >> -one.e());
+ buffer[*length] = '0' + digit;
+ (*length)++;
+ requested_digits--;
+ fractionals &= one.f() - 1; // Modulo by one.
+ (*kappa)--;
+ }
+ if (requested_digits != 0) return false;
+ return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
+ kappa);
+}
+
+
+// Provides a decimal representation of v.
+// Returns true if it succeeds, otherwise the result cannot be trusted.
+// There will be *length digits inside the buffer (not null-terminated).
+// If the function returns true then
+// v == (double) (buffer * 10^decimal_exponent).
+// The digits in the buffer are the shortest representation possible: no
+// 0.09999999999999999 instead of 0.1. The shorter representation will even be
+// chosen even if the longer one would be closer to v.
+// The last digit will be closest to the actual v. That is, even if several
+// digits might correctly yield 'v' when read again, the closest will be
+// computed.
+static bool Grisu3(double v,
+ FastDtoaMode mode,
+ Vector<char> buffer,
+ int* length,
+ int* decimal_exponent) {
+ DiyFp w = Double(v).AsNormalizedDiyFp();
+ // boundary_minus and boundary_plus are the boundaries between v and its
+ // closest floating-point neighbors. Any number strictly between
+ // boundary_minus and boundary_plus will round to v when convert to a double.
+ // Grisu3 will never output representations that lie exactly on a boundary.
+ DiyFp boundary_minus, boundary_plus;
+ if (mode == FAST_DTOA_SHORTEST) {
+ Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
+ } else {
+ ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
+ float single_v = static_cast<float>(v);
+ Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
+ }
+ ASSERT(boundary_plus.e() == w.e());
+ DiyFp ten_mk; // Cached power of ten: 10^-k
+ int mk; // -k
+ int ten_mk_minimal_binary_exponent =
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
+ int ten_mk_maximal_binary_exponent =
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
+ ten_mk_minimal_binary_exponent,
+ ten_mk_maximal_binary_exponent,
+ &ten_mk, &mk);
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
+ DiyFp::kSignificandSize) &&
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() +
+ DiyFp::kSignificandSize));
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
+
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
+ // off by a small amount.
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
+ ASSERT(scaled_w.e() ==
+ boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
+ // In theory it would be possible to avoid some recomputations by computing
+ // the difference between w and boundary_minus/plus (a power of 2) and to
+ // compute scaled_boundary_minus/plus by subtracting/adding from
+ // scaled_w. However the code becomes much less readable and the speed
+ // enhancements are not terriffic.
+ DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
+ DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
+
+ // DigitGen will generate the digits of scaled_w. Therefore we have
+ // v == (double) (scaled_w * 10^-mk).
+ // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
+ // integer than it will be updated. For instance if scaled_w == 1.23 then
+ // the buffer will be filled with "123" und the decimal_exponent will be
+ // decreased by 2.
+ int kappa;
+ bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
+ buffer, length, &kappa);
+ *decimal_exponent = -mk + kappa;
+ return result;
+}
+
+
+// The "counted" version of grisu3 (see above) only generates requested_digits
+// number of digits. This version does not generate the shortest representation,
+// and with enough requested digits 0.1 will at some point print as 0.9999999...
+// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
+// therefore the rounding strategy for halfway cases is irrelevant.
+static bool Grisu3Counted(double v,
+ int requested_digits,
+ Vector<char> buffer,
+ int* length,
+ int* decimal_exponent) {
+ DiyFp w = Double(v).AsNormalizedDiyFp();
+ DiyFp ten_mk; // Cached power of ten: 10^-k
+ int mk; // -k
+ int ten_mk_minimal_binary_exponent =
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
+ int ten_mk_maximal_binary_exponent =
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
+ ten_mk_minimal_binary_exponent,
+ ten_mk_maximal_binary_exponent,
+ &ten_mk, &mk);
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
+ DiyFp::kSignificandSize) &&
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() +
+ DiyFp::kSignificandSize));
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
+
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
+ // off by a small amount.
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
+
+ // We now have (double) (scaled_w * 10^-mk).
+ // DigitGen will generate the first requested_digits digits of scaled_w and
+ // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
+ // will not always be exactly the same since DigitGenCounted only produces a
+ // limited number of digits.)
+ int kappa;
+ bool result = DigitGenCounted(scaled_w, requested_digits,
+ buffer, length, &kappa);
+ *decimal_exponent = -mk + kappa;
+ return result;
+}
+
+
+bool FastDtoa(double v,
+ FastDtoaMode mode,
+ int requested_digits,
+ Vector<char> buffer,
+ int* length,
+ int* decimal_point) {
+ ASSERT(v > 0);
+ ASSERT(!Double(v).IsSpecial());
+
+ bool result = false;
+ int decimal_exponent = 0;
+ switch (mode) {
+ case FAST_DTOA_SHORTEST:
+ case FAST_DTOA_SHORTEST_SINGLE:
+ result = Grisu3(v, mode, buffer, length, &decimal_exponent);
+ break;
+ case FAST_DTOA_PRECISION:
+ result = Grisu3Counted(v, requested_digits,
+ buffer, length, &decimal_exponent);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ if (result) {
+ *decimal_point = *length + decimal_exponent;
+ buffer[*length] = '\0';
+ }
+ return result;
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/fast-dtoa.h b/src/3rdparty/double-conversion/fast-dtoa.h
new file mode 100644
index 0000000000..5f1e8eee5e
--- /dev/null
+++ b/src/3rdparty/double-conversion/fast-dtoa.h
@@ -0,0 +1,88 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_FAST_DTOA_H_
+#define DOUBLE_CONVERSION_FAST_DTOA_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+enum FastDtoaMode {
+ // Computes the shortest representation of the given input. The returned
+ // result will be the most accurate number of this length. Longer
+ // representations might be more accurate.
+ FAST_DTOA_SHORTEST,
+ // Same as FAST_DTOA_SHORTEST but for single-precision floats.
+ FAST_DTOA_SHORTEST_SINGLE,
+ // Computes a representation where the precision (number of digits) is
+ // given as input. The precision is independent of the decimal point.
+ FAST_DTOA_PRECISION
+};
+
+// FastDtoa will produce at most kFastDtoaMaximalLength digits. This does not
+// include the terminating '\0' character.
+static const int kFastDtoaMaximalLength = 17;
+// Same for single-precision numbers.
+static const int kFastDtoaMaximalSingleLength = 9;
+
+// Provides a decimal representation of v.
+// The result should be interpreted as buffer * 10^(point - length).
+//
+// Precondition:
+// * v must be a strictly positive finite double.
+//
+// Returns true if it succeeds, otherwise the result can not be trusted.
+// There will be *length digits inside the buffer followed by a null terminator.
+// If the function returns true and mode equals
+// - FAST_DTOA_SHORTEST, then
+// the parameter requested_digits is ignored.
+// The result satisfies
+// v == (double) (buffer * 10^(point - length)).
+// The digits in the buffer are the shortest representation possible. E.g.
+// if 0.099999999999 and 0.1 represent the same double then "1" is returned
+// with point = 0.
+// The last digit will be closest to the actual v. That is, even if several
+// digits might correctly yield 'v' when read again, the buffer will contain
+// the one closest to v.
+// - FAST_DTOA_PRECISION, then
+// the buffer contains requested_digits digits.
+// the difference v - (buffer * 10^(point-length)) is closest to zero for
+// all possible representations of requested_digits digits.
+// If there are two values that are equally close, then FastDtoa returns
+// false.
+// For both modes the buffer must be large enough to hold the result.
+bool FastDtoa(double d,
+ FastDtoaMode mode,
+ int requested_digits,
+ Vector<char> buffer,
+ int* length,
+ int* decimal_point);
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_FAST_DTOA_H_
diff --git a/src/3rdparty/double-conversion/fixed-dtoa.cc b/src/3rdparty/double-conversion/fixed-dtoa.cc
new file mode 100644
index 0000000000..d56b1449b2
--- /dev/null
+++ b/src/3rdparty/double-conversion/fixed-dtoa.cc
@@ -0,0 +1,402 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <math.h>
+
+#include "fixed-dtoa.h"
+#include "ieee.h"
+
+namespace double_conversion {
+
+// Represents a 128bit type. This class should be replaced by a native type on
+// platforms that support 128bit integers.
+class UInt128 {
+ public:
+ UInt128() : high_bits_(0), low_bits_(0) { }
+ UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
+
+ void Multiply(uint32_t multiplicand) {
+ uint64_t accumulator;
+
+ accumulator = (low_bits_ & kMask32) * multiplicand;
+ uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
+ accumulator >>= 32;
+ accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
+ low_bits_ = (accumulator << 32) + part;
+ accumulator >>= 32;
+ accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
+ part = static_cast<uint32_t>(accumulator & kMask32);
+ accumulator >>= 32;
+ accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
+ high_bits_ = (accumulator << 32) + part;
+ ASSERT((accumulator >> 32) == 0);
+ }
+
+ void Shift(int shift_amount) {
+ ASSERT(-64 <= shift_amount && shift_amount <= 64);
+ if (shift_amount == 0) {
+ return;
+ } else if (shift_amount == -64) {
+ high_bits_ = low_bits_;
+ low_bits_ = 0;
+ } else if (shift_amount == 64) {
+ low_bits_ = high_bits_;
+ high_bits_ = 0;
+ } else if (shift_amount <= 0) {
+ high_bits_ <<= -shift_amount;
+ high_bits_ += low_bits_ >> (64 + shift_amount);
+ low_bits_ <<= -shift_amount;
+ } else {
+ low_bits_ >>= shift_amount;
+ low_bits_ += high_bits_ << (64 - shift_amount);
+ high_bits_ >>= shift_amount;
+ }
+ }
+
+ // Modifies *this to *this MOD (2^power).
+ // Returns *this DIV (2^power).
+ int DivModPowerOf2(int power) {
+ if (power >= 64) {
+ int result = static_cast<int>(high_bits_ >> (power - 64));
+ high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
+ return result;
+ } else {
+ uint64_t part_low = low_bits_ >> power;
+ uint64_t part_high = high_bits_ << (64 - power);
+ int result = static_cast<int>(part_low + part_high);
+ high_bits_ = 0;
+ low_bits_ -= part_low << power;
+ return result;
+ }
+ }
+
+ bool IsZero() const {
+ return high_bits_ == 0 && low_bits_ == 0;
+ }
+
+ int BitAt(int position) {
+ if (position >= 64) {
+ return static_cast<int>(high_bits_ >> (position - 64)) & 1;
+ } else {
+ return static_cast<int>(low_bits_ >> position) & 1;
+ }
+ }
+
+ private:
+ static const uint64_t kMask32 = 0xFFFFFFFF;
+ // Value == (high_bits_ << 64) + low_bits_
+ uint64_t high_bits_;
+ uint64_t low_bits_;
+};
+
+
+static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
+
+
+static void FillDigits32FixedLength(uint32_t number, int requested_length,
+ Vector<char> buffer, int* length) {
+ for (int i = requested_length - 1; i >= 0; --i) {
+ buffer[(*length) + i] = '0' + number % 10;
+ number /= 10;
+ }
+ *length += requested_length;
+}
+
+
+static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
+ int number_length = 0;
+ // We fill the digits in reverse order and exchange them afterwards.
+ while (number != 0) {
+ int digit = number % 10;
+ number /= 10;
+ buffer[(*length) + number_length] = '0' + digit;
+ number_length++;
+ }
+ // Exchange the digits.
+ int i = *length;
+ int j = *length + number_length - 1;
+ while (i < j) {
+ char tmp = buffer[i];
+ buffer[i] = buffer[j];
+ buffer[j] = tmp;
+ i++;
+ j--;
+ }
+ *length += number_length;
+}
+
+
+static void FillDigits64FixedLength(uint64_t number, int requested_length,
+ Vector<char> buffer, int* length) {
+ const uint32_t kTen7 = 10000000;
+ // For efficiency cut the number into 3 uint32_t parts, and print those.
+ uint32_t part2 = static_cast<uint32_t>(number % kTen7);
+ number /= kTen7;
+ uint32_t part1 = static_cast<uint32_t>(number % kTen7);
+ uint32_t part0 = static_cast<uint32_t>(number / kTen7);
+
+ FillDigits32FixedLength(part0, 3, buffer, length);
+ FillDigits32FixedLength(part1, 7, buffer, length);
+ FillDigits32FixedLength(part2, 7, buffer, length);
+}
+
+
+static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
+ const uint32_t kTen7 = 10000000;
+ // For efficiency cut the number into 3 uint32_t parts, and print those.
+ uint32_t part2 = static_cast<uint32_t>(number % kTen7);
+ number /= kTen7;
+ uint32_t part1 = static_cast<uint32_t>(number % kTen7);
+ uint32_t part0 = static_cast<uint32_t>(number / kTen7);
+
+ if (part0 != 0) {
+ FillDigits32(part0, buffer, length);
+ FillDigits32FixedLength(part1, 7, buffer, length);
+ FillDigits32FixedLength(part2, 7, buffer, length);
+ } else if (part1 != 0) {
+ FillDigits32(part1, buffer, length);
+ FillDigits32FixedLength(part2, 7, buffer, length);
+ } else {
+ FillDigits32(part2, buffer, length);
+ }
+}
+
+
+static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
+ // An empty buffer represents 0.
+ if (*length == 0) {
+ buffer[0] = '1';
+ *decimal_point = 1;
+ *length = 1;
+ return;
+ }
+ // Round the last digit until we either have a digit that was not '9' or until
+ // we reached the first digit.
+ buffer[(*length) - 1]++;
+ for (int i = (*length) - 1; i > 0; --i) {
+ if (buffer[i] != '0' + 10) {
+ return;
+ }
+ buffer[i] = '0';
+ buffer[i - 1]++;
+ }
+ // If the first digit is now '0' + 10, we would need to set it to '0' and add
+ // a '1' in front. However we reach the first digit only if all following
+ // digits had been '9' before rounding up. Now all trailing digits are '0' and
+ // we simply switch the first digit to '1' and update the decimal-point
+ // (indicating that the point is now one digit to the right).
+ if (buffer[0] == '0' + 10) {
+ buffer[0] = '1';
+ (*decimal_point)++;
+ }
+}
+
+
+// The given fractionals number represents a fixed-point number with binary
+// point at bit (-exponent).
+// Preconditions:
+// -128 <= exponent <= 0.
+// 0 <= fractionals * 2^exponent < 1
+// The buffer holds the result.
+// The function will round its result. During the rounding-process digits not
+// generated by this function might be updated, and the decimal-point variable
+// might be updated. If this function generates the digits 99 and the buffer
+// already contained "199" (thus yielding a buffer of "19999") then a
+// rounding-up will change the contents of the buffer to "20000".
+static void FillFractionals(uint64_t fractionals, int exponent,
+ int fractional_count, Vector<char> buffer,
+ int* length, int* decimal_point) {
+ ASSERT(-128 <= exponent && exponent <= 0);
+ // 'fractionals' is a fixed-point number, with binary point at bit
+ // (-exponent). Inside the function the non-converted remainder of fractionals
+ // is a fixed-point number, with binary point at bit 'point'.
+ if (-exponent <= 64) {
+ // One 64 bit number is sufficient.
+ ASSERT(fractionals >> 56 == 0);
+ int point = -exponent;
+ for (int i = 0; i < fractional_count; ++i) {
+ if (fractionals == 0) break;
+ // Instead of multiplying by 10 we multiply by 5 and adjust the point
+ // location. This way the fractionals variable will not overflow.
+ // Invariant at the beginning of the loop: fractionals < 2^point.
+ // Initially we have: point <= 64 and fractionals < 2^56
+ // After each iteration the point is decremented by one.
+ // Note that 5^3 = 125 < 128 = 2^7.
+ // Therefore three iterations of this loop will not overflow fractionals
+ // (even without the subtraction at the end of the loop body). At this
+ // time point will satisfy point <= 61 and therefore fractionals < 2^point
+ // and any further multiplication of fractionals by 5 will not overflow.
+ fractionals *= 5;
+ point--;
+ int digit = static_cast<int>(fractionals >> point);
+ buffer[*length] = '0' + digit;
+ (*length)++;
+ fractionals -= static_cast<uint64_t>(digit) << point;
+ }
+ // If the first bit after the point is set we have to round up.
+ if (((fractionals >> (point - 1)) & 1) == 1) {
+ RoundUp(buffer, length, decimal_point);
+ }
+ } else { // We need 128 bits.
+ ASSERT(64 < -exponent && -exponent <= 128);
+ UInt128 fractionals128 = UInt128(fractionals, 0);
+ fractionals128.Shift(-exponent - 64);
+ int point = 128;
+ for (int i = 0; i < fractional_count; ++i) {
+ if (fractionals128.IsZero()) break;
+ // As before: instead of multiplying by 10 we multiply by 5 and adjust the
+ // point location.
+ // This multiplication will not overflow for the same reasons as before.
+ fractionals128.Multiply(5);
+ point--;
+ int digit = fractionals128.DivModPowerOf2(point);
+ buffer[*length] = '0' + digit;
+ (*length)++;
+ }
+ if (fractionals128.BitAt(point - 1) == 1) {
+ RoundUp(buffer, length, decimal_point);
+ }
+ }
+}
+
+
+// Removes leading and trailing zeros.
+// If leading zeros are removed then the decimal point position is adjusted.
+static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
+ while (*length > 0 && buffer[(*length) - 1] == '0') {
+ (*length)--;
+ }
+ int first_non_zero = 0;
+ while (first_non_zero < *length && buffer[first_non_zero] == '0') {
+ first_non_zero++;
+ }
+ if (first_non_zero != 0) {
+ for (int i = first_non_zero; i < *length; ++i) {
+ buffer[i - first_non_zero] = buffer[i];
+ }
+ *length -= first_non_zero;
+ *decimal_point -= first_non_zero;
+ }
+}
+
+
+bool FastFixedDtoa(double v,
+ int fractional_count,
+ Vector<char> buffer,
+ int* length,
+ int* decimal_point) {
+ const uint32_t kMaxUInt32 = 0xFFFFFFFF;
+ uint64_t significand = Double(v).Significand();
+ int exponent = Double(v).Exponent();
+ // v = significand * 2^exponent (with significand a 53bit integer).
+ // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
+ // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
+ // If necessary this limit could probably be increased, but we don't need
+ // more.
+ if (exponent > 20) return false;
+ if (fractional_count > 20) return false;
+ *length = 0;
+ // At most kDoubleSignificandSize bits of the significand are non-zero.
+ // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
+ // bits: 0..11*..0xxx..53*..xx
+ if (exponent + kDoubleSignificandSize > 64) {
+ // The exponent must be > 11.
+ //
+ // We know that v = significand * 2^exponent.
+ // And the exponent > 11.
+ // We simplify the task by dividing v by 10^17.
+ // The quotient delivers the first digits, and the remainder fits into a 64
+ // bit number.
+ // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
+ const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17
+ uint64_t divisor = kFive17;
+ int divisor_power = 17;
+ uint64_t dividend = significand;
+ uint32_t quotient;
+ uint64_t remainder;
+ // Let v = f * 2^e with f == significand and e == exponent.
+ // Then need q (quotient) and r (remainder) as follows:
+ // v = q * 10^17 + r
+ // f * 2^e = q * 10^17 + r
+ // f * 2^e = q * 5^17 * 2^17 + r
+ // If e > 17 then
+ // f * 2^(e-17) = q * 5^17 + r/2^17
+ // else
+ // f = q * 5^17 * 2^(17-e) + r/2^e
+ if (exponent > divisor_power) {
+ // We only allow exponents of up to 20 and therefore (17 - e) <= 3
+ dividend <<= exponent - divisor_power;
+ quotient = static_cast<uint32_t>(dividend / divisor);
+ remainder = (dividend % divisor) << divisor_power;
+ } else {
+ divisor <<= divisor_power - exponent;
+ quotient = static_cast<uint32_t>(dividend / divisor);
+ remainder = (dividend % divisor) << exponent;
+ }
+ FillDigits32(quotient, buffer, length);
+ FillDigits64FixedLength(remainder, divisor_power, buffer, length);
+ *decimal_point = *length;
+ } else if (exponent >= 0) {
+ // 0 <= exponent <= 11
+ significand <<= exponent;
+ FillDigits64(significand, buffer, length);
+ *decimal_point = *length;
+ } else if (exponent > -kDoubleSignificandSize) {
+ // We have to cut the number.
+ uint64_t integrals = significand >> -exponent;
+ uint64_t fractionals = significand - (integrals << -exponent);
+ if (integrals > kMaxUInt32) {
+ FillDigits64(integrals, buffer, length);
+ } else {
+ FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
+ }
+ *decimal_point = *length;
+ FillFractionals(fractionals, exponent, fractional_count,
+ buffer, length, decimal_point);
+ } else if (exponent < -128) {
+ // This configuration (with at most 20 digits) means that all digits must be
+ // 0.
+ ASSERT(fractional_count <= 20);
+ buffer[0] = '\0';
+ *length = 0;
+ *decimal_point = -fractional_count;
+ } else {
+ *decimal_point = 0;
+ FillFractionals(significand, exponent, fractional_count,
+ buffer, length, decimal_point);
+ }
+ TrimZeros(buffer, length, decimal_point);
+ buffer[*length] = '\0';
+ if ((*length) == 0) {
+ // The string is empty and the decimal_point thus has no importance. Mimick
+ // Gay's dtoa and and set it to -fractional_count.
+ *decimal_point = -fractional_count;
+ }
+ return true;
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/fixed-dtoa.h b/src/3rdparty/double-conversion/fixed-dtoa.h
new file mode 100644
index 0000000000..3bdd08e21f
--- /dev/null
+++ b/src/3rdparty/double-conversion/fixed-dtoa.h
@@ -0,0 +1,56 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_FIXED_DTOA_H_
+#define DOUBLE_CONVERSION_FIXED_DTOA_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+// Produces digits necessary to print a given number with
+// 'fractional_count' digits after the decimal point.
+// The buffer must be big enough to hold the result plus one terminating null
+// character.
+//
+// The produced digits might be too short in which case the caller has to fill
+// the gaps with '0's.
+// Example: FastFixedDtoa(0.001, 5, ...) is allowed to return buffer = "1", and
+// decimal_point = -2.
+// Halfway cases are rounded towards +/-Infinity (away from 0). The call
+// FastFixedDtoa(0.15, 2, ...) thus returns buffer = "2", decimal_point = 0.
+// The returned buffer may contain digits that would be truncated from the
+// shortest representation of the input.
+//
+// This method only works for some parameters. If it can't handle the input it
+// returns false. The output is null-terminated when the function succeeds.
+bool FastFixedDtoa(double v, int fractional_count,
+ Vector<char> buffer, int* length, int* decimal_point);
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_FIXED_DTOA_H_
diff --git a/src/3rdparty/double-conversion/ieee.h b/src/3rdparty/double-conversion/ieee.h
new file mode 100644
index 0000000000..839dc47d45
--- /dev/null
+++ b/src/3rdparty/double-conversion/ieee.h
@@ -0,0 +1,398 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_DOUBLE_H_
+#define DOUBLE_CONVERSION_DOUBLE_H_
+
+#include "diy-fp.h"
+
+namespace double_conversion {
+
+// We assume that doubles and uint64_t have the same endianness.
+static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
+static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
+static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
+static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
+
+// Helper functions for doubles.
+class Double {
+ public:
+ static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
+ static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
+ static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
+ static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
+ static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
+ static const int kSignificandSize = 53;
+
+ Double() : d64_(0) {}
+ explicit Double(double d) : d64_(double_to_uint64(d)) {}
+ explicit Double(uint64_t d64) : d64_(d64) {}
+ explicit Double(DiyFp diy_fp)
+ : d64_(DiyFpToUint64(diy_fp)) {}
+
+ // The value encoded by this Double must be greater or equal to +0.0.
+ // It must not be special (infinity, or NaN).
+ DiyFp AsDiyFp() const {
+ ASSERT(Sign() > 0);
+ ASSERT(!IsSpecial());
+ return DiyFp(Significand(), Exponent());
+ }
+
+ // The value encoded by this Double must be strictly greater than 0.
+ DiyFp AsNormalizedDiyFp() const {
+ ASSERT(value() > 0.0);
+ uint64_t f = Significand();
+ int e = Exponent();
+
+ // The current double could be a denormal.
+ while ((f & kHiddenBit) == 0) {
+ f <<= 1;
+ e--;
+ }
+ // Do the final shifts in one go.
+ f <<= DiyFp::kSignificandSize - kSignificandSize;
+ e -= DiyFp::kSignificandSize - kSignificandSize;
+ return DiyFp(f, e);
+ }
+
+ // Returns the double's bit as uint64.
+ uint64_t AsUint64() const {
+ return d64_;
+ }
+
+ // Returns the next greater double. Returns +infinity on input +infinity.
+ double NextDouble() const {
+ if (d64_ == kInfinity) return Double(kInfinity).value();
+ if (Sign() < 0 && Significand() == 0) {
+ // -0.0
+ return 0.0;
+ }
+ if (Sign() < 0) {
+ return Double(d64_ - 1).value();
+ } else {
+ return Double(d64_ + 1).value();
+ }
+ }
+
+ double PreviousDouble() const {
+ if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity();
+ if (Sign() < 0) {
+ return Double(d64_ + 1).value();
+ } else {
+ if (Significand() == 0) return -0.0;
+ return Double(d64_ - 1).value();
+ }
+ }
+
+ int Exponent() const {
+ if (IsDenormal()) return kDenormalExponent;
+
+ uint64_t d64 = AsUint64();
+ int biased_e =
+ static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
+ return biased_e - kExponentBias;
+ }
+
+ uint64_t Significand() const {
+ uint64_t d64 = AsUint64();
+ uint64_t significand = d64 & kSignificandMask;
+ if (!IsDenormal()) {
+ return significand + kHiddenBit;
+ } else {
+ return significand;
+ }
+ }
+
+ // Returns true if the double is a denormal.
+ bool IsDenormal() const {
+ uint64_t d64 = AsUint64();
+ return (d64 & kExponentMask) == 0;
+ }
+
+ // We consider denormals not to be special.
+ // Hence only Infinity and NaN are special.
+ bool IsSpecial() const {
+ uint64_t d64 = AsUint64();
+ return (d64 & kExponentMask) == kExponentMask;
+ }
+
+ bool IsNan() const {
+ uint64_t d64 = AsUint64();
+ return ((d64 & kExponentMask) == kExponentMask) &&
+ ((d64 & kSignificandMask) != 0);
+ }
+
+ bool IsInfinite() const {
+ uint64_t d64 = AsUint64();
+ return ((d64 & kExponentMask) == kExponentMask) &&
+ ((d64 & kSignificandMask) == 0);
+ }
+
+ int Sign() const {
+ uint64_t d64 = AsUint64();
+ return (d64 & kSignMask) == 0? 1: -1;
+ }
+
+ // Precondition: the value encoded by this Double must be greater or equal
+ // than +0.0.
+ DiyFp UpperBoundary() const {
+ ASSERT(Sign() > 0);
+ return DiyFp(Significand() * 2 + 1, Exponent() - 1);
+ }
+
+ // Computes the two boundaries of this.
+ // The bigger boundary (m_plus) is normalized. The lower boundary has the same
+ // exponent as m_plus.
+ // Precondition: the value encoded by this Double must be greater than 0.
+ void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
+ ASSERT(value() > 0.0);
+ DiyFp v = this->AsDiyFp();
+ DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
+ DiyFp m_minus;
+ if (LowerBoundaryIsCloser()) {
+ m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
+ } else {
+ m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
+ }
+ m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
+ m_minus.set_e(m_plus.e());
+ *out_m_plus = m_plus;
+ *out_m_minus = m_minus;
+ }
+
+ bool LowerBoundaryIsCloser() const {
+ // The boundary is closer if the significand is of the form f == 2^p-1 then
+ // the lower boundary is closer.
+ // Think of v = 1000e10 and v- = 9999e9.
+ // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
+ // at a distance of 1e8.
+ // The only exception is for the smallest normal: the largest denormal is
+ // at the same distance as its successor.
+ // Note: denormals have the same exponent as the smallest normals.
+ bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
+ return physical_significand_is_zero && (Exponent() != kDenormalExponent);
+ }
+
+ double value() const { return uint64_to_double(d64_); }
+
+ // Returns the significand size for a given order of magnitude.
+ // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
+ // This function returns the number of significant binary digits v will have
+ // once it's encoded into a double. In almost all cases this is equal to
+ // kSignificandSize. The only exceptions are denormals. They start with
+ // leading zeroes and their effective significand-size is hence smaller.
+ static int SignificandSizeForOrderOfMagnitude(int order) {
+ if (order >= (kDenormalExponent + kSignificandSize)) {
+ return kSignificandSize;
+ }
+ if (order <= kDenormalExponent) return 0;
+ return order - kDenormalExponent;
+ }
+
+ static double Infinity() {
+ return Double(kInfinity).value();
+ }
+
+ static double NaN() {
+ return Double(kNaN).value();
+ }
+
+ private:
+ static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
+ static const int kDenormalExponent = -kExponentBias + 1;
+ static const int kMaxExponent = 0x7FF - kExponentBias;
+ static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
+ static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
+
+ const uint64_t d64_;
+
+ static uint64_t DiyFpToUint64(DiyFp diy_fp) {
+ uint64_t significand = diy_fp.f();
+ int exponent = diy_fp.e();
+ while (significand > kHiddenBit + kSignificandMask) {
+ significand >>= 1;
+ exponent++;
+ }
+ if (exponent >= kMaxExponent) {
+ return kInfinity;
+ }
+ if (exponent < kDenormalExponent) {
+ return 0;
+ }
+ while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
+ significand <<= 1;
+ exponent--;
+ }
+ uint64_t biased_exponent;
+ if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
+ biased_exponent = 0;
+ } else {
+ biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
+ }
+ return (significand & kSignificandMask) |
+ (biased_exponent << kPhysicalSignificandSize);
+ }
+};
+
+class Single {
+ public:
+ static const uint32_t kSignMask = 0x80000000;
+ static const uint32_t kExponentMask = 0x7F800000;
+ static const uint32_t kSignificandMask = 0x007FFFFF;
+ static const uint32_t kHiddenBit = 0x00800000;
+ static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit.
+ static const int kSignificandSize = 24;
+
+ Single() : d32_(0) {}
+ explicit Single(float f) : d32_(float_to_uint32(f)) {}
+ explicit Single(uint32_t d32) : d32_(d32) {}
+
+ // The value encoded by this Single must be greater or equal to +0.0.
+ // It must not be special (infinity, or NaN).
+ DiyFp AsDiyFp() const {
+ ASSERT(Sign() > 0);
+ ASSERT(!IsSpecial());
+ return DiyFp(Significand(), Exponent());
+ }
+
+ // Returns the single's bit as uint64.
+ uint32_t AsUint32() const {
+ return d32_;
+ }
+
+ int Exponent() const {
+ if (IsDenormal()) return kDenormalExponent;
+
+ uint32_t d32 = AsUint32();
+ int biased_e =
+ static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
+ return biased_e - kExponentBias;
+ }
+
+ uint32_t Significand() const {
+ uint32_t d32 = AsUint32();
+ uint32_t significand = d32 & kSignificandMask;
+ if (!IsDenormal()) {
+ return significand + kHiddenBit;
+ } else {
+ return significand;
+ }
+ }
+
+ // Returns true if the single is a denormal.
+ bool IsDenormal() const {
+ uint32_t d32 = AsUint32();
+ return (d32 & kExponentMask) == 0;
+ }
+
+ // We consider denormals not to be special.
+ // Hence only Infinity and NaN are special.
+ bool IsSpecial() const {
+ uint32_t d32 = AsUint32();
+ return (d32 & kExponentMask) == kExponentMask;
+ }
+
+ bool IsNan() const {
+ uint32_t d32 = AsUint32();
+ return ((d32 & kExponentMask) == kExponentMask) &&
+ ((d32 & kSignificandMask) != 0);
+ }
+
+ bool IsInfinite() const {
+ uint32_t d32 = AsUint32();
+ return ((d32 & kExponentMask) == kExponentMask) &&
+ ((d32 & kSignificandMask) == 0);
+ }
+
+ int Sign() const {
+ uint32_t d32 = AsUint32();
+ return (d32 & kSignMask) == 0? 1: -1;
+ }
+
+ // Computes the two boundaries of this.
+ // The bigger boundary (m_plus) is normalized. The lower boundary has the same
+ // exponent as m_plus.
+ // Precondition: the value encoded by this Single must be greater than 0.
+ void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
+ ASSERT(value() > 0.0);
+ DiyFp v = this->AsDiyFp();
+ DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
+ DiyFp m_minus;
+ if (LowerBoundaryIsCloser()) {
+ m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
+ } else {
+ m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
+ }
+ m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
+ m_minus.set_e(m_plus.e());
+ *out_m_plus = m_plus;
+ *out_m_minus = m_minus;
+ }
+
+ // Precondition: the value encoded by this Single must be greater or equal
+ // than +0.0.
+ DiyFp UpperBoundary() const {
+ ASSERT(Sign() > 0);
+ return DiyFp(Significand() * 2 + 1, Exponent() - 1);
+ }
+
+ bool LowerBoundaryIsCloser() const {
+ // The boundary is closer if the significand is of the form f == 2^p-1 then
+ // the lower boundary is closer.
+ // Think of v = 1000e10 and v- = 9999e9.
+ // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
+ // at a distance of 1e8.
+ // The only exception is for the smallest normal: the largest denormal is
+ // at the same distance as its successor.
+ // Note: denormals have the same exponent as the smallest normals.
+ bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
+ return physical_significand_is_zero && (Exponent() != kDenormalExponent);
+ }
+
+ float value() const { return uint32_to_float(d32_); }
+
+ static float Infinity() {
+ return Single(kInfinity).value();
+ }
+
+ static float NaN() {
+ return Single(kNaN).value();
+ }
+
+ private:
+ static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
+ static const int kDenormalExponent = -kExponentBias + 1;
+ static const int kMaxExponent = 0xFF - kExponentBias;
+ static const uint32_t kInfinity = 0x7F800000;
+ static const uint32_t kNaN = 0x7FC00000;
+
+ const uint32_t d32_;
+};
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_DOUBLE_H_
diff --git a/src/3rdparty/double-conversion/strtod.cc b/src/3rdparty/double-conversion/strtod.cc
new file mode 100644
index 0000000000..9758989f71
--- /dev/null
+++ b/src/3rdparty/double-conversion/strtod.cc
@@ -0,0 +1,554 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdarg.h>
+#include <limits.h>
+
+#include "strtod.h"
+#include "bignum.h"
+#include "cached-powers.h"
+#include "ieee.h"
+
+namespace double_conversion {
+
+// 2^53 = 9007199254740992.
+// Any integer with at most 15 decimal digits will hence fit into a double
+// (which has a 53bit significand) without loss of precision.
+static const int kMaxExactDoubleIntegerDecimalDigits = 15;
+// 2^64 = 18446744073709551616 > 10^19
+static const int kMaxUint64DecimalDigits = 19;
+
+// Max double: 1.7976931348623157 x 10^308
+// Min non-zero double: 4.9406564584124654 x 10^-324
+// Any x >= 10^309 is interpreted as +infinity.
+// Any x <= 10^-324 is interpreted as 0.
+// Note that 2.5e-324 (despite being smaller than the min double) will be read
+// as non-zero (equal to the min non-zero double).
+static const int kMaxDecimalPower = 309;
+static const int kMinDecimalPower = -324;
+
+// 2^64 = 18446744073709551616
+static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
+
+
+static const double exact_powers_of_ten[] = {
+ 1.0, // 10^0
+ 10.0,
+ 100.0,
+ 1000.0,
+ 10000.0,
+ 100000.0,
+ 1000000.0,
+ 10000000.0,
+ 100000000.0,
+ 1000000000.0,
+ 10000000000.0, // 10^10
+ 100000000000.0,
+ 1000000000000.0,
+ 10000000000000.0,
+ 100000000000000.0,
+ 1000000000000000.0,
+ 10000000000000000.0,
+ 100000000000000000.0,
+ 1000000000000000000.0,
+ 10000000000000000000.0,
+ 100000000000000000000.0, // 10^20
+ 1000000000000000000000.0,
+ // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
+ 10000000000000000000000.0
+};
+static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
+
+// Maximum number of significant digits in the decimal representation.
+// In fact the value is 772 (see conversions.cc), but to give us some margin
+// we round up to 780.
+static const int kMaxSignificantDecimalDigits = 780;
+
+static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
+ for (int i = 0; i < buffer.length(); i++) {
+ if (buffer[i] != '0') {
+ return buffer.SubVector(i, buffer.length());
+ }
+ }
+ return Vector<const char>(buffer.start(), 0);
+}
+
+
+static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
+ for (int i = buffer.length() - 1; i >= 0; --i) {
+ if (buffer[i] != '0') {
+ return buffer.SubVector(0, i + 1);
+ }
+ }
+ return Vector<const char>(buffer.start(), 0);
+}
+
+
+static void CutToMaxSignificantDigits(Vector<const char> buffer,
+ int exponent,
+ char* significant_buffer,
+ int* significant_exponent) {
+ for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
+ significant_buffer[i] = buffer[i];
+ }
+ // The input buffer has been trimmed. Therefore the last digit must be
+ // different from '0'.
+ ASSERT(buffer[buffer.length() - 1] != '0');
+ // Set the last digit to be non-zero. This is sufficient to guarantee
+ // correct rounding.
+ significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
+ *significant_exponent =
+ exponent + (buffer.length() - kMaxSignificantDecimalDigits);
+}
+
+
+// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
+// If possible the input-buffer is reused, but if the buffer needs to be
+// modified (due to cutting), then the input needs to be copied into the
+// buffer_copy_space.
+static void TrimAndCut(Vector<const char> buffer, int exponent,
+ char* buffer_copy_space, int space_size,
+ Vector<const char>* trimmed, int* updated_exponent) {
+ Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
+ Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
+ exponent += left_trimmed.length() - right_trimmed.length();
+ if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
+ ASSERT(space_size >= kMaxSignificantDecimalDigits);
+ CutToMaxSignificantDigits(right_trimmed, exponent,
+ buffer_copy_space, updated_exponent);
+ *trimmed = Vector<const char>(buffer_copy_space,
+ kMaxSignificantDecimalDigits);
+ } else {
+ *trimmed = right_trimmed;
+ *updated_exponent = exponent;
+ }
+}
+
+
+// Reads digits from the buffer and converts them to a uint64.
+// Reads in as many digits as fit into a uint64.
+// When the string starts with "1844674407370955161" no further digit is read.
+// Since 2^64 = 18446744073709551616 it would still be possible read another
+// digit if it was less or equal than 6, but this would complicate the code.
+static uint64_t ReadUint64(Vector<const char> buffer,
+ int* number_of_read_digits) {
+ uint64_t result = 0;
+ int i = 0;
+ while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
+ int digit = buffer[i++] - '0';
+ ASSERT(0 <= digit && digit <= 9);
+ result = 10 * result + digit;
+ }
+ *number_of_read_digits = i;
+ return result;
+}
+
+
+// Reads a DiyFp from the buffer.
+// The returned DiyFp is not necessarily normalized.
+// If remaining_decimals is zero then the returned DiyFp is accurate.
+// Otherwise it has been rounded and has error of at most 1/2 ulp.
+static void ReadDiyFp(Vector<const char> buffer,
+ DiyFp* result,
+ int* remaining_decimals) {
+ int read_digits;
+ uint64_t significand = ReadUint64(buffer, &read_digits);
+ if (buffer.length() == read_digits) {
+ *result = DiyFp(significand, 0);
+ *remaining_decimals = 0;
+ } else {
+ // Round the significand.
+ if (buffer[read_digits] >= '5') {
+ significand++;
+ }
+ // Compute the binary exponent.
+ int exponent = 0;
+ *result = DiyFp(significand, exponent);
+ *remaining_decimals = buffer.length() - read_digits;
+ }
+}
+
+
+static bool DoubleStrtod(Vector<const char> trimmed,
+ int exponent,
+ double* result) {
+#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
+ // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
+ // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
+ // result is not accurate.
+ // We know that Windows32 uses 64 bits and is therefore accurate.
+ // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
+ // the same problem.
+ return false;
+#endif
+ if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
+ int read_digits;
+ // The trimmed input fits into a double.
+ // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
+ // can compute the result-double simply by multiplying (resp. dividing) the
+ // two numbers.
+ // This is possible because IEEE guarantees that floating-point operations
+ // return the best possible approximation.
+ if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
+ // 10^-exponent fits into a double.
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
+ ASSERT(read_digits == trimmed.length());
+ *result /= exact_powers_of_ten[-exponent];
+ return true;
+ }
+ if (0 <= exponent && exponent < kExactPowersOfTenSize) {
+ // 10^exponent fits into a double.
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
+ ASSERT(read_digits == trimmed.length());
+ *result *= exact_powers_of_ten[exponent];
+ return true;
+ }
+ int remaining_digits =
+ kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
+ if ((0 <= exponent) &&
+ (exponent - remaining_digits < kExactPowersOfTenSize)) {
+ // The trimmed string was short and we can multiply it with
+ // 10^remaining_digits. As a result the remaining exponent now fits
+ // into a double too.
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
+ ASSERT(read_digits == trimmed.length());
+ *result *= exact_powers_of_ten[remaining_digits];
+ *result *= exact_powers_of_ten[exponent - remaining_digits];
+ return true;
+ }
+ }
+ return false;
+}
+
+
+// Returns 10^exponent as an exact DiyFp.
+// The given exponent must be in the range [1; kDecimalExponentDistance[.
+static DiyFp AdjustmentPowerOfTen(int exponent) {
+ ASSERT(0 < exponent);
+ ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
+ // Simply hardcode the remaining powers for the given decimal exponent
+ // distance.
+ ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
+ switch (exponent) {
+ case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
+ case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
+ case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
+ case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
+ case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
+ case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
+ case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
+ default:
+ UNREACHABLE();
+ return DiyFp(0, 0);
+ }
+}
+
+
+// If the function returns true then the result is the correct double.
+// Otherwise it is either the correct double or the double that is just below
+// the correct double.
+static bool DiyFpStrtod(Vector<const char> buffer,
+ int exponent,
+ double* result) {
+ DiyFp input;
+ int remaining_decimals;
+ ReadDiyFp(buffer, &input, &remaining_decimals);
+ // Since we may have dropped some digits the input is not accurate.
+ // If remaining_decimals is different than 0 than the error is at most
+ // .5 ulp (unit in the last place).
+ // We don't want to deal with fractions and therefore keep a common
+ // denominator.
+ const int kDenominatorLog = 3;
+ const int kDenominator = 1 << kDenominatorLog;
+ // Move the remaining decimals into the exponent.
+ exponent += remaining_decimals;
+ int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
+
+ int old_e = input.e();
+ input.Normalize();
+ error <<= old_e - input.e();
+
+ ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
+ if (exponent < PowersOfTenCache::kMinDecimalExponent) {
+ *result = 0.0;
+ return true;
+ }
+ DiyFp cached_power;
+ int cached_decimal_exponent;
+ PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
+ &cached_power,
+ &cached_decimal_exponent);
+
+ if (cached_decimal_exponent != exponent) {
+ int adjustment_exponent = exponent - cached_decimal_exponent;
+ DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
+ input.Multiply(adjustment_power);
+ if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
+ // The product of input with the adjustment power fits into a 64 bit
+ // integer.
+ ASSERT(DiyFp::kSignificandSize == 64);
+ } else {
+ // The adjustment power is exact. There is hence only an error of 0.5.
+ error += kDenominator / 2;
+ }
+ }
+
+ input.Multiply(cached_power);
+ // The error introduced by a multiplication of a*b equals
+ // error_a + error_b + error_a*error_b/2^64 + 0.5
+ // Substituting a with 'input' and b with 'cached_power' we have
+ // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
+ // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
+ int error_b = kDenominator / 2;
+ int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
+ int fixed_error = kDenominator / 2;
+ error += error_b + error_ab + fixed_error;
+
+ old_e = input.e();
+ input.Normalize();
+ error <<= old_e - input.e();
+
+ // See if the double's significand changes if we add/subtract the error.
+ int order_of_magnitude = DiyFp::kSignificandSize + input.e();
+ int effective_significand_size =
+ Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
+ int precision_digits_count =
+ DiyFp::kSignificandSize - effective_significand_size;
+ if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
+ // This can only happen for very small denormals. In this case the
+ // half-way multiplied by the denominator exceeds the range of an uint64.
+ // Simply shift everything to the right.
+ int shift_amount = (precision_digits_count + kDenominatorLog) -
+ DiyFp::kSignificandSize + 1;
+ input.set_f(input.f() >> shift_amount);
+ input.set_e(input.e() + shift_amount);
+ // We add 1 for the lost precision of error, and kDenominator for
+ // the lost precision of input.f().
+ error = (error >> shift_amount) + 1 + kDenominator;
+ precision_digits_count -= shift_amount;
+ }
+ // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
+ ASSERT(DiyFp::kSignificandSize == 64);
+ ASSERT(precision_digits_count < 64);
+ uint64_t one64 = 1;
+ uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
+ uint64_t precision_bits = input.f() & precision_bits_mask;
+ uint64_t half_way = one64 << (precision_digits_count - 1);
+ precision_bits *= kDenominator;
+ half_way *= kDenominator;
+ DiyFp rounded_input(input.f() >> precision_digits_count,
+ input.e() + precision_digits_count);
+ if (precision_bits >= half_way + error) {
+ rounded_input.set_f(rounded_input.f() + 1);
+ }
+ // If the last_bits are too close to the half-way case than we are too
+ // inaccurate and round down. In this case we return false so that we can
+ // fall back to a more precise algorithm.
+
+ *result = Double(rounded_input).value();
+ if (half_way - error < precision_bits && precision_bits < half_way + error) {
+ // Too imprecise. The caller will have to fall back to a slower version.
+ // However the returned number is guaranteed to be either the correct
+ // double, or the next-lower double.
+ return false;
+ } else {
+ return true;
+ }
+}
+
+
+// Returns
+// - -1 if buffer*10^exponent < diy_fp.
+// - 0 if buffer*10^exponent == diy_fp.
+// - +1 if buffer*10^exponent > diy_fp.
+// Preconditions:
+// buffer.length() + exponent <= kMaxDecimalPower + 1
+// buffer.length() + exponent > kMinDecimalPower
+// buffer.length() <= kMaxDecimalSignificantDigits
+static int CompareBufferWithDiyFp(Vector<const char> buffer,
+ int exponent,
+ DiyFp diy_fp) {
+ ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
+ ASSERT(buffer.length() + exponent > kMinDecimalPower);
+ ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
+ // Make sure that the Bignum will be able to hold all our numbers.
+ // Our Bignum implementation has a separate field for exponents. Shifts will
+ // consume at most one bigit (< 64 bits).
+ // ln(10) == 3.3219...
+ ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
+ Bignum buffer_bignum;
+ Bignum diy_fp_bignum;
+ buffer_bignum.AssignDecimalString(buffer);
+ diy_fp_bignum.AssignUInt64(diy_fp.f());
+ if (exponent >= 0) {
+ buffer_bignum.MultiplyByPowerOfTen(exponent);
+ } else {
+ diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
+ }
+ if (diy_fp.e() > 0) {
+ diy_fp_bignum.ShiftLeft(diy_fp.e());
+ } else {
+ buffer_bignum.ShiftLeft(-diy_fp.e());
+ }
+ return Bignum::Compare(buffer_bignum, diy_fp_bignum);
+}
+
+
+// Returns true if the guess is the correct double.
+// Returns false, when guess is either correct or the next-lower double.
+static bool ComputeGuess(Vector<const char> trimmed, int exponent,
+ double* guess) {
+ if (trimmed.length() == 0) {
+ *guess = 0.0;
+ return true;
+ }
+ if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
+ *guess = Double::Infinity();
+ return true;
+ }
+ if (exponent + trimmed.length() <= kMinDecimalPower) {
+ *guess = 0.0;
+ return true;
+ }
+
+ if (DoubleStrtod(trimmed, exponent, guess) ||
+ DiyFpStrtod(trimmed, exponent, guess)) {
+ return true;
+ }
+ if (*guess == Double::Infinity()) {
+ return true;
+ }
+ return false;
+}
+
+double Strtod(Vector<const char> buffer, int exponent) {
+ char copy_buffer[kMaxSignificantDecimalDigits];
+ Vector<const char> trimmed;
+ int updated_exponent;
+ TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
+ &trimmed, &updated_exponent);
+ exponent = updated_exponent;
+
+ double guess;
+ bool is_correct = ComputeGuess(trimmed, exponent, &guess);
+ if (is_correct) return guess;
+
+ DiyFp upper_boundary = Double(guess).UpperBoundary();
+ int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
+ if (comparison < 0) {
+ return guess;
+ } else if (comparison > 0) {
+ return Double(guess).NextDouble();
+ } else if ((Double(guess).Significand() & 1) == 0) {
+ // Round towards even.
+ return guess;
+ } else {
+ return Double(guess).NextDouble();
+ }
+}
+
+float Strtof(Vector<const char> buffer, int exponent) {
+ char copy_buffer[kMaxSignificantDecimalDigits];
+ Vector<const char> trimmed;
+ int updated_exponent;
+ TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
+ &trimmed, &updated_exponent);
+ exponent = updated_exponent;
+
+ double double_guess;
+ bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
+
+ float float_guess = static_cast<float>(double_guess);
+ if (float_guess == double_guess) {
+ // This shortcut triggers for integer values.
+ return float_guess;
+ }
+
+ // We must catch double-rounding. Say the double has been rounded up, and is
+ // now a boundary of a float, and rounds up again. This is why we have to
+ // look at previous too.
+ // Example (in decimal numbers):
+ // input: 12349
+ // high-precision (4 digits): 1235
+ // low-precision (3 digits):
+ // when read from input: 123
+ // when rounded from high precision: 124.
+ // To do this we simply look at the neigbors of the correct result and see
+ // if they would round to the same float. If the guess is not correct we have
+ // to look at four values (since two different doubles could be the correct
+ // double).
+
+ double double_next = Double(double_guess).NextDouble();
+ double double_previous = Double(double_guess).PreviousDouble();
+
+ float f1 = static_cast<float>(double_previous);
+ float f2 = float_guess;
+ float f3 = static_cast<float>(double_next);
+ float f4;
+ if (is_correct) {
+ f4 = f3;
+ } else {
+ double double_next2 = Double(double_next).NextDouble();
+ f4 = static_cast<float>(double_next2);
+ }
+ ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
+
+ // If the guess doesn't lie near a single-precision boundary we can simply
+ // return its float-value.
+ if (f1 == f4) {
+ return float_guess;
+ }
+
+ ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
+ (f1 == f2 && f2 != f3 && f3 == f4) ||
+ (f1 == f2 && f2 == f3 && f3 != f4));
+
+ // guess and next are the two possible canditates (in the same way that
+ // double_guess was the lower candidate for a double-precision guess).
+ float guess = f1;
+ float next = f4;
+ DiyFp upper_boundary;
+ if (guess == 0.0f) {
+ float min_float = 1e-45f;
+ upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
+ } else {
+ upper_boundary = Single(guess).UpperBoundary();
+ }
+ int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
+ if (comparison < 0) {
+ return guess;
+ } else if (comparison > 0) {
+ return next;
+ } else if ((Single(guess).Significand() & 1) == 0) {
+ // Round towards even.
+ return guess;
+ } else {
+ return next;
+ }
+}
+
+} // namespace double_conversion
diff --git a/src/3rdparty/double-conversion/strtod.h b/src/3rdparty/double-conversion/strtod.h
new file mode 100644
index 0000000000..ed0293b8f5
--- /dev/null
+++ b/src/3rdparty/double-conversion/strtod.h
@@ -0,0 +1,45 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_STRTOD_H_
+#define DOUBLE_CONVERSION_STRTOD_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+// The buffer must only contain digits in the range [0-9]. It must not
+// contain a dot or a sign. It must not start with '0', and must not be empty.
+double Strtod(Vector<const char> buffer, int exponent);
+
+// The buffer must only contain digits in the range [0-9]. It must not
+// contain a dot or a sign. It must not start with '0', and must not be empty.
+float Strtof(Vector<const char> buffer, int exponent);
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_STRTOD_H_
diff --git a/src/3rdparty/double-conversion/utils.h b/src/3rdparty/double-conversion/utils.h
new file mode 100644
index 0000000000..767094b8b7
--- /dev/null
+++ b/src/3rdparty/double-conversion/utils.h
@@ -0,0 +1,313 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_UTILS_H_
+#define DOUBLE_CONVERSION_UTILS_H_
+
+#include <stdlib.h>
+#include <string.h>
+
+#include <assert.h>
+#ifndef ASSERT
+#define ASSERT(condition) (assert(condition))
+#endif
+#ifndef UNIMPLEMENTED
+#define UNIMPLEMENTED() (abort())
+#endif
+#ifndef UNREACHABLE
+#define UNREACHABLE() (abort())
+#endif
+
+// Double operations detection based on target architecture.
+// Linux uses a 80bit wide floating point stack on x86. This induces double
+// rounding, which in turn leads to wrong results.
+// An easy way to test if the floating-point operations are correct is to
+// evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
+// the result is equal to 89255e-22.
+// The best way to test this, is to create a division-function and to compare
+// the output of the division with the expected result. (Inlining must be
+// disabled.)
+// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
+#if defined(_M_X64) || defined(__x86_64__) || \
+ defined(__ARMEL__) || defined(__avr32__) || \
+ defined(__hppa__) || defined(__ia64__) || \
+ defined(__mips__) || defined(__powerpc__) || \
+ defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
+ defined(__SH4__) || defined(__alpha__) || \
+ defined(_MIPS_ARCH_MIPS32R2)
+#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
+#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
+#if defined(_WIN32)
+// Windows uses a 64bit wide floating point stack.
+#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
+#else
+#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
+#endif // _WIN32
+#else
+#error Target architecture was not detected as supported by Double-Conversion.
+#endif
+
+
+#if defined(_WIN32) && !defined(__MINGW32__)
+
+typedef signed char int8_t;
+typedef unsigned char uint8_t;
+typedef short int16_t; // NOLINT
+typedef unsigned short uint16_t; // NOLINT
+typedef int int32_t;
+typedef unsigned int uint32_t;
+typedef __int64 int64_t;
+typedef unsigned __int64 uint64_t;
+// intptr_t and friends are defined in crtdefs.h through stdio.h.
+
+#else
+
+#include <stdint.h>
+
+#endif
+
+// The following macro works on both 32 and 64-bit platforms.
+// Usage: instead of writing 0x1234567890123456
+// write UINT64_2PART_C(0x12345678,90123456);
+#define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
+
+
+// The expression ARRAY_SIZE(a) is a compile-time constant of type
+// size_t which represents the number of elements of the given
+// array. You should only use ARRAY_SIZE on statically allocated
+// arrays.
+#ifndef ARRAY_SIZE
+#define ARRAY_SIZE(a) \
+ ((sizeof(a) / sizeof(*(a))) / \
+ static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
+#endif
+
+// A macro to disallow the evil copy constructor and operator= functions
+// This should be used in the private: declarations for a class
+#ifndef DISALLOW_COPY_AND_ASSIGN
+#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
+ TypeName(const TypeName&); \
+ void operator=(const TypeName&)
+#endif
+
+// A macro to disallow all the implicit constructors, namely the
+// default constructor, copy constructor and operator= functions.
+//
+// This should be used in the private: declarations for a class
+// that wants to prevent anyone from instantiating it. This is
+// especially useful for classes containing only static methods.
+#ifndef DISALLOW_IMPLICIT_CONSTRUCTORS
+#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
+ TypeName(); \
+ DISALLOW_COPY_AND_ASSIGN(TypeName)
+#endif
+
+namespace double_conversion {
+
+static const int kCharSize = sizeof(char);
+
+// Returns the maximum of the two parameters.
+template <typename T>
+static T Max(T a, T b) {
+ return a < b ? b : a;
+}
+
+
+// Returns the minimum of the two parameters.
+template <typename T>
+static T Min(T a, T b) {
+ return a < b ? a : b;
+}
+
+
+inline int StrLength(const char* string) {
+ size_t length = strlen(string);
+ ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
+ return static_cast<int>(length);
+}
+
+// This is a simplified version of V8's Vector class.
+template <typename T>
+class Vector {
+ public:
+ Vector() : start_(NULL), length_(0) {}
+ Vector(T* data, int length) : start_(data), length_(length) {
+ ASSERT(length == 0 || (length > 0 && data != NULL));
+ }
+
+ // Returns a vector using the same backing storage as this one,
+ // spanning from and including 'from', to but not including 'to'.
+ Vector<T> SubVector(int from, int to) {
+ ASSERT(to <= length_);
+ ASSERT(from < to);
+ ASSERT(0 <= from);
+ return Vector<T>(start() + from, to - from);
+ }
+
+ // Returns the length of the vector.
+ int length() const { return length_; }
+
+ // Returns whether or not the vector is empty.
+ bool is_empty() const { return length_ == 0; }
+
+ // Returns the pointer to the start of the data in the vector.
+ T* start() const { return start_; }
+
+ // Access individual vector elements - checks bounds in debug mode.
+ T& operator[](int index) const {
+ ASSERT(0 <= index && index < length_);
+ return start_[index];
+ }
+
+ T& first() { return start_[0]; }
+
+ T& last() { return start_[length_ - 1]; }
+
+ private:
+ T* start_;
+ int length_;
+};
+
+
+// Helper class for building result strings in a character buffer. The
+// purpose of the class is to use safe operations that checks the
+// buffer bounds on all operations in debug mode.
+class StringBuilder {
+ public:
+ StringBuilder(char* buffer, int size)
+ : buffer_(buffer, size), position_(0) { }
+
+ ~StringBuilder() { if (!is_finalized()) Finalize(); }
+
+ int size() const { return buffer_.length(); }
+
+ // Get the current position in the builder.
+ int position() const {
+ ASSERT(!is_finalized());
+ return position_;
+ }
+
+ // Reset the position.
+ void Reset() { position_ = 0; }
+
+ // Add a single character to the builder. It is not allowed to add
+ // 0-characters; use the Finalize() method to terminate the string
+ // instead.
+ void AddCharacter(char c) {
+ ASSERT(c != '\0');
+ ASSERT(!is_finalized() && position_ < buffer_.length());
+ buffer_[position_++] = c;
+ }
+
+ // Add an entire string to the builder. Uses strlen() internally to
+ // compute the length of the input string.
+ void AddString(const char* s) {
+ AddSubstring(s, StrLength(s));
+ }
+
+ // Add the first 'n' characters of the given string 's' to the
+ // builder. The input string must have enough characters.
+ void AddSubstring(const char* s, int n) {
+ ASSERT(!is_finalized() && position_ + n < buffer_.length());
+ ASSERT(static_cast<size_t>(n) <= strlen(s));
+ memmove(&buffer_[position_], s, n * kCharSize);
+ position_ += n;
+ }
+
+
+ // Add character padding to the builder. If count is non-positive,
+ // nothing is added to the builder.
+ void AddPadding(char c, int count) {
+ for (int i = 0; i < count; i++) {
+ AddCharacter(c);
+ }
+ }
+
+ // Finalize the string by 0-terminating it and returning the buffer.
+ char* Finalize() {
+ ASSERT(!is_finalized() && position_ < buffer_.length());
+ buffer_[position_] = '\0';
+ // Make sure nobody managed to add a 0-character to the
+ // buffer while building the string.
+ ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
+ position_ = -1;
+ ASSERT(is_finalized());
+ return buffer_.start();
+ }
+
+ private:
+ Vector<char> buffer_;
+ int position_;
+
+ bool is_finalized() const { return position_ < 0; }
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
+};
+
+// The type-based aliasing rule allows the compiler to assume that pointers of
+// different types (for some definition of different) never alias each other.
+// Thus the following code does not work:
+//
+// float f = foo();
+// int fbits = *(int*)(&f);
+//
+// The compiler 'knows' that the int pointer can't refer to f since the types
+// don't match, so the compiler may cache f in a register, leaving random data
+// in fbits. Using C++ style casts makes no difference, however a pointer to
+// char data is assumed to alias any other pointer. This is the 'memcpy
+// exception'.
+//
+// Bit_cast uses the memcpy exception to move the bits from a variable of one
+// type of a variable of another type. Of course the end result is likely to
+// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
+// will completely optimize BitCast away.
+//
+// There is an additional use for BitCast.
+// Recent gccs will warn when they see casts that may result in breakage due to
+// the type-based aliasing rule. If you have checked that there is no breakage
+// you can use BitCast to cast one pointer type to another. This confuses gcc
+// enough that it can no longer see that you have cast one pointer type to
+// another thus avoiding the warning.
+template <class Dest, class Source>
+inline Dest BitCast(const Source& source) {
+ // Compile time assertion: sizeof(Dest) == sizeof(Source)
+ // A compile error here means your Dest and Source have different sizes.
+ typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
+
+ Dest dest;
+ memmove(&dest, &source, sizeof(dest));
+ return dest;
+}
+
+template <class Dest, class Source>
+inline Dest BitCast(Source* source) {
+ return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
+}
+
+} // namespace double_conversion
+
+#endif // DOUBLE_CONVERSION_UTILS_H_
diff --git a/src/3rdparty/masm/WeakRandom.h b/src/3rdparty/masm/WeakRandom.h
new file mode 100644
index 0000000000..325d1f6ac6
--- /dev/null
+++ b/src/3rdparty/masm/WeakRandom.h
@@ -0,0 +1,52 @@
+/****************************************************************************
+**
+** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).
+** Contact: http://www.qt-project.org/legal
+**
+** This file is part of the V4VM module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** Commercial License Usage
+** Licensees holding valid commercial Qt licenses may use this file in
+** accordance with the commercial license agreement provided with the
+** Software or, alternatively, in accordance with the terms contained in
+** a written agreement between you and Digia. For licensing terms and
+** conditions see http://qt.digia.com/licensing. For further information
+** use the contact form at http://qt.digia.com/contact-us.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Digia gives you certain additional
+** rights. These rights are described in the Digia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** GNU General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU
+** General Public License version 3.0 as published by the Free Software
+** Foundation and appearing in the file LICENSE.GPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU General Public License version 3.0 requirements will be
+** met: http://www.gnu.org/copyleft/gpl.html.
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#ifndef MASM_WEAKRANDOM_H
+#define MASM_WEAKRANDOM_H
+
+#include <stdint.h>
+
+struct WeakRandom {
+ WeakRandom(int) {}
+ uint32_t getUint32() { return 0; }
+};
+
+#endif // MASM_WEAKRANDOM_H
diff --git a/src/3rdparty/masm/assembler/ARMAssembler.cpp b/src/3rdparty/masm/assembler/ARMAssembler.cpp
new file mode 100644
index 0000000000..6912d1ea39
--- /dev/null
+++ b/src/3rdparty/masm/assembler/ARMAssembler.cpp
@@ -0,0 +1,444 @@
+/*
+ * Copyright (C) 2009 University of Szeged
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+
+#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
+
+#include "ARMAssembler.h"
+
+namespace JSC {
+
+// Patching helpers
+
+void ARMAssembler::patchConstantPoolLoad(void* loadAddr, void* constPoolAddr)
+{
+ ARMWord *ldr = reinterpret_cast<ARMWord*>(loadAddr);
+ ARMWord diff = reinterpret_cast<ARMWord*>(constPoolAddr) - ldr;
+ ARMWord index = (*ldr & 0xfff) >> 1;
+
+ ASSERT(diff >= 1);
+ if (diff >= 2 || index > 0) {
+ diff = (diff + index - 2) * sizeof(ARMWord);
+ ASSERT(diff <= 0xfff);
+ *ldr = (*ldr & ~0xfff) | diff;
+ } else
+ *ldr = (*ldr & ~(0xfff | ARMAssembler::DataTransferUp)) | sizeof(ARMWord);
+}
+
+// Handle immediates
+
+ARMWord ARMAssembler::getOp2(ARMWord imm)
+{
+ int rol;
+
+ if (imm <= 0xff)
+ return Op2Immediate | imm;
+
+ if ((imm & 0xff000000) == 0) {
+ imm <<= 8;
+ rol = 8;
+ }
+ else {
+ imm = (imm << 24) | (imm >> 8);
+ rol = 0;
+ }
+
+ if ((imm & 0xff000000) == 0) {
+ imm <<= 8;
+ rol += 4;
+ }
+
+ if ((imm & 0xf0000000) == 0) {
+ imm <<= 4;
+ rol += 2;
+ }
+
+ if ((imm & 0xc0000000) == 0) {
+ imm <<= 2;
+ rol += 1;
+ }
+
+ if ((imm & 0x00ffffff) == 0)
+ return Op2Immediate | (imm >> 24) | (rol << 8);
+
+ return InvalidImmediate;
+}
+
+int ARMAssembler::genInt(int reg, ARMWord imm, bool positive)
+{
+ // Step1: Search a non-immediate part
+ ARMWord mask;
+ ARMWord imm1;
+ ARMWord imm2;
+ int rol;
+
+ mask = 0xff000000;
+ rol = 8;
+ while(1) {
+ if ((imm & mask) == 0) {
+ imm = (imm << rol) | (imm >> (32 - rol));
+ rol = 4 + (rol >> 1);
+ break;
+ }
+ rol += 2;
+ mask >>= 2;
+ if (mask & 0x3) {
+ // rol 8
+ imm = (imm << 8) | (imm >> 24);
+ mask = 0xff00;
+ rol = 24;
+ while (1) {
+ if ((imm & mask) == 0) {
+ imm = (imm << rol) | (imm >> (32 - rol));
+ rol = (rol >> 1) - 8;
+ break;
+ }
+ rol += 2;
+ mask >>= 2;
+ if (mask & 0x3)
+ return 0;
+ }
+ break;
+ }
+ }
+
+ ASSERT((imm & 0xff) == 0);
+
+ if ((imm & 0xff000000) == 0) {
+ imm1 = Op2Immediate | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
+ imm2 = Op2Immediate | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
+ } else if (imm & 0xc0000000) {
+ imm1 = Op2Immediate | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
+ imm <<= 8;
+ rol += 4;
+
+ if ((imm & 0xff000000) == 0) {
+ imm <<= 8;
+ rol += 4;
+ }
+
+ if ((imm & 0xf0000000) == 0) {
+ imm <<= 4;
+ rol += 2;
+ }
+
+ if ((imm & 0xc0000000) == 0) {
+ imm <<= 2;
+ rol += 1;
+ }
+
+ if ((imm & 0x00ffffff) == 0)
+ imm2 = Op2Immediate | (imm >> 24) | ((rol & 0xf) << 8);
+ else
+ return 0;
+ } else {
+ if ((imm & 0xf0000000) == 0) {
+ imm <<= 4;
+ rol += 2;
+ }
+
+ if ((imm & 0xc0000000) == 0) {
+ imm <<= 2;
+ rol += 1;
+ }
+
+ imm1 = Op2Immediate | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
+ imm <<= 8;
+ rol += 4;
+
+ if ((imm & 0xf0000000) == 0) {
+ imm <<= 4;
+ rol += 2;
+ }
+
+ if ((imm & 0xc0000000) == 0) {
+ imm <<= 2;
+ rol += 1;
+ }
+
+ if ((imm & 0x00ffffff) == 0)
+ imm2 = Op2Immediate | (imm >> 24) | ((rol & 0xf) << 8);
+ else
+ return 0;
+ }
+
+ if (positive) {
+ mov(reg, imm1);
+ orr(reg, reg, imm2);
+ } else {
+ mvn(reg, imm1);
+ bic(reg, reg, imm2);
+ }
+
+ return 1;
+}
+
+ARMWord ARMAssembler::getImm(ARMWord imm, int tmpReg, bool invert)
+{
+ ARMWord tmp;
+
+ // Do it by 1 instruction
+ tmp = getOp2(imm);
+ if (tmp != InvalidImmediate)
+ return tmp;
+
+ tmp = getOp2(~imm);
+ if (tmp != InvalidImmediate) {
+ if (invert)
+ return tmp | Op2InvertedImmediate;
+ mvn(tmpReg, tmp);
+ return tmpReg;
+ }
+
+ return encodeComplexImm(imm, tmpReg);
+}
+
+void ARMAssembler::moveImm(ARMWord imm, int dest)
+{
+ ARMWord tmp;
+
+ // Do it by 1 instruction
+ tmp = getOp2(imm);
+ if (tmp != InvalidImmediate) {
+ mov(dest, tmp);
+ return;
+ }
+
+ tmp = getOp2(~imm);
+ if (tmp != InvalidImmediate) {
+ mvn(dest, tmp);
+ return;
+ }
+
+ encodeComplexImm(imm, dest);
+}
+
+ARMWord ARMAssembler::encodeComplexImm(ARMWord imm, int dest)
+{
+#if WTF_ARM_ARCH_AT_LEAST(7)
+ ARMWord tmp = getImm16Op2(imm);
+ if (tmp != InvalidImmediate) {
+ movw(dest, tmp);
+ return dest;
+ }
+ movw(dest, getImm16Op2(imm & 0xffff));
+ movt(dest, getImm16Op2(imm >> 16));
+ return dest;
+#else
+ // Do it by 2 instruction
+ if (genInt(dest, imm, true))
+ return dest;
+ if (genInt(dest, ~imm, false))
+ return dest;
+
+ ldrImmediate(dest, imm);
+ return dest;
+#endif
+}
+
+// Memory load/store helpers
+
+void ARMAssembler::dataTransfer32(DataTransferTypeA transferType, RegisterID srcDst, RegisterID base, int32_t offset)
+{
+ if (offset >= 0) {
+ if (offset <= 0xfff)
+ dtrUp(transferType, srcDst, base, offset);
+ else if (offset <= 0xfffff) {
+ add(ARMRegisters::S0, base, Op2Immediate | (offset >> 12) | (10 << 8));
+ dtrUp(transferType, srcDst, ARMRegisters::S0, (offset & 0xfff));
+ } else {
+ moveImm(offset, ARMRegisters::S0);
+ dtrUpRegister(transferType, srcDst, base, ARMRegisters::S0);
+ }
+ } else {
+ if (offset >= -0xfff)
+ dtrDown(transferType, srcDst, base, -offset);
+ else if (offset >= -0xfffff) {
+ sub(ARMRegisters::S0, base, Op2Immediate | (-offset >> 12) | (10 << 8));
+ dtrDown(transferType, srcDst, ARMRegisters::S0, (-offset & 0xfff));
+ } else {
+ moveImm(offset, ARMRegisters::S0);
+ dtrUpRegister(transferType, srcDst, base, ARMRegisters::S0);
+ }
+ }
+}
+
+void ARMAssembler::baseIndexTransfer32(DataTransferTypeA transferType, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset)
+{
+ ASSERT(scale >= 0 && scale <= 3);
+ ARMWord op2 = lsl(index, scale);
+
+ if (!offset) {
+ dtrUpRegister(transferType, srcDst, base, op2);
+ return;
+ }
+
+ if (offset <= 0xfffff && offset >= -0xfffff) {
+ add(ARMRegisters::S0, base, op2);
+ dataTransfer32(transferType, srcDst, ARMRegisters::S0, offset);
+ return;
+ }
+
+ moveImm(offset, ARMRegisters::S0);
+ add(ARMRegisters::S0, ARMRegisters::S0, op2);
+ dtrUpRegister(transferType, srcDst, base, ARMRegisters::S0);
+}
+
+void ARMAssembler::dataTransfer16(DataTransferTypeB transferType, RegisterID srcDst, RegisterID base, int32_t offset)
+{
+ if (offset >= 0) {
+ if (offset <= 0xff)
+ halfDtrUp(transferType, srcDst, base, getOp2Half(offset));
+ else if (offset <= 0xffff) {
+ add(ARMRegisters::S0, base, Op2Immediate | (offset >> 8) | (12 << 8));
+ halfDtrUp(transferType, srcDst, ARMRegisters::S0, getOp2Half(offset & 0xff));
+ } else {
+ moveImm(offset, ARMRegisters::S0);
+ halfDtrUpRegister(transferType, srcDst, base, ARMRegisters::S0);
+ }
+ } else {
+ if (offset >= -0xff)
+ halfDtrDown(transferType, srcDst, base, getOp2Half(-offset));
+ else if (offset >= -0xffff) {
+ sub(ARMRegisters::S0, base, Op2Immediate | (-offset >> 8) | (12 << 8));
+ halfDtrDown(transferType, srcDst, ARMRegisters::S0, getOp2Half(-offset & 0xff));
+ } else {
+ moveImm(offset, ARMRegisters::S0);
+ halfDtrUpRegister(transferType, srcDst, base, ARMRegisters::S0);
+ }
+ }
+}
+
+void ARMAssembler::baseIndexTransfer16(DataTransferTypeB transferType, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset)
+{
+ if (!scale && !offset) {
+ halfDtrUpRegister(transferType, srcDst, base, index);
+ return;
+ }
+
+ ARMWord op2 = lsl(index, scale);
+
+ if (offset <= 0xffff && offset >= -0xffff) {
+ add(ARMRegisters::S0, base, op2);
+ dataTransfer16(transferType, srcDst, ARMRegisters::S0, offset);
+ return;
+ }
+
+ moveImm(offset, ARMRegisters::S0);
+ add(ARMRegisters::S0, ARMRegisters::S0, op2);
+ halfDtrUpRegister(transferType, srcDst, base, ARMRegisters::S0);
+}
+
+void ARMAssembler::dataTransferFloat(DataTransferTypeFloat transferType, FPRegisterID srcDst, RegisterID base, int32_t offset)
+{
+ // VFP cannot directly access memory that is not four-byte-aligned
+ if (!(offset & 0x3)) {
+ if (offset <= 0x3ff && offset >= 0) {
+ doubleDtrUp(transferType, srcDst, base, offset >> 2);
+ return;
+ }
+ if (offset <= 0x3ffff && offset >= 0) {
+ add(ARMRegisters::S0, base, Op2Immediate | (offset >> 10) | (11 << 8));
+ doubleDtrUp(transferType, srcDst, ARMRegisters::S0, (offset >> 2) & 0xff);
+ return;
+ }
+ offset = -offset;
+
+ if (offset <= 0x3ff && offset >= 0) {
+ doubleDtrDown(transferType, srcDst, base, offset >> 2);
+ return;
+ }
+ if (offset <= 0x3ffff && offset >= 0) {
+ sub(ARMRegisters::S0, base, Op2Immediate | (offset >> 10) | (11 << 8));
+ doubleDtrDown(transferType, srcDst, ARMRegisters::S0, (offset >> 2) & 0xff);
+ return;
+ }
+ offset = -offset;
+ }
+
+ moveImm(offset, ARMRegisters::S0);
+ add(ARMRegisters::S0, ARMRegisters::S0, base);
+ doubleDtrUp(transferType, srcDst, ARMRegisters::S0, 0);
+}
+
+void ARMAssembler::baseIndexTransferFloat(DataTransferTypeFloat transferType, FPRegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset)
+{
+ add(ARMRegisters::S1, base, lsl(index, scale));
+ dataTransferFloat(transferType, srcDst, ARMRegisters::S1, offset);
+}
+
+PassRefPtr<ExecutableMemoryHandle> ARMAssembler::executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort)
+{
+ // 64-bit alignment is required for next constant pool and JIT code as well
+ m_buffer.flushWithoutBarrier(true);
+ if (!m_buffer.isAligned(8))
+ bkpt(0);
+
+ RefPtr<ExecutableMemoryHandle> result = m_buffer.executableCopy(globalData, ownerUID, effort);
+ char* data = reinterpret_cast<char*>(result->start());
+
+ for (Jumps::Iterator iter = m_jumps.begin(); iter != m_jumps.end(); ++iter) {
+ // The last bit is set if the constant must be placed on constant pool.
+ int pos = (iter->m_offset) & (~0x1);
+ ARMWord* ldrAddr = reinterpret_cast_ptr<ARMWord*>(data + pos);
+ ARMWord* addr = getLdrImmAddress(ldrAddr);
+ if (*addr != InvalidBranchTarget) {
+ if (!(iter->m_offset & 1)) {
+ intptr_t difference = reinterpret_cast_ptr<ARMWord*>(data + *addr) - (ldrAddr + DefaultPrefetchOffset);
+
+ if ((difference <= MaximumBranchOffsetDistance && difference >= MinimumBranchOffsetDistance)) {
+ *ldrAddr = B | getConditionalField(*ldrAddr) | (difference & BranchOffsetMask);
+ continue;
+ }
+ }
+ *addr = reinterpret_cast<ARMWord>(data + *addr);
+ }
+ }
+
+ return result;
+}
+
+#if OS(LINUX) && COMPILER(RVCT)
+
+__asm void ARMAssembler::cacheFlush(void* code, size_t size)
+{
+ ARM
+ push {r7}
+ add r1, r1, r0
+ mov r7, #0xf0000
+ add r7, r7, #0x2
+ mov r2, #0x0
+ svc #0x0
+ pop {r7}
+ bx lr
+}
+
+#endif
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
diff --git a/src/3rdparty/masm/assembler/ARMAssembler.h b/src/3rdparty/masm/assembler/ARMAssembler.h
new file mode 100644
index 0000000000..3888226b21
--- /dev/null
+++ b/src/3rdparty/masm/assembler/ARMAssembler.h
@@ -0,0 +1,1129 @@
+/*
+ * Copyright (C) 2009, 2010 University of Szeged
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef ARMAssembler_h
+#define ARMAssembler_h
+
+#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
+
+#include "AssemblerBufferWithConstantPool.h"
+#include "JITCompilationEffort.h"
+#include <wtf/Assertions.h>
+namespace JSC {
+
+ typedef uint32_t ARMWord;
+
+ namespace ARMRegisters {
+ typedef enum {
+ r0 = 0,
+ r1,
+ r2,
+ r3, S0 = r3, /* Same as thumb assembler. */
+ r4,
+ r5,
+ r6,
+ r7,
+ r8,
+ r9,
+ r10,
+ r11,
+ r12, S1 = r12,
+ r13, sp = r13,
+ r14, lr = r14,
+ r15, pc = r15
+ } RegisterID;
+
+ typedef enum {
+ d0,
+ d1,
+ d2,
+ d3,
+ d4,
+ d5,
+ d6,
+ d7, SD0 = d7, /* Same as thumb assembler. */
+ d8,
+ d9,
+ d10,
+ d11,
+ d12,
+ d13,
+ d14,
+ d15,
+ d16,
+ d17,
+ d18,
+ d19,
+ d20,
+ d21,
+ d22,
+ d23,
+ d24,
+ d25,
+ d26,
+ d27,
+ d28,
+ d29,
+ d30,
+ d31
+ } FPRegisterID;
+
+ } // namespace ARMRegisters
+
+ class ARMAssembler {
+ public:
+ typedef ARMRegisters::RegisterID RegisterID;
+ typedef ARMRegisters::FPRegisterID FPRegisterID;
+ typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer;
+ typedef SegmentedVector<AssemblerLabel, 64> Jumps;
+
+ ARMAssembler()
+ : m_indexOfTailOfLastWatchpoint(1)
+ {
+ }
+
+ // ARM conditional constants
+ typedef enum {
+ EQ = 0x00000000, // Zero
+ NE = 0x10000000, // Non-zero
+ CS = 0x20000000,
+ CC = 0x30000000,
+ MI = 0x40000000,
+ PL = 0x50000000,
+ VS = 0x60000000,
+ VC = 0x70000000,
+ HI = 0x80000000,
+ LS = 0x90000000,
+ GE = 0xa0000000,
+ LT = 0xb0000000,
+ GT = 0xc0000000,
+ LE = 0xd0000000,
+ AL = 0xe0000000
+ } Condition;
+
+ // ARM instruction constants
+ enum {
+ AND = (0x0 << 21),
+ EOR = (0x1 << 21),
+ SUB = (0x2 << 21),
+ RSB = (0x3 << 21),
+ ADD = (0x4 << 21),
+ ADC = (0x5 << 21),
+ SBC = (0x6 << 21),
+ RSC = (0x7 << 21),
+ TST = (0x8 << 21),
+ TEQ = (0x9 << 21),
+ CMP = (0xa << 21),
+ CMN = (0xb << 21),
+ ORR = (0xc << 21),
+ MOV = (0xd << 21),
+ BIC = (0xe << 21),
+ MVN = (0xf << 21),
+ MUL = 0x00000090,
+ MULL = 0x00c00090,
+ VMOV_F64 = 0x0eb00b40,
+ VADD_F64 = 0x0e300b00,
+ VDIV_F64 = 0x0e800b00,
+ VSUB_F64 = 0x0e300b40,
+ VMUL_F64 = 0x0e200b00,
+ VCMP_F64 = 0x0eb40b40,
+ VSQRT_F64 = 0x0eb10bc0,
+ VABS_F64 = 0x0eb00bc0,
+ VNEG_F64 = 0x0eb10b40,
+ STMDB = 0x09200000,
+ LDMIA = 0x08b00000,
+ B = 0x0a000000,
+ BL = 0x0b000000,
+ BX = 0x012fff10,
+ VMOV_VFP64 = 0x0c400a10,
+ VMOV_ARM64 = 0x0c500a10,
+ VMOV_VFP32 = 0x0e000a10,
+ VMOV_ARM32 = 0x0e100a10,
+ VCVT_F64_S32 = 0x0eb80bc0,
+ VCVT_S32_F64 = 0x0ebd0b40,
+ VCVT_U32_F64 = 0x0ebc0b40,
+ VCVT_F32_F64 = 0x0eb70bc0,
+ VCVT_F64_F32 = 0x0eb70ac0,
+ VMRS_APSR = 0x0ef1fa10,
+ CLZ = 0x016f0f10,
+ BKPT = 0xe1200070,
+ BLX = 0x012fff30,
+#if WTF_ARM_ARCH_AT_LEAST(7)
+ MOVW = 0x03000000,
+ MOVT = 0x03400000,
+#endif
+ NOP = 0xe1a00000,
+ };
+
+ enum {
+ Op2Immediate = (1 << 25),
+ ImmediateForHalfWordTransfer = (1 << 22),
+ Op2InvertedImmediate = (1 << 26),
+ SetConditionalCodes = (1 << 20),
+ Op2IsRegisterArgument = (1 << 25),
+ // Data transfer flags.
+ DataTransferUp = (1 << 23),
+ DataTransferWriteBack = (1 << 21),
+ DataTransferPostUpdate = (1 << 24),
+ DataTransferLoad = (1 << 20),
+ ByteDataTransfer = (1 << 22),
+ };
+
+ enum DataTransferTypeA {
+ LoadUint32 = 0x05000000 | DataTransferLoad,
+ LoadUint8 = 0x05400000 | DataTransferLoad,
+ StoreUint32 = 0x05000000,
+ StoreUint8 = 0x05400000,
+ };
+
+ enum DataTransferTypeB {
+ LoadUint16 = 0x010000b0 | DataTransferLoad,
+ LoadInt16 = 0x010000f0 | DataTransferLoad,
+ LoadInt8 = 0x010000d0 | DataTransferLoad,
+ StoreUint16 = 0x010000b0,
+ };
+
+ enum DataTransferTypeFloat {
+ LoadFloat = 0x0d000a00 | DataTransferLoad,
+ LoadDouble = 0x0d000b00 | DataTransferLoad,
+ StoreFloat = 0x0d000a00,
+ StoreDouble = 0x0d000b00,
+ };
+
+ // Masks of ARM instructions
+ enum {
+ BranchOffsetMask = 0x00ffffff,
+ ConditionalFieldMask = 0xf0000000,
+ DataTransferOffsetMask = 0xfff,
+ };
+
+ enum {
+ MinimumBranchOffsetDistance = -0x00800000,
+ MaximumBranchOffsetDistance = 0x007fffff,
+ };
+
+ enum {
+ padForAlign8 = 0x00,
+ padForAlign16 = 0x0000,
+ padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction.
+ };
+
+ static const ARMWord InvalidImmediate = 0xf0000000;
+ static const ARMWord InvalidBranchTarget = 0xffffffff;
+ static const int DefaultPrefetchOffset = 2;
+
+ static const ARMWord BlxInstructionMask = 0x012fff30;
+ static const ARMWord LdrOrAddInstructionMask = 0x0ff00000;
+ static const ARMWord LdrPcImmediateInstructionMask = 0x0f7f0000;
+
+ static const ARMWord AddImmediateInstruction = 0x02800000;
+ static const ARMWord BlxInstruction = 0x012fff30;
+ static const ARMWord LdrImmediateInstruction = 0x05900000;
+ static const ARMWord LdrPcImmediateInstruction = 0x051f0000;
+
+ // Instruction formating
+
+ void emitInstruction(ARMWord op, int rd, int rn, ARMWord op2)
+ {
+ ASSERT(((op2 & ~Op2Immediate) <= 0xfff) || (((op2 & ~ImmediateForHalfWordTransfer) <= 0xfff)));
+ m_buffer.putInt(op | RN(rn) | RD(rd) | op2);
+ }
+
+ void emitDoublePrecisionInstruction(ARMWord op, int dd, int dn, int dm)
+ {
+ ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31));
+ m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4))
+ | ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4))
+ | (dm & 0xf) | ((dm & 0x10) << (5 - 4)));
+ }
+
+ void emitSinglePrecisionInstruction(ARMWord op, int sd, int sn, int sm)
+ {
+ ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31));
+ m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22)
+ | ((sn >> 1) << 16) | ((sn & 0x1) << 7)
+ | (sm >> 1) | ((sm & 0x1) << 5));
+ }
+
+ void bitAnd(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | AND, rd, rn, op2);
+ }
+
+ void bitAnds(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | AND | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void eor(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | EOR, rd, rn, op2);
+ }
+
+ void eors(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | EOR | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void sub(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | SUB, rd, rn, op2);
+ }
+
+ void subs(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | SUB | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void rsb(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | RSB, rd, rn, op2);
+ }
+
+ void rsbs(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | RSB | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void add(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | ADD, rd, rn, op2);
+ }
+
+ void adds(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | ADD | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void adc(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | ADC, rd, rn, op2);
+ }
+
+ void adcs(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | ADC | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void sbc(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | SBC, rd, rn, op2);
+ }
+
+ void sbcs(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | SBC | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void rsc(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | RSC, rd, rn, op2);
+ }
+
+ void rscs(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | RSC | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void tst(int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | TST | SetConditionalCodes, 0, rn, op2);
+ }
+
+ void teq(int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | TEQ | SetConditionalCodes, 0, rn, op2);
+ }
+
+ void cmp(int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | CMP | SetConditionalCodes, 0, rn, op2);
+ }
+
+ void cmn(int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | CMN | SetConditionalCodes, 0, rn, op2);
+ }
+
+ void orr(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | ORR, rd, rn, op2);
+ }
+
+ void orrs(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | ORR | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void mov(int rd, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | MOV, rd, ARMRegisters::r0, op2);
+ }
+
+#if WTF_ARM_ARCH_AT_LEAST(7)
+ void movw(int rd, ARMWord op2, Condition cc = AL)
+ {
+ ASSERT((op2 | 0xf0fff) == 0xf0fff);
+ m_buffer.putInt(toARMWord(cc) | MOVW | RD(rd) | op2);
+ }
+
+ void movt(int rd, ARMWord op2, Condition cc = AL)
+ {
+ ASSERT((op2 | 0xf0fff) == 0xf0fff);
+ m_buffer.putInt(toARMWord(cc) | MOVT | RD(rd) | op2);
+ }
+#endif
+
+ void movs(int rd, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | MOV | SetConditionalCodes, rd, ARMRegisters::r0, op2);
+ }
+
+ void bic(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | BIC, rd, rn, op2);
+ }
+
+ void bics(int rd, int rn, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | BIC | SetConditionalCodes, rd, rn, op2);
+ }
+
+ void mvn(int rd, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | MVN, rd, ARMRegisters::r0, op2);
+ }
+
+ void mvns(int rd, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | MVN | SetConditionalCodes, rd, ARMRegisters::r0, op2);
+ }
+
+ void mul(int rd, int rn, int rm, Condition cc = AL)
+ {
+ m_buffer.putInt(toARMWord(cc) | MUL | RN(rd) | RS(rn) | RM(rm));
+ }
+
+ void muls(int rd, int rn, int rm, Condition cc = AL)
+ {
+ m_buffer.putInt(toARMWord(cc) | MUL | SetConditionalCodes | RN(rd) | RS(rn) | RM(rm));
+ }
+
+ void mull(int rdhi, int rdlo, int rn, int rm, Condition cc = AL)
+ {
+ m_buffer.putInt(toARMWord(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm));
+ }
+
+ void vmov_f64(int dd, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VMOV_F64, dd, 0, dm);
+ }
+
+ void vadd_f64(int dd, int dn, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VADD_F64, dd, dn, dm);
+ }
+
+ void vdiv_f64(int dd, int dn, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VDIV_F64, dd, dn, dm);
+ }
+
+ void vsub_f64(int dd, int dn, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VSUB_F64, dd, dn, dm);
+ }
+
+ void vmul_f64(int dd, int dn, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VMUL_F64, dd, dn, dm);
+ }
+
+ void vcmp_f64(int dd, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VCMP_F64, dd, 0, dm);
+ }
+
+ void vsqrt_f64(int dd, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VSQRT_F64, dd, 0, dm);
+ }
+
+ void vabs_f64(int dd, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VABS_F64, dd, 0, dm);
+ }
+
+ void vneg_f64(int dd, int dm, Condition cc = AL)
+ {
+ emitDoublePrecisionInstruction(toARMWord(cc) | VNEG_F64, dd, 0, dm);
+ }
+
+ void ldrImmediate(int rd, ARMWord imm, Condition cc = AL)
+ {
+ m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm, true);
+ }
+
+ void ldrUniqueImmediate(int rd, ARMWord imm, Condition cc = AL)
+ {
+ m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm);
+ }
+
+ void dtrUp(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
+ }
+
+ void dtrUpRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType | DataTransferUp | Op2IsRegisterArgument, rd, rb, rm);
+ }
+
+ void dtrDown(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
+ }
+
+ void dtrDownRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType | Op2IsRegisterArgument, rd, rb, rm);
+ }
+
+ void halfDtrUp(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
+ }
+
+ void halfDtrUpRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rn, rm);
+ }
+
+ void halfDtrDown(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
+ }
+
+ void halfDtrDownRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | transferType, rd, rn, rm);
+ }
+
+ void doubleDtrUp(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
+ {
+ ASSERT(op2 <= 0xff && rd <= 15);
+ /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
+ m_buffer.putInt(toARMWord(cc) | DataTransferUp | type | (rd << 12) | RN(rb) | op2);
+ }
+
+ void doubleDtrDown(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
+ {
+ ASSERT(op2 <= 0xff && rd <= 15);
+ /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
+ m_buffer.putInt(toARMWord(cc) | type | (rd << 12) | RN(rb) | op2);
+ }
+
+ void push(int reg, Condition cc = AL)
+ {
+ ASSERT(ARMWord(reg) <= 0xf);
+ m_buffer.putInt(toARMWord(cc) | StoreUint32 | DataTransferWriteBack | RN(ARMRegisters::sp) | RD(reg) | 0x4);
+ }
+
+ void pop(int reg, Condition cc = AL)
+ {
+ ASSERT(ARMWord(reg) <= 0xf);
+ m_buffer.putInt(toARMWord(cc) | (LoadUint32 ^ DataTransferPostUpdate) | DataTransferUp | RN(ARMRegisters::sp) | RD(reg) | 0x4);
+ }
+
+ inline void poke(int reg, Condition cc = AL)
+ {
+ dtrDown(StoreUint32, ARMRegisters::sp, 0, reg, cc);
+ }
+
+ inline void peek(int reg, Condition cc = AL)
+ {
+ dtrUp(LoadUint32, reg, ARMRegisters::sp, 0, cc);
+ }
+
+ void vmov_vfp64(int sm, int rt, int rt2, Condition cc = AL)
+ {
+ ASSERT(rt != rt2);
+ m_buffer.putInt(toARMWord(cc) | VMOV_VFP64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
+ }
+
+ void vmov_arm64(int rt, int rt2, int sm, Condition cc = AL)
+ {
+ ASSERT(rt != rt2);
+ m_buffer.putInt(toARMWord(cc) | VMOV_ARM64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
+ }
+
+ void vmov_vfp32(int sn, int rt, Condition cc = AL)
+ {
+ ASSERT(rt <= 15);
+ emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_VFP32, rt << 1, sn, 0);
+ }
+
+ void vmov_arm32(int rt, int sn, Condition cc = AL)
+ {
+ ASSERT(rt <= 15);
+ emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_ARM32, rt << 1, sn, 0);
+ }
+
+ void vcvt_f64_s32(int dd, int sm, Condition cc = AL)
+ {
+ ASSERT(!(sm & 0x1)); // sm must be divisible by 2
+ emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_S32, dd, 0, (sm >> 1));
+ }
+
+ void vcvt_s32_f64(int sd, int dm, Condition cc = AL)
+ {
+ ASSERT(!(sd & 0x1)); // sd must be divisible by 2
+ emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_S32_F64, (sd >> 1), 0, dm);
+ }
+
+ void vcvt_u32_f64(int sd, int dm, Condition cc = AL)
+ {
+ ASSERT(!(sd & 0x1)); // sd must be divisible by 2
+ emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_U32_F64, (sd >> 1), 0, dm);
+ }
+
+ void vcvt_f64_f32(int dd, int sm, Condition cc = AL)
+ {
+ ASSERT(dd <= 15 && sm <= 15);
+ emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_F32, dd, 0, sm);
+ }
+
+ void vcvt_f32_f64(int dd, int sm, Condition cc = AL)
+ {
+ ASSERT(dd <= 15 && sm <= 15);
+ emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F32_F64, dd, 0, sm);
+ }
+
+ void vmrs_apsr(Condition cc = AL)
+ {
+ m_buffer.putInt(toARMWord(cc) | VMRS_APSR);
+ }
+
+ void clz(int rd, int rm, Condition cc = AL)
+ {
+ m_buffer.putInt(toARMWord(cc) | CLZ | RD(rd) | RM(rm));
+ }
+
+ void bkpt(ARMWord value)
+ {
+ m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf));
+ }
+
+ void nop()
+ {
+ m_buffer.putInt(NOP);
+ }
+
+ void bx(int rm, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | BX, 0, 0, RM(rm));
+ }
+
+ AssemblerLabel blx(int rm, Condition cc = AL)
+ {
+ emitInstruction(toARMWord(cc) | BLX, 0, 0, RM(rm));
+ return m_buffer.label();
+ }
+
+ static ARMWord lsl(int reg, ARMWord value)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ ASSERT(value <= 0x1f);
+ return reg | (value << 7) | 0x00;
+ }
+
+ static ARMWord lsr(int reg, ARMWord value)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ ASSERT(value <= 0x1f);
+ return reg | (value << 7) | 0x20;
+ }
+
+ static ARMWord asr(int reg, ARMWord value)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ ASSERT(value <= 0x1f);
+ return reg | (value << 7) | 0x40;
+ }
+
+ static ARMWord lslRegister(int reg, int shiftReg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ ASSERT(shiftReg <= ARMRegisters::pc);
+ return reg | (shiftReg << 8) | 0x10;
+ }
+
+ static ARMWord lsrRegister(int reg, int shiftReg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ ASSERT(shiftReg <= ARMRegisters::pc);
+ return reg | (shiftReg << 8) | 0x30;
+ }
+
+ static ARMWord asrRegister(int reg, int shiftReg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ ASSERT(shiftReg <= ARMRegisters::pc);
+ return reg | (shiftReg << 8) | 0x50;
+ }
+
+ // General helpers
+
+ size_t codeSize() const
+ {
+ return m_buffer.codeSize();
+ }
+
+ void ensureSpace(int insnSpace, int constSpace)
+ {
+ m_buffer.ensureSpace(insnSpace, constSpace);
+ }
+
+ int sizeOfConstantPool()
+ {
+ return m_buffer.sizeOfConstantPool();
+ }
+
+ AssemblerLabel labelIgnoringWatchpoints()
+ {
+ m_buffer.ensureSpaceForAnyInstruction();
+ return m_buffer.label();
+ }
+
+ AssemblerLabel labelForWatchpoint()
+ {
+ m_buffer.ensureSpaceForAnyInstruction(maxJumpReplacementSize() / sizeof(ARMWord));
+ AssemblerLabel result = m_buffer.label();
+ if (result.m_offset != (m_indexOfTailOfLastWatchpoint - maxJumpReplacementSize()))
+ result = label();
+ m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
+ return label();
+ }
+
+ AssemblerLabel label()
+ {
+ AssemblerLabel result = labelIgnoringWatchpoints();
+ while (result.m_offset + 1 < m_indexOfTailOfLastWatchpoint) {
+ nop();
+ // The available number of instructions are ensured by labelForWatchpoint.
+ result = m_buffer.label();
+ }
+ return result;
+ }
+
+ AssemblerLabel align(int alignment)
+ {
+ while (!m_buffer.isAligned(alignment))
+ mov(ARMRegisters::r0, ARMRegisters::r0);
+
+ return label();
+ }
+
+ AssemblerLabel loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0)
+ {
+ ensureSpace(sizeof(ARMWord), sizeof(ARMWord));
+ m_jumps.append(m_buffer.codeSize() | (useConstantPool & 0x1));
+ ldrUniqueImmediate(rd, InvalidBranchTarget, cc);
+ return m_buffer.label();
+ }
+
+ AssemblerLabel jmp(Condition cc = AL, int useConstantPool = 0)
+ {
+ return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool);
+ }
+
+ PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData&, void* ownerUID, JITCompilationEffort);
+
+ unsigned debugOffset() { return m_buffer.debugOffset(); }
+
+ // DFG assembly helpers for moving data between fp and registers.
+ void vmov(RegisterID rd1, RegisterID rd2, FPRegisterID rn)
+ {
+ vmov_arm64(rd1, rd2, rn);
+ }
+
+ void vmov(FPRegisterID rd, RegisterID rn1, RegisterID rn2)
+ {
+ vmov_vfp64(rd, rn1, rn2);
+ }
+
+ // Patching helpers
+
+ static ARMWord* getLdrImmAddress(ARMWord* insn)
+ {
+ // Check for call
+ if ((*insn & LdrPcImmediateInstructionMask) != LdrPcImmediateInstruction) {
+ // Must be BLX
+ ASSERT((*insn & BlxInstructionMask) == BlxInstruction);
+ insn--;
+ }
+
+ // Must be an ldr ..., [pc +/- imm]
+ ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
+
+ ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetchOffset * sizeof(ARMWord);
+ if (*insn & DataTransferUp)
+ return reinterpret_cast<ARMWord*>(addr + (*insn & DataTransferOffsetMask));
+ return reinterpret_cast<ARMWord*>(addr - (*insn & DataTransferOffsetMask));
+ }
+
+ static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool)
+ {
+ // Must be an ldr ..., [pc +/- imm]
+ ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
+
+ if (*insn & 0x1)
+ return reinterpret_cast<ARMWord*>(constPool + ((*insn & DataTransferOffsetMask) >> 1));
+ return getLdrImmAddress(insn);
+ }
+
+ static void patchPointerInternal(intptr_t from, void* to)
+ {
+ ARMWord* insn = reinterpret_cast<ARMWord*>(from);
+ ARMWord* addr = getLdrImmAddress(insn);
+ *addr = reinterpret_cast<ARMWord>(to);
+ }
+
+ static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value)
+ {
+ value = (value << 1) + 1;
+ ASSERT(!(value & ~DataTransferOffsetMask));
+ return (load & ~DataTransferOffsetMask) | value;
+ }
+
+ static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
+
+ // Read pointers
+ static void* readPointer(void* from)
+ {
+ ARMWord* instruction = reinterpret_cast<ARMWord*>(from);
+ ARMWord* address = getLdrImmAddress(instruction);
+ return *reinterpret_cast<void**>(address);
+ }
+
+ // Patch pointers
+
+ static void linkPointer(void* code, AssemblerLabel from, void* to)
+ {
+ patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to);
+ }
+
+ static void repatchInt32(void* where, int32_t to)
+ {
+ patchPointerInternal(reinterpret_cast<intptr_t>(where), reinterpret_cast<void*>(to));
+ }
+
+ static void repatchCompact(void* where, int32_t value)
+ {
+ ARMWord* instruction = reinterpret_cast<ARMWord*>(where);
+ ASSERT((*instruction & 0x0f700000) == LoadUint32);
+ if (value >= 0)
+ *instruction = (*instruction & 0xff7ff000) | DataTransferUp | value;
+ else
+ *instruction = (*instruction & 0xff7ff000) | -value;
+ cacheFlush(instruction, sizeof(ARMWord));
+ }
+
+ static void repatchPointer(void* from, void* to)
+ {
+ patchPointerInternal(reinterpret_cast<intptr_t>(from), to);
+ }
+
+ // Linkers
+ static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0)
+ {
+ return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord);
+ }
+
+ void linkJump(AssemblerLabel from, AssemblerLabel to)
+ {
+ ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset));
+ ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress());
+ *addr = toARMWord(to.m_offset);
+ }
+
+ static void linkJump(void* code, AssemblerLabel from, void* to)
+ {
+ patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
+ }
+
+ static void relinkJump(void* from, void* to)
+ {
+ patchPointerInternal(getAbsoluteJumpAddress(from), to);
+ }
+
+ static void linkCall(void* code, AssemblerLabel from, void* to)
+ {
+ patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
+ }
+
+ static void relinkCall(void* from, void* to)
+ {
+ patchPointerInternal(getAbsoluteJumpAddress(from), to);
+ }
+
+ static void* readCallTarget(void* from)
+ {
+ return reinterpret_cast<void*>(readPointer(reinterpret_cast<void*>(getAbsoluteJumpAddress(from))));
+ }
+
+ static void replaceWithJump(void* instructionStart, void* to)
+ {
+ ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
+ intptr_t difference = reinterpret_cast<intptr_t>(to) - (reinterpret_cast<intptr_t>(instruction) + DefaultPrefetchOffset * sizeof(ARMWord));
+
+ if (!(difference & 1)) {
+ difference >>= 2;
+ if ((difference <= MaximumBranchOffsetDistance && difference >= MinimumBranchOffsetDistance)) {
+ // Direct branch.
+ instruction[0] = B | AL | (difference & BranchOffsetMask);
+ cacheFlush(instruction, sizeof(ARMWord));
+ return;
+ }
+ }
+
+ // Load target.
+ instruction[0] = LoadUint32 | AL | RN(ARMRegisters::pc) | RD(ARMRegisters::pc) | 4;
+ instruction[1] = reinterpret_cast<ARMWord>(to);
+ cacheFlush(instruction, sizeof(ARMWord) * 2);
+ }
+
+ static ptrdiff_t maxJumpReplacementSize()
+ {
+ return sizeof(ARMWord) * 2;
+ }
+
+ static void replaceWithLoad(void* instructionStart)
+ {
+ ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
+ cacheFlush(instruction, sizeof(ARMWord));
+
+ ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
+ if ((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction) {
+ *instruction = (*instruction & ~LdrOrAddInstructionMask) | LdrImmediateInstruction;
+ cacheFlush(instruction, sizeof(ARMWord));
+ }
+ }
+
+ static void replaceWithAddressComputation(void* instructionStart)
+ {
+ ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
+ cacheFlush(instruction, sizeof(ARMWord));
+
+ ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
+ if ((*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction) {
+ *instruction = (*instruction & ~LdrOrAddInstructionMask) | AddImmediateInstruction;
+ cacheFlush(instruction, sizeof(ARMWord));
+ }
+ }
+
+ static void revertBranchPtrWithPatch(void* instructionStart, RegisterID rn, ARMWord imm)
+ {
+ ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
+
+ ASSERT((instruction[2] & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
+ instruction[0] = toARMWord(AL) | ((instruction[2] & 0x0fff0fff) + sizeof(ARMWord)) | RD(ARMRegisters::S1);
+ *getLdrImmAddress(instruction) = imm;
+ instruction[1] = toARMWord(AL) | CMP | SetConditionalCodes | RN(rn) | RM(ARMRegisters::S1);
+ cacheFlush(instruction, 2 * sizeof(ARMWord));
+ }
+
+ // Address operations
+
+ static void* getRelocatedAddress(void* code, AssemblerLabel label)
+ {
+ return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
+ }
+
+ // Address differences
+
+ static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
+ {
+ return b.m_offset - a.m_offset;
+ }
+
+ static unsigned getCallReturnOffset(AssemblerLabel call)
+ {
+ return call.m_offset;
+ }
+
+ // Handle immediates
+
+ static ARMWord getOp2(ARMWord imm);
+
+ // Fast case if imm is known to be between 0 and 0xff
+ static ARMWord getOp2Byte(ARMWord imm)
+ {
+ ASSERT(imm <= 0xff);
+ return Op2Immediate | imm;
+ }
+
+ static ARMWord getOp2Half(ARMWord imm)
+ {
+ ASSERT(imm <= 0xff);
+ return ImmediateForHalfWordTransfer | (imm & 0x0f) | ((imm & 0xf0) << 4);
+ }
+
+#if WTF_ARM_ARCH_AT_LEAST(7)
+ static ARMWord getImm16Op2(ARMWord imm)
+ {
+ if (imm <= 0xffff)
+ return (imm & 0xf000) << 4 | (imm & 0xfff);
+ return InvalidImmediate;
+ }
+#endif
+ ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false);
+ void moveImm(ARMWord imm, int dest);
+ ARMWord encodeComplexImm(ARMWord imm, int dest);
+
+ // Memory load/store helpers
+
+ void dataTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, int32_t offset);
+ void baseIndexTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
+ void dataTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, int32_t offset);
+ void baseIndexTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
+ void dataTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, int32_t offset);
+ void baseIndexTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
+
+ // Constant pool hnadlers
+
+ static ARMWord placeConstantPoolBarrier(int offset)
+ {
+ offset = (offset - sizeof(ARMWord)) >> 2;
+ ASSERT((offset <= MaximumBranchOffsetDistance && offset >= MinimumBranchOffsetDistance));
+ return AL | B | (offset & BranchOffsetMask);
+ }
+
+#if OS(LINUX) && COMPILER(GCC)
+ static inline void linuxPageFlush(uintptr_t begin, uintptr_t end)
+ {
+ asm volatile(
+ "push {r7}\n"
+ "mov r0, %0\n"
+ "mov r1, %1\n"
+ "mov r7, #0xf0000\n"
+ "add r7, r7, #0x2\n"
+ "mov r2, #0x0\n"
+ "svc 0x0\n"
+ "pop {r7}\n"
+ :
+ : "r" (begin), "r" (end)
+ : "r0", "r1", "r2");
+ }
+#endif
+
+#if OS(LINUX) && COMPILER(RVCT)
+ static __asm void cacheFlush(void* code, size_t);
+#else
+ static void cacheFlush(void* code, size_t size)
+ {
+#if OS(LINUX) && COMPILER(GCC)
+ size_t page = pageSize();
+ uintptr_t current = reinterpret_cast<uintptr_t>(code);
+ uintptr_t end = current + size;
+ uintptr_t firstPageEnd = (current & ~(page - 1)) + page;
+
+ if (end <= firstPageEnd) {
+ linuxPageFlush(current, end);
+ return;
+ }
+
+ linuxPageFlush(current, firstPageEnd);
+
+ for (current = firstPageEnd; current + page < end; current += page)
+ linuxPageFlush(current, current + page);
+
+ linuxPageFlush(current, end);
+#elif OS(WINCE)
+ CacheRangeFlush(code, size, CACHE_SYNC_ALL);
+#elif OS(QNX) && ENABLE(ASSEMBLER_WX_EXCLUSIVE)
+ UNUSED_PARAM(code);
+ UNUSED_PARAM(size);
+#elif OS(QNX)
+ msync(code, size, MS_INVALIDATE_ICACHE);
+#else
+#error "The cacheFlush support is missing on this platform."
+#endif
+ }
+#endif
+
+ private:
+ static ARMWord RM(int reg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ return reg;
+ }
+
+ static ARMWord RS(int reg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ return reg << 8;
+ }
+
+ static ARMWord RD(int reg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ return reg << 12;
+ }
+
+ static ARMWord RN(int reg)
+ {
+ ASSERT(reg <= ARMRegisters::pc);
+ return reg << 16;
+ }
+
+ static ARMWord getConditionalField(ARMWord i)
+ {
+ return i & ConditionalFieldMask;
+ }
+
+ static ARMWord toARMWord(Condition cc)
+ {
+ return static_cast<ARMWord>(cc);
+ }
+
+ static ARMWord toARMWord(uint32_t u)
+ {
+ return static_cast<ARMWord>(u);
+ }
+
+ int genInt(int reg, ARMWord imm, bool positive);
+
+ ARMBuffer m_buffer;
+ Jumps m_jumps;
+ uint32_t m_indexOfTailOfLastWatchpoint;
+ };
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
+
+#endif // ARMAssembler_h
diff --git a/src/3rdparty/masm/assembler/ARMv7Assembler.cpp b/src/3rdparty/masm/assembler/ARMv7Assembler.cpp
new file mode 100644
index 0000000000..faca66421b
--- /dev/null
+++ b/src/3rdparty/masm/assembler/ARMv7Assembler.cpp
@@ -0,0 +1,36 @@
+/*
+ * Copyright (C) 2010 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+
+#if ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)
+
+#include "ARMv7Assembler.h"
+
+namespace JSC {
+
+}
+
+#endif
diff --git a/src/3rdparty/masm/assembler/ARMv7Assembler.h b/src/3rdparty/masm/assembler/ARMv7Assembler.h
new file mode 100644
index 0000000000..7dcf656921
--- /dev/null
+++ b/src/3rdparty/masm/assembler/ARMv7Assembler.h
@@ -0,0 +1,2790 @@
+/*
+ * Copyright (C) 2009, 2010, 2012, 2013 Apple Inc. All rights reserved.
+ * Copyright (C) 2010 University of Szeged
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef ARMAssembler_h
+#define ARMAssembler_h
+
+#if ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)
+
+#include "AssemblerBuffer.h"
+#include <wtf/Assertions.h>
+#include <wtf/Vector.h>
+#include <stdint.h>
+
+namespace JSC {
+
+namespace ARMRegisters {
+ typedef enum {
+ r0,
+ r1,
+ r2,
+ r3,
+ r4,
+ r5,
+ r6,
+ r7, wr = r7, // thumb work register
+ r8,
+ r9, sb = r9, // static base
+ r10, sl = r10, // stack limit
+ r11, fp = r11, // frame pointer
+ r12, ip = r12,
+ r13, sp = r13,
+ r14, lr = r14,
+ r15, pc = r15,
+ } RegisterID;
+
+ typedef enum {
+ s0,
+ s1,
+ s2,
+ s3,
+ s4,
+ s5,
+ s6,
+ s7,
+ s8,
+ s9,
+ s10,
+ s11,
+ s12,
+ s13,
+ s14,
+ s15,
+ s16,
+ s17,
+ s18,
+ s19,
+ s20,
+ s21,
+ s22,
+ s23,
+ s24,
+ s25,
+ s26,
+ s27,
+ s28,
+ s29,
+ s30,
+ s31,
+ } FPSingleRegisterID;
+
+ typedef enum {
+ d0,
+ d1,
+ d2,
+ d3,
+ d4,
+ d5,
+ d6,
+ d7,
+ d8,
+ d9,
+ d10,
+ d11,
+ d12,
+ d13,
+ d14,
+ d15,
+ d16,
+ d17,
+ d18,
+ d19,
+ d20,
+ d21,
+ d22,
+ d23,
+ d24,
+ d25,
+ d26,
+ d27,
+ d28,
+ d29,
+ d30,
+ d31,
+ } FPDoubleRegisterID;
+
+ typedef enum {
+ q0,
+ q1,
+ q2,
+ q3,
+ q4,
+ q5,
+ q6,
+ q7,
+ q8,
+ q9,
+ q10,
+ q11,
+ q12,
+ q13,
+ q14,
+ q15,
+ q16,
+ q17,
+ q18,
+ q19,
+ q20,
+ q21,
+ q22,
+ q23,
+ q24,
+ q25,
+ q26,
+ q27,
+ q28,
+ q29,
+ q30,
+ q31,
+ } FPQuadRegisterID;
+
+ inline FPSingleRegisterID asSingle(FPDoubleRegisterID reg)
+ {
+ ASSERT(reg < d16);
+ return (FPSingleRegisterID)(reg << 1);
+ }
+
+ inline FPDoubleRegisterID asDouble(FPSingleRegisterID reg)
+ {
+ ASSERT(!(reg & 1));
+ return (FPDoubleRegisterID)(reg >> 1);
+ }
+}
+
+class ARMv7Assembler;
+class ARMThumbImmediate {
+ friend class ARMv7Assembler;
+
+ typedef uint8_t ThumbImmediateType;
+ static const ThumbImmediateType TypeInvalid = 0;
+ static const ThumbImmediateType TypeEncoded = 1;
+ static const ThumbImmediateType TypeUInt16 = 2;
+
+ typedef union {
+ int16_t asInt;
+ struct {
+ unsigned imm8 : 8;
+ unsigned imm3 : 3;
+ unsigned i : 1;
+ unsigned imm4 : 4;
+ };
+ // If this is an encoded immediate, then it may describe a shift, or a pattern.
+ struct {
+ unsigned shiftValue7 : 7;
+ unsigned shiftAmount : 5;
+ };
+ struct {
+ unsigned immediate : 8;
+ unsigned pattern : 4;
+ };
+ } ThumbImmediateValue;
+
+ // byte0 contains least significant bit; not using an array to make client code endian agnostic.
+ typedef union {
+ int32_t asInt;
+ struct {
+ uint8_t byte0;
+ uint8_t byte1;
+ uint8_t byte2;
+ uint8_t byte3;
+ };
+ } PatternBytes;
+
+ ALWAYS_INLINE static void countLeadingZerosPartial(uint32_t& value, int32_t& zeros, const int N)
+ {
+ if (value & ~((1 << N) - 1)) /* check for any of the top N bits (of 2N bits) are set */
+ value >>= N; /* if any were set, lose the bottom N */
+ else /* if none of the top N bits are set, */
+ zeros += N; /* then we have identified N leading zeros */
+ }
+
+ static int32_t countLeadingZeros(uint32_t value)
+ {
+ if (!value)
+ return 32;
+
+ int32_t zeros = 0;
+ countLeadingZerosPartial(value, zeros, 16);
+ countLeadingZerosPartial(value, zeros, 8);
+ countLeadingZerosPartial(value, zeros, 4);
+ countLeadingZerosPartial(value, zeros, 2);
+ countLeadingZerosPartial(value, zeros, 1);
+ return zeros;
+ }
+
+ ARMThumbImmediate()
+ : m_type(TypeInvalid)
+ {
+ m_value.asInt = 0;
+ }
+
+ ARMThumbImmediate(ThumbImmediateType type, ThumbImmediateValue value)
+ : m_type(type)
+ , m_value(value)
+ {
+ }
+
+ ARMThumbImmediate(ThumbImmediateType type, uint16_t value)
+ : m_type(TypeUInt16)
+ {
+ // Make sure this constructor is only reached with type TypeUInt16;
+ // this extra parameter makes the code a little clearer by making it
+ // explicit at call sites which type is being constructed
+ ASSERT_UNUSED(type, type == TypeUInt16);
+
+ m_value.asInt = value;
+ }
+
+public:
+ static ARMThumbImmediate makeEncodedImm(uint32_t value)
+ {
+ ThumbImmediateValue encoding;
+ encoding.asInt = 0;
+
+ // okay, these are easy.
+ if (value < 256) {
+ encoding.immediate = value;
+ encoding.pattern = 0;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ int32_t leadingZeros = countLeadingZeros(value);
+ // if there were 24 or more leading zeros, then we'd have hit the (value < 256) case.
+ ASSERT(leadingZeros < 24);
+
+ // Given a number with bit fields Z:B:C, where count(Z)+count(B)+count(C) == 32,
+ // Z are the bits known zero, B is the 8-bit immediate, C are the bits to check for
+ // zero. count(B) == 8, so the count of bits to be checked is 24 - count(Z).
+ int32_t rightShiftAmount = 24 - leadingZeros;
+ if (value == ((value >> rightShiftAmount) << rightShiftAmount)) {
+ // Shift the value down to the low byte position. The assign to
+ // shiftValue7 drops the implicit top bit.
+ encoding.shiftValue7 = value >> rightShiftAmount;
+ // The endoded shift amount is the magnitude of a right rotate.
+ encoding.shiftAmount = 8 + leadingZeros;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ PatternBytes bytes;
+ bytes.asInt = value;
+
+ if ((bytes.byte0 == bytes.byte1) && (bytes.byte0 == bytes.byte2) && (bytes.byte0 == bytes.byte3)) {
+ encoding.immediate = bytes.byte0;
+ encoding.pattern = 3;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ if ((bytes.byte0 == bytes.byte2) && !(bytes.byte1 | bytes.byte3)) {
+ encoding.immediate = bytes.byte0;
+ encoding.pattern = 1;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ if ((bytes.byte1 == bytes.byte3) && !(bytes.byte0 | bytes.byte2)) {
+ encoding.immediate = bytes.byte1;
+ encoding.pattern = 2;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ return ARMThumbImmediate();
+ }
+
+ static ARMThumbImmediate makeUInt12(int32_t value)
+ {
+ return (!(value & 0xfffff000))
+ ? ARMThumbImmediate(TypeUInt16, (uint16_t)value)
+ : ARMThumbImmediate();
+ }
+
+ static ARMThumbImmediate makeUInt12OrEncodedImm(int32_t value)
+ {
+ // If this is not a 12-bit unsigned it, try making an encoded immediate.
+ return (!(value & 0xfffff000))
+ ? ARMThumbImmediate(TypeUInt16, (uint16_t)value)
+ : makeEncodedImm(value);
+ }
+
+ // The 'make' methods, above, return a !isValid() value if the argument
+ // cannot be represented as the requested type. This methods is called
+ // 'get' since the argument can always be represented.
+ static ARMThumbImmediate makeUInt16(uint16_t value)
+ {
+ return ARMThumbImmediate(TypeUInt16, value);
+ }
+
+ bool isValid()
+ {
+ return m_type != TypeInvalid;
+ }
+
+ uint16_t asUInt16() const { return m_value.asInt; }
+
+ // These methods rely on the format of encoded byte values.
+ bool isUInt3() { return !(m_value.asInt & 0xfff8); }
+ bool isUInt4() { return !(m_value.asInt & 0xfff0); }
+ bool isUInt5() { return !(m_value.asInt & 0xffe0); }
+ bool isUInt6() { return !(m_value.asInt & 0xffc0); }
+ bool isUInt7() { return !(m_value.asInt & 0xff80); }
+ bool isUInt8() { return !(m_value.asInt & 0xff00); }
+ bool isUInt9() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xfe00); }
+ bool isUInt10() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xfc00); }
+ bool isUInt12() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xf000); }
+ bool isUInt16() { return m_type == TypeUInt16; }
+ uint8_t getUInt3() { ASSERT(isUInt3()); return m_value.asInt; }
+ uint8_t getUInt4() { ASSERT(isUInt4()); return m_value.asInt; }
+ uint8_t getUInt5() { ASSERT(isUInt5()); return m_value.asInt; }
+ uint8_t getUInt6() { ASSERT(isUInt6()); return m_value.asInt; }
+ uint8_t getUInt7() { ASSERT(isUInt7()); return m_value.asInt; }
+ uint8_t getUInt8() { ASSERT(isUInt8()); return m_value.asInt; }
+ uint16_t getUInt9() { ASSERT(isUInt9()); return m_value.asInt; }
+ uint16_t getUInt10() { ASSERT(isUInt10()); return m_value.asInt; }
+ uint16_t getUInt12() { ASSERT(isUInt12()); return m_value.asInt; }
+ uint16_t getUInt16() { ASSERT(isUInt16()); return m_value.asInt; }
+
+ bool isEncodedImm() { return m_type == TypeEncoded; }
+
+private:
+ ThumbImmediateType m_type;
+ ThumbImmediateValue m_value;
+};
+
+typedef enum {
+ SRType_LSL,
+ SRType_LSR,
+ SRType_ASR,
+ SRType_ROR,
+
+ SRType_RRX = SRType_ROR
+} ARMShiftType;
+
+class ShiftTypeAndAmount {
+ friend class ARMv7Assembler;
+
+public:
+ ShiftTypeAndAmount()
+ {
+ m_u.type = (ARMShiftType)0;
+ m_u.amount = 0;
+ }
+
+ ShiftTypeAndAmount(ARMShiftType type, unsigned amount)
+ {
+ m_u.type = type;
+ m_u.amount = amount & 31;
+ }
+
+ unsigned lo4() { return m_u.lo4; }
+ unsigned hi4() { return m_u.hi4; }
+
+private:
+ union {
+ struct {
+ unsigned lo4 : 4;
+ unsigned hi4 : 4;
+ };
+ struct {
+ unsigned type : 2;
+ unsigned amount : 6;
+ };
+ } m_u;
+};
+
+class ARMv7Assembler {
+public:
+ typedef ARMRegisters::RegisterID RegisterID;
+ typedef ARMRegisters::FPSingleRegisterID FPSingleRegisterID;
+ typedef ARMRegisters::FPDoubleRegisterID FPDoubleRegisterID;
+ typedef ARMRegisters::FPQuadRegisterID FPQuadRegisterID;
+
+ // (HS, LO, HI, LS) -> (AE, B, A, BE)
+ // (VS, VC) -> (O, NO)
+ typedef enum {
+ ConditionEQ,
+ ConditionNE,
+ ConditionHS, ConditionCS = ConditionHS,
+ ConditionLO, ConditionCC = ConditionLO,
+ ConditionMI,
+ ConditionPL,
+ ConditionVS,
+ ConditionVC,
+ ConditionHI,
+ ConditionLS,
+ ConditionGE,
+ ConditionLT,
+ ConditionGT,
+ ConditionLE,
+ ConditionAL,
+ ConditionInvalid
+ } Condition;
+
+#define JUMP_ENUM_WITH_SIZE(index, value) (((value) << 3) | (index))
+#define JUMP_ENUM_SIZE(jump) ((jump) >> 3)
+ enum JumpType { JumpFixed = JUMP_ENUM_WITH_SIZE(0, 0),
+ JumpNoCondition = JUMP_ENUM_WITH_SIZE(1, 5 * sizeof(uint16_t)),
+ JumpCondition = JUMP_ENUM_WITH_SIZE(2, 6 * sizeof(uint16_t)),
+ JumpNoConditionFixedSize = JUMP_ENUM_WITH_SIZE(3, 5 * sizeof(uint16_t)),
+ JumpConditionFixedSize = JUMP_ENUM_WITH_SIZE(4, 6 * sizeof(uint16_t))
+ };
+ enum JumpLinkType {
+ LinkInvalid = JUMP_ENUM_WITH_SIZE(0, 0),
+ LinkJumpT1 = JUMP_ENUM_WITH_SIZE(1, sizeof(uint16_t)),
+ LinkJumpT2 = JUMP_ENUM_WITH_SIZE(2, sizeof(uint16_t)),
+ LinkJumpT3 = JUMP_ENUM_WITH_SIZE(3, 2 * sizeof(uint16_t)),
+ LinkJumpT4 = JUMP_ENUM_WITH_SIZE(4, 2 * sizeof(uint16_t)),
+ LinkConditionalJumpT4 = JUMP_ENUM_WITH_SIZE(5, 3 * sizeof(uint16_t)),
+ LinkBX = JUMP_ENUM_WITH_SIZE(6, 5 * sizeof(uint16_t)),
+ LinkConditionalBX = JUMP_ENUM_WITH_SIZE(7, 6 * sizeof(uint16_t))
+ };
+
+ class LinkRecord {
+ public:
+ LinkRecord(intptr_t from, intptr_t to, JumpType type, Condition condition)
+ {
+ data.realTypes.m_from = from;
+ data.realTypes.m_to = to;
+ data.realTypes.m_type = type;
+ data.realTypes.m_linkType = LinkInvalid;
+ data.realTypes.m_condition = condition;
+ }
+ void operator=(const LinkRecord& other)
+ {
+ data.copyTypes.content[0] = other.data.copyTypes.content[0];
+ data.copyTypes.content[1] = other.data.copyTypes.content[1];
+ data.copyTypes.content[2] = other.data.copyTypes.content[2];
+ }
+ intptr_t from() const { return data.realTypes.m_from; }
+ void setFrom(intptr_t from) { data.realTypes.m_from = from; }
+ intptr_t to() const { return data.realTypes.m_to; }
+ JumpType type() const { return data.realTypes.m_type; }
+ JumpLinkType linkType() const { return data.realTypes.m_linkType; }
+ void setLinkType(JumpLinkType linkType) { ASSERT(data.realTypes.m_linkType == LinkInvalid); data.realTypes.m_linkType = linkType; }
+ Condition condition() const { return data.realTypes.m_condition; }
+ private:
+ union {
+ struct RealTypes {
+ intptr_t m_from : 31;
+ intptr_t m_to : 31;
+ JumpType m_type : 8;
+ JumpLinkType m_linkType : 8;
+ Condition m_condition : 16;
+ } realTypes;
+ struct CopyTypes {
+ uint32_t content[3];
+ } copyTypes;
+ COMPILE_ASSERT(sizeof(RealTypes) == sizeof(CopyTypes), LinkRecordCopyStructSizeEqualsRealStruct);
+ } data;
+ };
+
+ ARMv7Assembler()
+ : m_indexOfLastWatchpoint(INT_MIN)
+ , m_indexOfTailOfLastWatchpoint(INT_MIN)
+ {
+ }
+
+private:
+
+ // ARMv7, Appx-A.6.3
+ static bool BadReg(RegisterID reg)
+ {
+ return (reg == ARMRegisters::sp) || (reg == ARMRegisters::pc);
+ }
+
+ uint32_t singleRegisterMask(FPSingleRegisterID rdNum, int highBitsShift, int lowBitShift)
+ {
+ uint32_t rdMask = (rdNum >> 1) << highBitsShift;
+ if (rdNum & 1)
+ rdMask |= 1 << lowBitShift;
+ return rdMask;
+ }
+
+ uint32_t doubleRegisterMask(FPDoubleRegisterID rdNum, int highBitShift, int lowBitsShift)
+ {
+ uint32_t rdMask = (rdNum & 0xf) << lowBitsShift;
+ if (rdNum & 16)
+ rdMask |= 1 << highBitShift;
+ return rdMask;
+ }
+
+ typedef enum {
+ OP_ADD_reg_T1 = 0x1800,
+ OP_SUB_reg_T1 = 0x1A00,
+ OP_ADD_imm_T1 = 0x1C00,
+ OP_SUB_imm_T1 = 0x1E00,
+ OP_MOV_imm_T1 = 0x2000,
+ OP_CMP_imm_T1 = 0x2800,
+ OP_ADD_imm_T2 = 0x3000,
+ OP_SUB_imm_T2 = 0x3800,
+ OP_AND_reg_T1 = 0x4000,
+ OP_EOR_reg_T1 = 0x4040,
+ OP_TST_reg_T1 = 0x4200,
+ OP_RSB_imm_T1 = 0x4240,
+ OP_CMP_reg_T1 = 0x4280,
+ OP_ORR_reg_T1 = 0x4300,
+ OP_MVN_reg_T1 = 0x43C0,
+ OP_ADD_reg_T2 = 0x4400,
+ OP_MOV_reg_T1 = 0x4600,
+ OP_BLX = 0x4700,
+ OP_BX = 0x4700,
+ OP_STR_reg_T1 = 0x5000,
+ OP_STRH_reg_T1 = 0x5200,
+ OP_STRB_reg_T1 = 0x5400,
+ OP_LDRSB_reg_T1 = 0x5600,
+ OP_LDR_reg_T1 = 0x5800,
+ OP_LDRH_reg_T1 = 0x5A00,
+ OP_LDRB_reg_T1 = 0x5C00,
+ OP_LDRSH_reg_T1 = 0x5E00,
+ OP_STR_imm_T1 = 0x6000,
+ OP_LDR_imm_T1 = 0x6800,
+ OP_STRB_imm_T1 = 0x7000,
+ OP_LDRB_imm_T1 = 0x7800,
+ OP_STRH_imm_T1 = 0x8000,
+ OP_LDRH_imm_T1 = 0x8800,
+ OP_STR_imm_T2 = 0x9000,
+ OP_LDR_imm_T2 = 0x9800,
+ OP_ADD_SP_imm_T1 = 0xA800,
+ OP_ADD_SP_imm_T2 = 0xB000,
+ OP_SUB_SP_imm_T1 = 0xB080,
+ OP_BKPT = 0xBE00,
+ OP_IT = 0xBF00,
+ OP_NOP_T1 = 0xBF00,
+ } OpcodeID;
+
+ typedef enum {
+ OP_B_T1 = 0xD000,
+ OP_B_T2 = 0xE000,
+ OP_AND_reg_T2 = 0xEA00,
+ OP_TST_reg_T2 = 0xEA10,
+ OP_ORR_reg_T2 = 0xEA40,
+ OP_ORR_S_reg_T2 = 0xEA50,
+ OP_ASR_imm_T1 = 0xEA4F,
+ OP_LSL_imm_T1 = 0xEA4F,
+ OP_LSR_imm_T1 = 0xEA4F,
+ OP_ROR_imm_T1 = 0xEA4F,
+ OP_MVN_reg_T2 = 0xEA6F,
+ OP_EOR_reg_T2 = 0xEA80,
+ OP_ADD_reg_T3 = 0xEB00,
+ OP_ADD_S_reg_T3 = 0xEB10,
+ OP_SUB_reg_T2 = 0xEBA0,
+ OP_SUB_S_reg_T2 = 0xEBB0,
+ OP_CMP_reg_T2 = 0xEBB0,
+ OP_VMOV_CtoD = 0xEC00,
+ OP_VMOV_DtoC = 0xEC10,
+ OP_FSTS = 0xED00,
+ OP_VSTR = 0xED00,
+ OP_FLDS = 0xED10,
+ OP_VLDR = 0xED10,
+ OP_VMOV_CtoS = 0xEE00,
+ OP_VMOV_StoC = 0xEE10,
+ OP_VMUL_T2 = 0xEE20,
+ OP_VADD_T2 = 0xEE30,
+ OP_VSUB_T2 = 0xEE30,
+ OP_VDIV = 0xEE80,
+ OP_VABS_T2 = 0xEEB0,
+ OP_VCMP = 0xEEB0,
+ OP_VCVT_FPIVFP = 0xEEB0,
+ OP_VMOV_T2 = 0xEEB0,
+ OP_VMOV_IMM_T2 = 0xEEB0,
+ OP_VMRS = 0xEEB0,
+ OP_VNEG_T2 = 0xEEB0,
+ OP_VSQRT_T1 = 0xEEB0,
+ OP_VCVTSD_T1 = 0xEEB0,
+ OP_VCVTDS_T1 = 0xEEB0,
+ OP_B_T3a = 0xF000,
+ OP_B_T4a = 0xF000,
+ OP_AND_imm_T1 = 0xF000,
+ OP_TST_imm = 0xF010,
+ OP_ORR_imm_T1 = 0xF040,
+ OP_MOV_imm_T2 = 0xF040,
+ OP_MVN_imm = 0xF060,
+ OP_EOR_imm_T1 = 0xF080,
+ OP_ADD_imm_T3 = 0xF100,
+ OP_ADD_S_imm_T3 = 0xF110,
+ OP_CMN_imm = 0xF110,
+ OP_ADC_imm = 0xF140,
+ OP_SUB_imm_T3 = 0xF1A0,
+ OP_SUB_S_imm_T3 = 0xF1B0,
+ OP_CMP_imm_T2 = 0xF1B0,
+ OP_RSB_imm_T2 = 0xF1C0,
+ OP_RSB_S_imm_T2 = 0xF1D0,
+ OP_ADD_imm_T4 = 0xF200,
+ OP_MOV_imm_T3 = 0xF240,
+ OP_SUB_imm_T4 = 0xF2A0,
+ OP_MOVT = 0xF2C0,
+ OP_UBFX_T1 = 0xF3C0,
+ OP_NOP_T2a = 0xF3AF,
+ OP_STRB_imm_T3 = 0xF800,
+ OP_STRB_reg_T2 = 0xF800,
+ OP_LDRB_imm_T3 = 0xF810,
+ OP_LDRB_reg_T2 = 0xF810,
+ OP_STRH_imm_T3 = 0xF820,
+ OP_STRH_reg_T2 = 0xF820,
+ OP_LDRH_reg_T2 = 0xF830,
+ OP_LDRH_imm_T3 = 0xF830,
+ OP_STR_imm_T4 = 0xF840,
+ OP_STR_reg_T2 = 0xF840,
+ OP_LDR_imm_T4 = 0xF850,
+ OP_LDR_reg_T2 = 0xF850,
+ OP_STRB_imm_T2 = 0xF880,
+ OP_LDRB_imm_T2 = 0xF890,
+ OP_STRH_imm_T2 = 0xF8A0,
+ OP_LDRH_imm_T2 = 0xF8B0,
+ OP_STR_imm_T3 = 0xF8C0,
+ OP_LDR_imm_T3 = 0xF8D0,
+ OP_LDRSB_reg_T2 = 0xF910,
+ OP_LDRSH_reg_T2 = 0xF930,
+ OP_LSL_reg_T2 = 0xFA00,
+ OP_LSR_reg_T2 = 0xFA20,
+ OP_ASR_reg_T2 = 0xFA40,
+ OP_ROR_reg_T2 = 0xFA60,
+ OP_CLZ = 0xFAB0,
+ OP_SMULL_T1 = 0xFB80,
+#if CPU(APPLE_ARMV7S)
+ OP_SDIV_T1 = 0xFB90,
+ OP_UDIV_T1 = 0xFBB0,
+#endif
+ } OpcodeID1;
+
+ typedef enum {
+ OP_VADD_T2b = 0x0A00,
+ OP_VDIVb = 0x0A00,
+ OP_FLDSb = 0x0A00,
+ OP_VLDRb = 0x0A00,
+ OP_VMOV_IMM_T2b = 0x0A00,
+ OP_VMOV_T2b = 0x0A40,
+ OP_VMUL_T2b = 0x0A00,
+ OP_FSTSb = 0x0A00,
+ OP_VSTRb = 0x0A00,
+ OP_VMOV_StoCb = 0x0A10,
+ OP_VMOV_CtoSb = 0x0A10,
+ OP_VMOV_DtoCb = 0x0A10,
+ OP_VMOV_CtoDb = 0x0A10,
+ OP_VMRSb = 0x0A10,
+ OP_VABS_T2b = 0x0A40,
+ OP_VCMPb = 0x0A40,
+ OP_VCVT_FPIVFPb = 0x0A40,
+ OP_VNEG_T2b = 0x0A40,
+ OP_VSUB_T2b = 0x0A40,
+ OP_VSQRT_T1b = 0x0A40,
+ OP_VCVTSD_T1b = 0x0A40,
+ OP_VCVTDS_T1b = 0x0A40,
+ OP_NOP_T2b = 0x8000,
+ OP_B_T3b = 0x8000,
+ OP_B_T4b = 0x9000,
+ } OpcodeID2;
+
+ struct FourFours {
+ FourFours(unsigned f3, unsigned f2, unsigned f1, unsigned f0)
+ {
+ m_u.f0 = f0;
+ m_u.f1 = f1;
+ m_u.f2 = f2;
+ m_u.f3 = f3;
+ }
+
+ union {
+ unsigned value;
+ struct {
+ unsigned f0 : 4;
+ unsigned f1 : 4;
+ unsigned f2 : 4;
+ unsigned f3 : 4;
+ };
+ } m_u;
+ };
+
+ class ARMInstructionFormatter;
+
+ // false means else!
+ bool ifThenElseConditionBit(Condition condition, bool isIf)
+ {
+ return isIf ? (condition & 1) : !(condition & 1);
+ }
+ uint8_t ifThenElse(Condition condition, bool inst2if, bool inst3if, bool inst4if)
+ {
+ int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
+ | (ifThenElseConditionBit(condition, inst3if) << 2)
+ | (ifThenElseConditionBit(condition, inst4if) << 1)
+ | 1;
+ ASSERT((condition != ConditionAL) || !(mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+ uint8_t ifThenElse(Condition condition, bool inst2if, bool inst3if)
+ {
+ int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
+ | (ifThenElseConditionBit(condition, inst3if) << 2)
+ | 2;
+ ASSERT((condition != ConditionAL) || !(mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+ uint8_t ifThenElse(Condition condition, bool inst2if)
+ {
+ int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
+ | 4;
+ ASSERT((condition != ConditionAL) || !(mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+
+ uint8_t ifThenElse(Condition condition)
+ {
+ int mask = 8;
+ return (condition << 4) | mask;
+ }
+
+public:
+
+ void adc(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADC_imm, rn, rd, imm);
+ }
+
+ void add(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+
+ if (rn == ARMRegisters::sp) {
+ ASSERT(!(imm.getUInt16() & 3));
+ if (!(rd & 8) && imm.isUInt10()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_ADD_SP_imm_T1, rd, static_cast<uint8_t>(imm.getUInt10() >> 2));
+ return;
+ } else if ((rd == ARMRegisters::sp) && imm.isUInt9()) {
+ m_formatter.oneWordOp9Imm7(OP_ADD_SP_imm_T2, static_cast<uint8_t>(imm.getUInt9() >> 2));
+ return;
+ }
+ } else if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_ADD_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ if (imm.isEncodedImm())
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_imm_T3, rn, rd, imm);
+ else {
+ ASSERT(imm.isUInt12());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_imm_T4, rn, rd, imm);
+ }
+ }
+
+ ALWAYS_INLINE void add(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ADD_reg_T3, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // NOTE: In an IT block, add doesn't modify the flags register.
+ ALWAYS_INLINE void add(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (rd == rn)
+ m_formatter.oneWordOp8RegReg143(OP_ADD_reg_T2, rm, rd);
+ else if (rd == rm)
+ m_formatter.oneWordOp8RegReg143(OP_ADD_reg_T2, rn, rd);
+ else if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_reg_T1, rm, rn, rd);
+ else
+ add(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ // Not allowed in an IT (if then) block.
+ ALWAYS_INLINE void add_S(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_ADD_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_S_imm_T3, rn, rd, imm);
+ }
+
+ // Not allowed in an IT (if then) block?
+ ALWAYS_INLINE void add_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ADD_S_reg_T3, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // Not allowed in an IT (if then) block.
+ ALWAYS_INLINE void add_S(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_reg_T1, rm, rn, rd);
+ else
+ add_S(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void ARM_and(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_AND_imm_T1, rn, rd, imm);
+ }
+
+ ALWAYS_INLINE void ARM_and(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_AND_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void ARM_and(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_AND_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_AND_reg_T1, rn, rd);
+ else
+ ARM_and(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void asr(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_ASR, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_ASR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void asr(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ASR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ // Only allowed in IT (if then) block if last instruction.
+ ALWAYS_INLINE AssemblerLabel b()
+ {
+ m_formatter.twoWordOp16Op16(OP_B_T4a, OP_B_T4b);
+ return m_formatter.label();
+ }
+
+ // Only allowed in IT (if then) block if last instruction.
+ ALWAYS_INLINE AssemblerLabel blx(RegisterID rm)
+ {
+ ASSERT(rm != ARMRegisters::pc);
+ m_formatter.oneWordOp8RegReg143(OP_BLX, rm, (RegisterID)8);
+ return m_formatter.label();
+ }
+
+ // Only allowed in IT (if then) block if last instruction.
+ ALWAYS_INLINE AssemblerLabel bx(RegisterID rm)
+ {
+ m_formatter.oneWordOp8RegReg143(OP_BX, rm, (RegisterID)0);
+ return m_formatter.label();
+ }
+
+ void bkpt(uint8_t imm = 0)
+ {
+ m_formatter.oneWordOp8Imm8(OP_BKPT, imm);
+ }
+
+ ALWAYS_INLINE void clz(RegisterID rd, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_CLZ, rm, FourFours(0xf, rd, 8, rm));
+ }
+
+ ALWAYS_INLINE void cmn(RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_CMN_imm, rn, (RegisterID)0xf, imm);
+ }
+
+ ALWAYS_INLINE void cmp(RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ if (!(rn & 8) && imm.isUInt8())
+ m_formatter.oneWordOp5Reg3Imm8(OP_CMP_imm_T1, rn, imm.getUInt8());
+ else
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_CMP_imm_T2, rn, (RegisterID)0xf, imm);
+ }
+
+ ALWAYS_INLINE void cmp(RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_CMP_reg_T2, rn, FourFours(shift.hi4(), 0xf, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void cmp(RegisterID rn, RegisterID rm)
+ {
+ if ((rn | rm) & 8)
+ cmp(rn, rm, ShiftTypeAndAmount());
+ else
+ m_formatter.oneWordOp10Reg3Reg3(OP_CMP_reg_T1, rm, rn);
+ }
+
+ // xor is not spelled with an 'e'. :-(
+ ALWAYS_INLINE void eor(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_EOR_imm_T1, rn, rd, imm);
+ }
+
+ // xor is not spelled with an 'e'. :-(
+ ALWAYS_INLINE void eor(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_EOR_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // xor is not spelled with an 'e'. :-(
+ void eor(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_EOR_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_EOR_reg_T1, rn, rd);
+ else
+ eor(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void it(Condition cond)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond));
+ }
+
+ ALWAYS_INLINE void it(Condition cond, bool inst2if)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if));
+ }
+
+ ALWAYS_INLINE void it(Condition cond, bool inst2if, bool inst3if)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if, inst3if));
+ }
+
+ ALWAYS_INLINE void it(Condition cond, bool inst2if, bool inst3if, bool inst4if)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if, inst3if, inst4if));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void ldr(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt7())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDR_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ else if ((rn == ARMRegisters::sp) && !(rt & 8) && imm.isUInt10())
+ m_formatter.oneWordOp5Reg3Imm8(OP_LDR_imm_T2, rt, static_cast<uint8_t>(imm.getUInt10() >> 2));
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T3, rn, rt, imm.getUInt12());
+ }
+
+ ALWAYS_INLINE void ldrWide8BitImmediate(RegisterID rt, RegisterID rn, uint8_t immediate)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T3, rn, rt, immediate);
+ }
+
+ ALWAYS_INLINE void ldrCompact(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt7());
+ ASSERT(!((rt | rn) & 8));
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDR_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed load;
+ // if index is not set then is is a post-index load.
+ //
+ // If wback is set rn is updated - this is a pre or post index load,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ ALWAYS_INLINE void ldr(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T4, rn, rt, offset);
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void ldr(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDR_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDR_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void ldrh(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt6())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDRH_imm_T1, imm.getUInt6() >> 2, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRH_imm_T2, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed load;
+ // if index is not set then is is a post-index load.
+ //
+ // If wback is set rn is updated - this is a pre or post index load,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ ALWAYS_INLINE void ldrh(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRH_imm_T3, rn, rt, offset);
+ }
+
+ ALWAYS_INLINE void ldrh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(!BadReg(rt)); // Memory hint
+ ASSERT(rn != ARMRegisters::pc); // LDRH (literal)
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRH_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDRH_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void ldrb(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt5())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDRB_imm_T1, imm.getUInt5(), rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRB_imm_T2, rn, rt, imm.getUInt12());
+ }
+
+ void ldrb(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+
+ ASSERT(!(offset & ~0xff));
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRB_imm_T3, rn, rt, offset);
+ }
+
+ ALWAYS_INLINE void ldrb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRB_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDRB_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void ldrsb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRSB_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDRSB_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void ldrsh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRSH_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDRSH_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void lsl(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_LSL, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_LSL_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void lsl(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_LSL_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ ALWAYS_INLINE void lsr(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_LSR, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_LSR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void lsr(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_LSR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ ALWAYS_INLINE void movT3(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isValid());
+ ASSERT(!imm.isEncodedImm());
+ ASSERT(!BadReg(rd));
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOV_imm_T3, imm.m_value.imm4, rd, imm);
+ }
+
+#if OS(LINUX) || OS(QNX)
+ static void revertJumpTo_movT3movtcmpT2(void* instructionStart, RegisterID left, RegisterID right, uintptr_t imm)
+ {
+ uint16_t* address = static_cast<uint16_t*>(instructionStart);
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(imm));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(imm >> 16));
+ address[0] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ address[1] = twoWordOp5i6Imm4Reg4EncodedImmSecond(right, lo16);
+ address[2] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ address[3] = twoWordOp5i6Imm4Reg4EncodedImmSecond(right, hi16);
+ address[4] = OP_CMP_reg_T2 | left;
+ cacheFlush(address, sizeof(uint16_t) * 5);
+ }
+#else
+ static void revertJumpTo_movT3(void* instructionStart, RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isValid());
+ ASSERT(!imm.isEncodedImm());
+ ASSERT(!BadReg(rd));
+
+ uint16_t* address = static_cast<uint16_t*>(instructionStart);
+ address[0] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, imm);
+ address[1] = twoWordOp5i6Imm4Reg4EncodedImmSecond(rd, imm);
+ cacheFlush(address, sizeof(uint16_t) * 2);
+ }
+#endif
+
+ ALWAYS_INLINE void mov(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isValid());
+ ASSERT(!BadReg(rd));
+
+ if ((rd < 8) && imm.isUInt8())
+ m_formatter.oneWordOp5Reg3Imm8(OP_MOV_imm_T1, rd, imm.getUInt8());
+ else if (imm.isEncodedImm())
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOV_imm_T2, 0xf, rd, imm);
+ else
+ movT3(rd, imm);
+ }
+
+ ALWAYS_INLINE void mov(RegisterID rd, RegisterID rm)
+ {
+ m_formatter.oneWordOp8RegReg143(OP_MOV_reg_T1, rm, rd);
+ }
+
+ ALWAYS_INLINE void movt(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isUInt16());
+ ASSERT(!BadReg(rd));
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOVT, imm.m_value.imm4, rd, imm);
+ }
+
+ ALWAYS_INLINE void mvn(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isEncodedImm());
+ ASSERT(!BadReg(rd));
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MVN_imm, 0xf, rd, imm);
+ }
+
+ ALWAYS_INLINE void mvn(RegisterID rd, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp16FourFours(OP_MVN_reg_T2, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void mvn(RegisterID rd, RegisterID rm)
+ {
+ if (!((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_MVN_reg_T1, rm, rd);
+ else
+ mvn(rd, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void neg(RegisterID rd, RegisterID rm)
+ {
+ ARMThumbImmediate zero = ARMThumbImmediate::makeUInt12(0);
+ sub(rd, zero, rm);
+ }
+
+ ALWAYS_INLINE void orr(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ORR_imm_T1, rn, rd, imm);
+ }
+
+ ALWAYS_INLINE void orr(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ORR_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void orr(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rn, rd);
+ else
+ orr(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void orr_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ORR_S_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void orr_S(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rn, rd);
+ else
+ orr_S(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void ror(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_ROR, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_ROR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void ror(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ROR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+#if CPU(APPLE_ARMV7S)
+ ALWAYS_INLINE void sdiv(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_SDIV_T1, rn, FourFours(0xf, rd, 0xf, rm));
+ }
+#endif
+
+ ALWAYS_INLINE void smull(RegisterID rdLo, RegisterID rdHi, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rdLo));
+ ASSERT(!BadReg(rdHi));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ ASSERT(rdLo != rdHi);
+ m_formatter.twoWordOp12Reg4FourFours(OP_SMULL_T1, rn, FourFours(rdLo, rdHi, 0, rm));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void str(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt7())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STR_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ else if ((rn == ARMRegisters::sp) && !(rt & 8) && imm.isUInt10())
+ m_formatter.oneWordOp5Reg3Imm8(OP_STR_imm_T2, rt, static_cast<uint8_t>(imm.getUInt10() >> 2));
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STR_imm_T3, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed store;
+ // if index is not set then is is a post-index store.
+ //
+ // If wback is set rn is updated - this is a pre or post index store,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ ALWAYS_INLINE void str(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STR_imm_T4, rn, rt, offset);
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void str(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STR_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_STR_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void strb(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt7())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STRB_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRB_imm_T2, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed store;
+ // if index is not set then is is a post-index store.
+ //
+ // If wback is set rn is updated - this is a pre or post index store,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ ALWAYS_INLINE void strb(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRB_imm_T3, rn, rt, offset);
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void strb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STRB_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_STRB_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void strh(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt7())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STRH_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRH_imm_T2, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed store;
+ // if index is not set then is is a post-index store.
+ //
+ // If wback is set rn is updated - this is a pre or post index store,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ ALWAYS_INLINE void strh(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT(!(offset & ~0xff));
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRH_imm_T3, rn, rt, offset);
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ ALWAYS_INLINE void strh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STRH_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_STRH_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ ALWAYS_INLINE void sub(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+
+ if ((rn == ARMRegisters::sp) && (rd == ARMRegisters::sp) && imm.isUInt9()) {
+ ASSERT(!(imm.getUInt16() & 3));
+ m_formatter.oneWordOp9Imm7(OP_SUB_SP_imm_T1, static_cast<uint8_t>(imm.getUInt9() >> 2));
+ return;
+ } else if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_SUB_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ if (imm.isEncodedImm())
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_imm_T3, rn, rd, imm);
+ else {
+ ASSERT(imm.isUInt12());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_imm_T4, rn, rd, imm);
+ }
+ }
+
+ ALWAYS_INLINE void sub(RegisterID rd, ARMThumbImmediate imm, RegisterID rn)
+ {
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+ ASSERT(imm.isUInt12());
+
+ if (!((rd | rn) & 8) && !imm.getUInt12())
+ m_formatter.oneWordOp10Reg3Reg3(OP_RSB_imm_T1, rn, rd);
+ else
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_RSB_imm_T2, rn, rd, imm);
+ }
+
+ ALWAYS_INLINE void sub(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_SUB_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // NOTE: In an IT block, add doesn't modify the flags register.
+ ALWAYS_INLINE void sub(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_reg_T1, rm, rn, rd);
+ else
+ sub(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ // Not allowed in an IT (if then) block.
+ void sub_S(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+
+ if ((rn == ARMRegisters::sp) && (rd == ARMRegisters::sp) && imm.isUInt9()) {
+ ASSERT(!(imm.getUInt16() & 3));
+ m_formatter.oneWordOp9Imm7(OP_SUB_SP_imm_T1, static_cast<uint8_t>(imm.getUInt9() >> 2));
+ return;
+ } else if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_SUB_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_S_imm_T3, rn, rd, imm);
+ }
+
+ ALWAYS_INLINE void sub_S(RegisterID rd, ARMThumbImmediate imm, RegisterID rn)
+ {
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+ ASSERT(imm.isUInt12());
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_RSB_S_imm_T2, rn, rd, imm);
+ }
+
+ // Not allowed in an IT (if then) block?
+ ALWAYS_INLINE void sub_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_SUB_S_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // Not allowed in an IT (if then) block.
+ ALWAYS_INLINE void sub_S(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_reg_T1, rm, rn, rd);
+ else
+ sub_S(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ ALWAYS_INLINE void tst(RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_TST_imm, rn, (RegisterID)0xf, imm);
+ }
+
+ ALWAYS_INLINE void tst(RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_TST_reg_T2, rn, FourFours(shift.hi4(), 0xf, shift.lo4(), rm));
+ }
+
+ ALWAYS_INLINE void tst(RegisterID rn, RegisterID rm)
+ {
+ if ((rn | rm) & 8)
+ tst(rn, rm, ShiftTypeAndAmount());
+ else
+ m_formatter.oneWordOp10Reg3Reg3(OP_TST_reg_T1, rm, rn);
+ }
+
+ ALWAYS_INLINE void ubfx(RegisterID rd, RegisterID rn, unsigned lsb, unsigned width)
+ {
+ ASSERT(lsb < 32);
+ ASSERT((width >= 1) && (width <= 32));
+ ASSERT((lsb + width) <= 32);
+ m_formatter.twoWordOp12Reg40Imm3Reg4Imm20Imm5(OP_UBFX_T1, rd, rn, (lsb & 0x1c) << 10, (lsb & 0x3) << 6, (width - 1) & 0x1f);
+ }
+
+#if CPU(APPLE_ARMV7S)
+ ALWAYS_INLINE void udiv(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_UDIV_T1, rn, FourFours(0xf, rd, 0xf, rm));
+ }
+#endif
+
+ void vadd(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VADD_T2, OP_VADD_T2b, true, rn, rd, rm);
+ }
+
+ void vcmp(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VCMP, OP_VCMPb, true, VFPOperand(4), rd, rm);
+ }
+
+ void vcmpz(FPDoubleRegisterID rd)
+ {
+ m_formatter.vfpOp(OP_VCMP, OP_VCMPb, true, VFPOperand(5), rd, VFPOperand(0));
+ }
+
+ void vcvt_signedToFloatingPoint(FPDoubleRegisterID rd, FPSingleRegisterID rm)
+ {
+ // boolean values are 64bit (toInt, unsigned, roundZero)
+ m_formatter.vfpOp(OP_VCVT_FPIVFP, OP_VCVT_FPIVFPb, true, vcvtOp(false, false, false), rd, rm);
+ }
+
+ void vcvt_floatingPointToSigned(FPSingleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ // boolean values are 64bit (toInt, unsigned, roundZero)
+ m_formatter.vfpOp(OP_VCVT_FPIVFP, OP_VCVT_FPIVFPb, true, vcvtOp(true, false, true), rd, rm);
+ }
+
+ void vcvt_floatingPointToUnsigned(FPSingleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ // boolean values are 64bit (toInt, unsigned, roundZero)
+ m_formatter.vfpOp(OP_VCVT_FPIVFP, OP_VCVT_FPIVFPb, true, vcvtOp(true, true, true), rd, rm);
+ }
+
+ void vdiv(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VDIV, OP_VDIVb, true, rn, rd, rm);
+ }
+
+ void vldr(FPDoubleRegisterID rd, RegisterID rn, int32_t imm)
+ {
+ m_formatter.vfpMemOp(OP_VLDR, OP_VLDRb, true, rn, rd, imm);
+ }
+
+ void flds(FPSingleRegisterID rd, RegisterID rn, int32_t imm)
+ {
+ m_formatter.vfpMemOp(OP_FLDS, OP_FLDSb, false, rn, rd, imm);
+ }
+
+ void vmov(RegisterID rd, FPSingleRegisterID rn)
+ {
+ ASSERT(!BadReg(rd));
+ m_formatter.vfpOp(OP_VMOV_StoC, OP_VMOV_StoCb, false, rn, rd, VFPOperand(0));
+ }
+
+ void vmov(FPSingleRegisterID rd, RegisterID rn)
+ {
+ ASSERT(!BadReg(rn));
+ m_formatter.vfpOp(OP_VMOV_CtoS, OP_VMOV_CtoSb, false, rd, rn, VFPOperand(0));
+ }
+
+ void vmov(RegisterID rd1, RegisterID rd2, FPDoubleRegisterID rn)
+ {
+ ASSERT(!BadReg(rd1));
+ ASSERT(!BadReg(rd2));
+ m_formatter.vfpOp(OP_VMOV_DtoC, OP_VMOV_DtoCb, true, rd2, VFPOperand(rd1 | 16), rn);
+ }
+
+ void vmov(FPDoubleRegisterID rd, RegisterID rn1, RegisterID rn2)
+ {
+ ASSERT(!BadReg(rn1));
+ ASSERT(!BadReg(rn2));
+ m_formatter.vfpOp(OP_VMOV_CtoD, OP_VMOV_CtoDb, true, rn2, VFPOperand(rn1 | 16), rd);
+ }
+
+ void vmov(FPDoubleRegisterID rd, FPDoubleRegisterID rn)
+ {
+ m_formatter.vfpOp(OP_VMOV_T2, OP_VMOV_T2b, true, VFPOperand(0), rd, rn);
+ }
+
+ void vmrs(RegisterID reg = ARMRegisters::pc)
+ {
+ ASSERT(reg != ARMRegisters::sp);
+ m_formatter.vfpOp(OP_VMRS, OP_VMRSb, false, VFPOperand(1), VFPOperand(0x10 | reg), VFPOperand(0));
+ }
+
+ void vmul(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VMUL_T2, OP_VMUL_T2b, true, rn, rd, rm);
+ }
+
+ void vstr(FPDoubleRegisterID rd, RegisterID rn, int32_t imm)
+ {
+ m_formatter.vfpMemOp(OP_VSTR, OP_VSTRb, true, rn, rd, imm);
+ }
+
+ void fsts(FPSingleRegisterID rd, RegisterID rn, int32_t imm)
+ {
+ m_formatter.vfpMemOp(OP_FSTS, OP_FSTSb, false, rn, rd, imm);
+ }
+
+ void vsub(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VSUB_T2, OP_VSUB_T2b, true, rn, rd, rm);
+ }
+
+ void vabs(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VABS_T2, OP_VABS_T2b, true, VFPOperand(16), rd, rm);
+ }
+
+ void vneg(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VNEG_T2, OP_VNEG_T2b, true, VFPOperand(1), rd, rm);
+ }
+
+ void vsqrt(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VSQRT_T1, OP_VSQRT_T1b, true, VFPOperand(17), rd, rm);
+ }
+
+ void vcvtds(FPDoubleRegisterID rd, FPSingleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VCVTDS_T1, OP_VCVTDS_T1b, false, VFPOperand(23), rd, rm);
+ }
+
+ void vcvtsd(FPSingleRegisterID rd, FPDoubleRegisterID rm)
+ {
+ m_formatter.vfpOp(OP_VCVTSD_T1, OP_VCVTSD_T1b, true, VFPOperand(23), rd, rm);
+ }
+
+ void nop()
+ {
+ m_formatter.oneWordOp8Imm8(OP_NOP_T1, 0);
+ }
+
+ void nopw()
+ {
+ m_formatter.twoWordOp16Op16(OP_NOP_T2a, OP_NOP_T2b);
+ }
+
+ AssemblerLabel labelIgnoringWatchpoints()
+ {
+ return m_formatter.label();
+ }
+
+ AssemblerLabel labelForWatchpoint()
+ {
+ AssemblerLabel result = m_formatter.label();
+ if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint)
+ result = label();
+ m_indexOfLastWatchpoint = result.m_offset;
+ m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
+ return result;
+ }
+
+ AssemblerLabel label()
+ {
+ AssemblerLabel result = m_formatter.label();
+ while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) {
+ if (UNLIKELY(static_cast<int>(result.m_offset) + 4 <= m_indexOfTailOfLastWatchpoint))
+ nopw();
+ else
+ nop();
+ result = m_formatter.label();
+ }
+ return result;
+ }
+
+ AssemblerLabel align(int alignment)
+ {
+ while (!m_formatter.isAligned(alignment))
+ bkpt();
+
+ return label();
+ }
+
+ static void* getRelocatedAddress(void* code, AssemblerLabel label)
+ {
+ ASSERT(label.isSet());
+ return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset);
+ }
+
+ static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
+ {
+ return b.m_offset - a.m_offset;
+ }
+
+ int executableOffsetFor(int location)
+ {
+ if (!location)
+ return 0;
+ return static_cast<int32_t*>(m_formatter.data())[location / sizeof(int32_t) - 1];
+ }
+
+ int jumpSizeDelta(JumpType jumpType, JumpLinkType jumpLinkType) { return JUMP_ENUM_SIZE(jumpType) - JUMP_ENUM_SIZE(jumpLinkType); }
+
+ // Assembler admin methods:
+
+ static ALWAYS_INLINE bool linkRecordSourceComparator(const LinkRecord& a, const LinkRecord& b)
+ {
+ return a.from() < b.from();
+ }
+
+ bool canCompact(JumpType jumpType)
+ {
+ // The following cannot be compacted:
+ // JumpFixed: represents custom jump sequence
+ // JumpNoConditionFixedSize: represents unconditional jump that must remain a fixed size
+ // JumpConditionFixedSize: represents conditional jump that must remain a fixed size
+ return (jumpType == JumpNoCondition) || (jumpType == JumpCondition);
+ }
+
+ JumpLinkType computeJumpType(JumpType jumpType, const uint8_t* from, const uint8_t* to)
+ {
+ if (jumpType == JumpFixed)
+ return LinkInvalid;
+
+ // for patchable jump we must leave space for the longest code sequence
+ if (jumpType == JumpNoConditionFixedSize)
+ return LinkBX;
+ if (jumpType == JumpConditionFixedSize)
+ return LinkConditionalBX;
+
+ const int paddingSize = JUMP_ENUM_SIZE(jumpType);
+
+ if (jumpType == JumpCondition) {
+ // 2-byte conditional T1
+ const uint16_t* jumpT1Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT1)));
+ if (canBeJumpT1(jumpT1Location, to))
+ return LinkJumpT1;
+ // 4-byte conditional T3
+ const uint16_t* jumpT3Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT3)));
+ if (canBeJumpT3(jumpT3Location, to))
+ return LinkJumpT3;
+ // 4-byte conditional T4 with IT
+ const uint16_t* conditionalJumpT4Location =
+ reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkConditionalJumpT4)));
+ if (canBeJumpT4(conditionalJumpT4Location, to))
+ return LinkConditionalJumpT4;
+ } else {
+ // 2-byte unconditional T2
+ const uint16_t* jumpT2Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT2)));
+ if (canBeJumpT2(jumpT2Location, to))
+ return LinkJumpT2;
+ // 4-byte unconditional T4
+ const uint16_t* jumpT4Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT4)));
+ if (canBeJumpT4(jumpT4Location, to))
+ return LinkJumpT4;
+ // use long jump sequence
+ return LinkBX;
+ }
+
+ ASSERT(jumpType == JumpCondition);
+ return LinkConditionalBX;
+ }
+
+ JumpLinkType computeJumpType(LinkRecord& record, const uint8_t* from, const uint8_t* to)
+ {
+ JumpLinkType linkType = computeJumpType(record.type(), from, to);
+ record.setLinkType(linkType);
+ return linkType;
+ }
+
+ void recordLinkOffsets(int32_t regionStart, int32_t regionEnd, int32_t offset)
+ {
+ int32_t ptr = regionStart / sizeof(int32_t);
+ const int32_t end = regionEnd / sizeof(int32_t);
+ int32_t* offsets = static_cast<int32_t*>(m_formatter.data());
+ while (ptr < end)
+ offsets[ptr++] = offset;
+ }
+
+ Vector<LinkRecord, 0, UnsafeVectorOverflow>& jumpsToLink()
+ {
+ std::sort(m_jumpsToLink.begin(), m_jumpsToLink.end(), linkRecordSourceComparator);
+ return m_jumpsToLink;
+ }
+
+ void ALWAYS_INLINE link(LinkRecord& record, uint8_t* from, uint8_t* to)
+ {
+ switch (record.linkType()) {
+ case LinkJumpT1:
+ linkJumpT1(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ case LinkJumpT2:
+ linkJumpT2(reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ case LinkJumpT3:
+ linkJumpT3(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ case LinkJumpT4:
+ linkJumpT4(reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ case LinkConditionalJumpT4:
+ linkConditionalJumpT4(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ case LinkConditionalBX:
+ linkConditionalBX(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ case LinkBX:
+ linkBX(reinterpret_cast_ptr<uint16_t*>(from), to);
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+ }
+
+ void* unlinkedCode() { return m_formatter.data(); }
+ size_t codeSize() const { return m_formatter.codeSize(); }
+
+ static unsigned getCallReturnOffset(AssemblerLabel call)
+ {
+ ASSERT(call.isSet());
+ return call.m_offset;
+ }
+
+ // Linking & patching:
+ //
+ // 'link' and 'patch' methods are for use on unprotected code - such as the code
+ // within the AssemblerBuffer, and code being patched by the patch buffer. Once
+ // code has been finalized it is (platform support permitting) within a non-
+ // writable region of memory; to modify the code in an execute-only execuable
+ // pool the 'repatch' and 'relink' methods should be used.
+
+ void linkJump(AssemblerLabel from, AssemblerLabel to, JumpType type, Condition condition)
+ {
+ ASSERT(to.isSet());
+ ASSERT(from.isSet());
+ m_jumpsToLink.append(LinkRecord(from.m_offset, to.m_offset, type, condition));
+ }
+
+ static void linkJump(void* code, AssemblerLabel from, void* to)
+ {
+ ASSERT(from.isSet());
+
+ uint16_t* location = reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(code) + from.m_offset);
+ linkJumpAbsolute(location, to);
+ }
+
+ static void linkCall(void* code, AssemblerLabel from, void* to)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(code) & 1));
+ ASSERT(from.isSet());
+ ASSERT(reinterpret_cast<intptr_t>(to) & 1);
+
+ setPointer(reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(code) + from.m_offset) - 1, to, false);
+ }
+
+ static void linkPointer(void* code, AssemblerLabel where, void* value)
+ {
+ setPointer(reinterpret_cast<char*>(code) + where.m_offset, value, false);
+ }
+
+ static void relinkJump(void* from, void* to)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(from) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(to) & 1));
+
+ linkJumpAbsolute(reinterpret_cast<uint16_t*>(from), to);
+
+ cacheFlush(reinterpret_cast<uint16_t*>(from) - 5, 5 * sizeof(uint16_t));
+ }
+
+ static void relinkCall(void* from, void* to)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(from) & 1));
+ ASSERT(reinterpret_cast<intptr_t>(to) & 1);
+
+ setPointer(reinterpret_cast<uint16_t*>(from) - 1, to, true);
+ }
+
+ static void* readCallTarget(void* from)
+ {
+ return readPointer(reinterpret_cast<uint16_t*>(from) - 1);
+ }
+
+ static void repatchInt32(void* where, int32_t value)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
+
+ setInt32(where, value, true);
+ }
+
+ static void repatchCompact(void* where, int32_t offset)
+ {
+ ASSERT(offset >= -255 && offset <= 255);
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+
+ offset |= (add << 9);
+ offset |= (1 << 10);
+ offset |= (1 << 11);
+
+ uint16_t* location = reinterpret_cast<uint16_t*>(where);
+ location[1] &= ~((1 << 12) - 1);
+ location[1] |= offset;
+ cacheFlush(location, sizeof(uint16_t) * 2);
+ }
+
+ static void repatchPointer(void* where, void* value)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
+
+ setPointer(where, value, true);
+ }
+
+ static void* readPointer(void* where)
+ {
+ return reinterpret_cast<void*>(readInt32(where));
+ }
+
+ static void replaceWithJump(void* instructionStart, void* to)
+ {
+ ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 1));
+ ASSERT(!(bitwise_cast<uintptr_t>(to) & 1));
+
+#if OS(LINUX) || OS(QNX)
+ if (canBeJumpT4(reinterpret_cast<uint16_t*>(instructionStart), to)) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart) + 2;
+ linkJumpT4(ptr, to);
+ cacheFlush(ptr - 2, sizeof(uint16_t) * 2);
+ } else {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart) + 5;
+ linkBX(ptr, to);
+ cacheFlush(ptr - 5, sizeof(uint16_t) * 5);
+ }
+#else
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart) + 2;
+ linkJumpT4(ptr, to);
+ cacheFlush(ptr - 2, sizeof(uint16_t) * 2);
+#endif
+ }
+
+ static ptrdiff_t maxJumpReplacementSize()
+ {
+#if OS(LINUX) || OS(QNX)
+ return 10;
+#else
+ return 4;
+#endif
+ }
+
+ static void replaceWithLoad(void* instructionStart)
+ {
+ ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 1));
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart);
+ switch (ptr[0] & 0xFFF0) {
+ case OP_LDR_imm_T3:
+ break;
+ case OP_ADD_imm_T3:
+ ASSERT(!(ptr[1] & 0xF000));
+ ptr[0] &= 0x000F;
+ ptr[0] |= OP_LDR_imm_T3;
+ ptr[1] |= (ptr[1] & 0x0F00) << 4;
+ ptr[1] &= 0xF0FF;
+ cacheFlush(ptr, sizeof(uint16_t) * 2);
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+ }
+
+ static void replaceWithAddressComputation(void* instructionStart)
+ {
+ ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 1));
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart);
+ switch (ptr[0] & 0xFFF0) {
+ case OP_LDR_imm_T3:
+ ASSERT(!(ptr[1] & 0x0F00));
+ ptr[0] &= 0x000F;
+ ptr[0] |= OP_ADD_imm_T3;
+ ptr[1] |= (ptr[1] & 0xF000) >> 4;
+ ptr[1] &= 0x0FFF;
+ cacheFlush(ptr, sizeof(uint16_t) * 2);
+ break;
+ case OP_ADD_imm_T3:
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+ }
+
+ unsigned debugOffset() { return m_formatter.debugOffset(); }
+
+#if OS(LINUX)
+ static inline void linuxPageFlush(uintptr_t begin, uintptr_t end)
+ {
+ asm volatile(
+ "push {r7}\n"
+ "mov r0, %0\n"
+ "mov r1, %1\n"
+ "movw r7, #0x2\n"
+ "movt r7, #0xf\n"
+ "movs r2, #0x0\n"
+ "svc 0x0\n"
+ "pop {r7}\n"
+ :
+ : "r" (begin), "r" (end)
+ : "r0", "r1", "r2");
+ }
+#endif
+
+ static void cacheFlush(void* code, size_t size)
+ {
+#if OS(IOS)
+ sys_cache_control(kCacheFunctionPrepareForExecution, code, size);
+#elif OS(LINUX)
+ size_t page = pageSize();
+ uintptr_t current = reinterpret_cast<uintptr_t>(code);
+ uintptr_t end = current + size;
+ uintptr_t firstPageEnd = (current & ~(page - 1)) + page;
+
+ if (end <= firstPageEnd) {
+ linuxPageFlush(current, end);
+ return;
+ }
+
+ linuxPageFlush(current, firstPageEnd);
+
+ for (current = firstPageEnd; current + page < end; current += page)
+ linuxPageFlush(current, current + page);
+
+ linuxPageFlush(current, end);
+#elif OS(WINCE)
+ CacheRangeFlush(code, size, CACHE_SYNC_ALL);
+#elif OS(QNX)
+#if !ENABLE(ASSEMBLER_WX_EXCLUSIVE)
+ msync(code, size, MS_INVALIDATE_ICACHE);
+#else
+ UNUSED_PARAM(code);
+ UNUSED_PARAM(size);
+#endif
+#else
+#error "The cacheFlush support is missing on this platform."
+#endif
+ }
+
+private:
+ // VFP operations commonly take one or more 5-bit operands, typically representing a
+ // floating point register number. This will commonly be encoded in the instruction
+ // in two parts, with one single bit field, and one 4-bit field. In the case of
+ // double precision operands the high bit of the register number will be encoded
+ // separately, and for single precision operands the high bit of the register number
+ // will be encoded individually.
+ // VFPOperand encapsulates a 5-bit VFP operand, with bits 0..3 containing the 4-bit
+ // field to be encoded together in the instruction (the low 4-bits of a double
+ // register number, or the high 4-bits of a single register number), and bit 4
+ // contains the bit value to be encoded individually.
+ struct VFPOperand {
+ explicit VFPOperand(uint32_t value)
+ : m_value(value)
+ {
+ ASSERT(!(m_value & ~0x1f));
+ }
+
+ VFPOperand(FPDoubleRegisterID reg)
+ : m_value(reg)
+ {
+ }
+
+ VFPOperand(RegisterID reg)
+ : m_value(reg)
+ {
+ }
+
+ VFPOperand(FPSingleRegisterID reg)
+ : m_value(((reg & 1) << 4) | (reg >> 1)) // rotate the lowest bit of 'reg' to the top.
+ {
+ }
+
+ uint32_t bits1()
+ {
+ return m_value >> 4;
+ }
+
+ uint32_t bits4()
+ {
+ return m_value & 0xf;
+ }
+
+ uint32_t m_value;
+ };
+
+ VFPOperand vcvtOp(bool toInteger, bool isUnsigned, bool isRoundZero)
+ {
+ // Cannot specify rounding when converting to float.
+ ASSERT(toInteger || !isRoundZero);
+
+ uint32_t op = 0x8;
+ if (toInteger) {
+ // opc2 indicates both toInteger & isUnsigned.
+ op |= isUnsigned ? 0x4 : 0x5;
+ // 'op' field in instruction is isRoundZero
+ if (isRoundZero)
+ op |= 0x10;
+ } else {
+ ASSERT(!isRoundZero);
+ // 'op' field in instruction is isUnsigned
+ if (!isUnsigned)
+ op |= 0x10;
+ }
+ return VFPOperand(op);
+ }
+
+ static void setInt32(void* code, uint32_t value, bool flush)
+ {
+ uint16_t* location = reinterpret_cast<uint16_t*>(code);
+ ASSERT(isMOV_imm_T3(location - 4) && isMOVT(location - 2));
+
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(value));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(value >> 16));
+ location[-4] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ location[-3] = twoWordOp5i6Imm4Reg4EncodedImmSecond((location[-3] >> 8) & 0xf, lo16);
+ location[-2] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ location[-1] = twoWordOp5i6Imm4Reg4EncodedImmSecond((location[-1] >> 8) & 0xf, hi16);
+
+ if (flush)
+ cacheFlush(location - 4, 4 * sizeof(uint16_t));
+ }
+
+ static int32_t readInt32(void* code)
+ {
+ uint16_t* location = reinterpret_cast<uint16_t*>(code);
+ ASSERT(isMOV_imm_T3(location - 4) && isMOVT(location - 2));
+
+ ARMThumbImmediate lo16;
+ ARMThumbImmediate hi16;
+ decodeTwoWordOp5i6Imm4Reg4EncodedImmFirst(lo16, location[-4]);
+ decodeTwoWordOp5i6Imm4Reg4EncodedImmSecond(lo16, location[-3]);
+ decodeTwoWordOp5i6Imm4Reg4EncodedImmFirst(hi16, location[-2]);
+ decodeTwoWordOp5i6Imm4Reg4EncodedImmSecond(hi16, location[-1]);
+ uint32_t result = hi16.asUInt16();
+ result <<= 16;
+ result |= lo16.asUInt16();
+ return static_cast<int32_t>(result);
+ }
+
+ static void setUInt7ForLoad(void* code, ARMThumbImmediate imm)
+ {
+ // Requires us to have planted a LDR_imm_T1
+ ASSERT(imm.isValid());
+ ASSERT(imm.isUInt7());
+ uint16_t* location = reinterpret_cast<uint16_t*>(code);
+ location[0] &= ~((static_cast<uint16_t>(0x7f) >> 2) << 6);
+ location[0] |= (imm.getUInt7() >> 2) << 6;
+ cacheFlush(location, sizeof(uint16_t));
+ }
+
+ static void setPointer(void* code, void* value, bool flush)
+ {
+ setInt32(code, reinterpret_cast<uint32_t>(value), flush);
+ }
+
+ static bool isB(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return ((instruction[0] & 0xf800) == OP_B_T4a) && ((instruction[1] & 0xd000) == OP_B_T4b);
+ }
+
+ static bool isBX(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return (instruction[0] & 0xff87) == OP_BX;
+ }
+
+ static bool isMOV_imm_T3(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return ((instruction[0] & 0xFBF0) == OP_MOV_imm_T3) && ((instruction[1] & 0x8000) == 0);
+ }
+
+ static bool isMOVT(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return ((instruction[0] & 0xFBF0) == OP_MOVT) && ((instruction[1] & 0x8000) == 0);
+ }
+
+ static bool isNOP_T1(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return instruction[0] == OP_NOP_T1;
+ }
+
+ static bool isNOP_T2(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return (instruction[0] == OP_NOP_T2a) && (instruction[1] == OP_NOP_T2b);
+ }
+
+ static bool canBeJumpT1(const uint16_t* instruction, const void* target)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // It does not appear to be documented in the ARM ARM (big surprise), but
+ // for OP_B_T1 the branch displacement encoded in the instruction is 2
+ // less than the actual displacement.
+ relative -= 2;
+ return ((relative << 23) >> 23) == relative;
+ }
+
+ static bool canBeJumpT2(const uint16_t* instruction, const void* target)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // It does not appear to be documented in the ARM ARM (big surprise), but
+ // for OP_B_T2 the branch displacement encoded in the instruction is 2
+ // less than the actual displacement.
+ relative -= 2;
+ return ((relative << 20) >> 20) == relative;
+ }
+
+ static bool canBeJumpT3(const uint16_t* instruction, const void* target)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ return ((relative << 11) >> 11) == relative;
+ }
+
+ static bool canBeJumpT4(const uint16_t* instruction, const void* target)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ return ((relative << 7) >> 7) == relative;
+ }
+
+ void linkJumpT1(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ ASSERT(canBeJumpT1(instruction, target));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // It does not appear to be documented in the ARM ARM (big surprise), but
+ // for OP_B_T1 the branch displacement encoded in the instruction is 2
+ // less than the actual displacement.
+ relative -= 2;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-1] = OP_B_T1 | ((cond & 0xf) << 8) | ((relative & 0x1fe) >> 1);
+ }
+
+ static void linkJumpT2(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ ASSERT(canBeJumpT2(instruction, target));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // It does not appear to be documented in the ARM ARM (big surprise), but
+ // for OP_B_T2 the branch displacement encoded in the instruction is 2
+ // less than the actual displacement.
+ relative -= 2;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-1] = OP_B_T2 | ((relative & 0xffe) >> 1);
+ }
+
+ void linkJumpT3(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ ASSERT(canBeJumpT3(instruction, target));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-2] = OP_B_T3a | ((relative & 0x100000) >> 10) | ((cond & 0xf) << 6) | ((relative & 0x3f000) >> 12);
+ instruction[-1] = OP_B_T3b | ((relative & 0x80000) >> 8) | ((relative & 0x40000) >> 5) | ((relative & 0xffe) >> 1);
+ }
+
+ static void linkJumpT4(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ ASSERT(canBeJumpT4(instruction, target));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // ARM encoding for the top two bits below the sign bit is 'peculiar'.
+ if (relative >= 0)
+ relative ^= 0xC00000;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-2] = OP_B_T4a | ((relative & 0x1000000) >> 14) | ((relative & 0x3ff000) >> 12);
+ instruction[-1] = OP_B_T4b | ((relative & 0x800000) >> 10) | ((relative & 0x400000) >> 11) | ((relative & 0xffe) >> 1);
+ }
+
+ void linkConditionalJumpT4(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ instruction[-3] = ifThenElse(cond) | OP_IT;
+ linkJumpT4(instruction, target);
+ }
+
+ static void linkBX(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ const uint16_t JUMP_TEMPORARY_REGISTER = ARMRegisters::ip;
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) + 1));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) >> 16));
+ instruction[-5] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ instruction[-4] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, lo16);
+ instruction[-3] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ instruction[-2] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, hi16);
+ instruction[-1] = OP_BX | (JUMP_TEMPORARY_REGISTER << 3);
+ }
+
+ void linkConditionalBX(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ linkBX(instruction, target);
+ instruction[-6] = ifThenElse(cond, true, true) | OP_IT;
+ }
+
+ static void linkJumpAbsolute(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ ASSERT((isMOV_imm_T3(instruction - 5) && isMOVT(instruction - 3) && isBX(instruction - 1))
+ || (isNOP_T1(instruction - 5) && isNOP_T2(instruction - 4) && isB(instruction - 2)));
+
+ if (canBeJumpT4(instruction, target)) {
+ // There may be a better way to fix this, but right now put the NOPs first, since in the
+ // case of an conditional branch this will be coming after an ITTT predicating *three*
+ // instructions! Looking backwards to modify the ITTT to an IT is not easy, due to
+ // variable wdith encoding - the previous instruction might *look* like an ITTT but
+ // actually be the second half of a 2-word op.
+ instruction[-5] = OP_NOP_T1;
+ instruction[-4] = OP_NOP_T2a;
+ instruction[-3] = OP_NOP_T2b;
+ linkJumpT4(instruction, target);
+ } else {
+ const uint16_t JUMP_TEMPORARY_REGISTER = ARMRegisters::ip;
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) + 1));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) >> 16));
+ instruction[-5] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ instruction[-4] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, lo16);
+ instruction[-3] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ instruction[-2] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, hi16);
+ instruction[-1] = OP_BX | (JUMP_TEMPORARY_REGISTER << 3);
+ }
+ }
+
+ static uint16_t twoWordOp5i6Imm4Reg4EncodedImmFirst(uint16_t op, ARMThumbImmediate imm)
+ {
+ return op | (imm.m_value.i << 10) | imm.m_value.imm4;
+ }
+
+ static void decodeTwoWordOp5i6Imm4Reg4EncodedImmFirst(ARMThumbImmediate& result, uint16_t value)
+ {
+ result.m_value.i = (value >> 10) & 1;
+ result.m_value.imm4 = value & 15;
+ }
+
+ static uint16_t twoWordOp5i6Imm4Reg4EncodedImmSecond(uint16_t rd, ARMThumbImmediate imm)
+ {
+ return (imm.m_value.imm3 << 12) | (rd << 8) | imm.m_value.imm8;
+ }
+
+ static void decodeTwoWordOp5i6Imm4Reg4EncodedImmSecond(ARMThumbImmediate& result, uint16_t value)
+ {
+ result.m_value.imm3 = (value >> 12) & 7;
+ result.m_value.imm8 = value & 255;
+ }
+
+ class ARMInstructionFormatter {
+ public:
+ ALWAYS_INLINE void oneWordOp5Reg3Imm8(OpcodeID op, RegisterID rd, uint8_t imm)
+ {
+ m_buffer.putShort(op | (rd << 8) | imm);
+ }
+
+ ALWAYS_INLINE void oneWordOp5Imm5Reg3Reg3(OpcodeID op, uint8_t imm, RegisterID reg1, RegisterID reg2)
+ {
+ m_buffer.putShort(op | (imm << 6) | (reg1 << 3) | reg2);
+ }
+
+ ALWAYS_INLINE void oneWordOp7Reg3Reg3Reg3(OpcodeID op, RegisterID reg1, RegisterID reg2, RegisterID reg3)
+ {
+ m_buffer.putShort(op | (reg1 << 6) | (reg2 << 3) | reg3);
+ }
+
+ ALWAYS_INLINE void oneWordOp8Imm8(OpcodeID op, uint8_t imm)
+ {
+ m_buffer.putShort(op | imm);
+ }
+
+ ALWAYS_INLINE void oneWordOp8RegReg143(OpcodeID op, RegisterID reg1, RegisterID reg2)
+ {
+ m_buffer.putShort(op | ((reg2 & 8) << 4) | (reg1 << 3) | (reg2 & 7));
+ }
+
+ ALWAYS_INLINE void oneWordOp9Imm7(OpcodeID op, uint8_t imm)
+ {
+ m_buffer.putShort(op | imm);
+ }
+
+ ALWAYS_INLINE void oneWordOp10Reg3Reg3(OpcodeID op, RegisterID reg1, RegisterID reg2)
+ {
+ m_buffer.putShort(op | (reg1 << 3) | reg2);
+ }
+
+ ALWAYS_INLINE void twoWordOp12Reg4FourFours(OpcodeID1 op, RegisterID reg, FourFours ff)
+ {
+ m_buffer.putShort(op | reg);
+ m_buffer.putShort(ff.m_u.value);
+ }
+
+ ALWAYS_INLINE void twoWordOp16FourFours(OpcodeID1 op, FourFours ff)
+ {
+ m_buffer.putShort(op);
+ m_buffer.putShort(ff.m_u.value);
+ }
+
+ ALWAYS_INLINE void twoWordOp16Op16(OpcodeID1 op1, OpcodeID2 op2)
+ {
+ m_buffer.putShort(op1);
+ m_buffer.putShort(op2);
+ }
+
+ ALWAYS_INLINE void twoWordOp5i6Imm4Reg4EncodedImm(OpcodeID1 op, int imm4, RegisterID rd, ARMThumbImmediate imm)
+ {
+ ARMThumbImmediate newImm = imm;
+ newImm.m_value.imm4 = imm4;
+
+ m_buffer.putShort(ARMv7Assembler::twoWordOp5i6Imm4Reg4EncodedImmFirst(op, newImm));
+ m_buffer.putShort(ARMv7Assembler::twoWordOp5i6Imm4Reg4EncodedImmSecond(rd, newImm));
+ }
+
+ ALWAYS_INLINE void twoWordOp12Reg4Reg4Imm12(OpcodeID1 op, RegisterID reg1, RegisterID reg2, uint16_t imm)
+ {
+ m_buffer.putShort(op | reg1);
+ m_buffer.putShort((reg2 << 12) | imm);
+ }
+
+ ALWAYS_INLINE void twoWordOp12Reg40Imm3Reg4Imm20Imm5(OpcodeID1 op, RegisterID reg1, RegisterID reg2, uint16_t imm1, uint16_t imm2, uint16_t imm3)
+ {
+ m_buffer.putShort(op | reg1);
+ m_buffer.putShort((imm1 << 12) | (reg2 << 8) | (imm2 << 6) | imm3);
+ }
+
+ // Formats up instructions of the pattern:
+ // 111111111B11aaaa:bbbb222SA2C2cccc
+ // Where 1s in the pattern come from op1, 2s in the pattern come from op2, S is the provided size bit.
+ // Operands provide 5 bit values of the form Aaaaa, Bbbbb, Ccccc.
+ ALWAYS_INLINE void vfpOp(OpcodeID1 op1, OpcodeID2 op2, bool size, VFPOperand a, VFPOperand b, VFPOperand c)
+ {
+ ASSERT(!(op1 & 0x004f));
+ ASSERT(!(op2 & 0xf1af));
+ m_buffer.putShort(op1 | b.bits1() << 6 | a.bits4());
+ m_buffer.putShort(op2 | b.bits4() << 12 | size << 8 | a.bits1() << 7 | c.bits1() << 5 | c.bits4());
+ }
+
+ // Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
+ // (i.e. +/-(0..255) 32-bit words)
+ ALWAYS_INLINE void vfpMemOp(OpcodeID1 op1, OpcodeID2 op2, bool size, RegisterID rn, VFPOperand rd, int32_t imm)
+ {
+ bool up = true;
+ if (imm < 0) {
+ imm = -imm;
+ up = false;
+ }
+
+ uint32_t offset = imm;
+ ASSERT(!(offset & ~0x3fc));
+ offset >>= 2;
+
+ m_buffer.putShort(op1 | (up << 7) | rd.bits1() << 6 | rn);
+ m_buffer.putShort(op2 | rd.bits4() << 12 | size << 8 | offset);
+ }
+
+ // Administrative methods:
+
+ size_t codeSize() const { return m_buffer.codeSize(); }
+ AssemblerLabel label() const { return m_buffer.label(); }
+ bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); }
+ void* data() const { return m_buffer.data(); }
+
+ unsigned debugOffset() { return m_buffer.debugOffset(); }
+
+ private:
+ AssemblerBuffer m_buffer;
+ } m_formatter;
+
+ Vector<LinkRecord, 0, UnsafeVectorOverflow> m_jumpsToLink;
+ int m_indexOfLastWatchpoint;
+ int m_indexOfTailOfLastWatchpoint;
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)
+
+#endif // ARMAssembler_h
diff --git a/src/3rdparty/masm/assembler/AbstractMacroAssembler.h b/src/3rdparty/masm/assembler/AbstractMacroAssembler.h
new file mode 100644
index 0000000000..95eaf7d99d
--- /dev/null
+++ b/src/3rdparty/masm/assembler/AbstractMacroAssembler.h
@@ -0,0 +1,842 @@
+/*
+ * Copyright (C) 2008, 2012 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef AbstractMacroAssembler_h
+#define AbstractMacroAssembler_h
+
+#include "AssemblerBuffer.h"
+#include "CodeLocation.h"
+#include "MacroAssemblerCodeRef.h"
+#include <wtf/CryptographicallyRandomNumber.h>
+#include <wtf/Noncopyable.h>
+#include <wtf/UnusedParam.h>
+
+#if ENABLE(ASSEMBLER)
+
+
+#if PLATFORM(QT)
+#define ENABLE_JIT_CONSTANT_BLINDING 0
+#endif
+
+#ifndef ENABLE_JIT_CONSTANT_BLINDING
+#define ENABLE_JIT_CONSTANT_BLINDING 1
+#endif
+
+namespace JSC {
+
+class JumpReplacementWatchpoint;
+class LinkBuffer;
+class RepatchBuffer;
+class Watchpoint;
+namespace DFG {
+struct OSRExit;
+}
+
+template <class AssemblerType>
+class AbstractMacroAssembler {
+public:
+ friend class JITWriteBarrierBase;
+ typedef AssemblerType AssemblerType_T;
+
+ typedef MacroAssemblerCodePtr CodePtr;
+ typedef MacroAssemblerCodeRef CodeRef;
+
+ class Jump;
+
+ typedef typename AssemblerType::RegisterID RegisterID;
+
+ // Section 1: MacroAssembler operand types
+ //
+ // The following types are used as operands to MacroAssembler operations,
+ // describing immediate and memory operands to the instructions to be planted.
+
+ enum Scale {
+ TimesOne,
+ TimesTwo,
+ TimesFour,
+ TimesEight,
+ };
+
+ // Address:
+ //
+ // Describes a simple base-offset address.
+ struct Address {
+ explicit Address(RegisterID base, int32_t offset = 0)
+ : base(base)
+ , offset(offset)
+ {
+ }
+
+ RegisterID base;
+ int32_t offset;
+ };
+
+ struct ExtendedAddress {
+ explicit ExtendedAddress(RegisterID base, intptr_t offset = 0)
+ : base(base)
+ , offset(offset)
+ {
+ }
+
+ RegisterID base;
+ intptr_t offset;
+ };
+
+ // ImplicitAddress:
+ //
+ // This class is used for explicit 'load' and 'store' operations
+ // (as opposed to situations in which a memory operand is provided
+ // to a generic operation, such as an integer arithmetic instruction).
+ //
+ // In the case of a load (or store) operation we want to permit
+ // addresses to be implicitly constructed, e.g. the two calls:
+ //
+ // load32(Address(addrReg), destReg);
+ // load32(addrReg, destReg);
+ //
+ // Are equivalent, and the explicit wrapping of the Address in the former
+ // is unnecessary.
+ struct ImplicitAddress {
+ ImplicitAddress(RegisterID base)
+ : base(base)
+ , offset(0)
+ {
+ }
+
+ ImplicitAddress(Address address)
+ : base(address.base)
+ , offset(address.offset)
+ {
+ }
+
+ RegisterID base;
+ int32_t offset;
+ };
+
+ // BaseIndex:
+ //
+ // Describes a complex addressing mode.
+ struct BaseIndex {
+ BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0)
+ : base(base)
+ , index(index)
+ , scale(scale)
+ , offset(offset)
+ {
+ }
+
+ RegisterID base;
+ RegisterID index;
+ Scale scale;
+ int32_t offset;
+ };
+
+ // AbsoluteAddress:
+ //
+ // Describes an memory operand given by a pointer. For regular load & store
+ // operations an unwrapped void* will be used, rather than using this.
+ struct AbsoluteAddress {
+ explicit AbsoluteAddress(const void* ptr)
+ : m_ptr(ptr)
+ {
+ }
+
+ const void* m_ptr;
+ };
+
+ // TrustedImmPtr:
+ //
+ // A pointer sized immediate operand to an instruction - this is wrapped
+ // in a class requiring explicit construction in order to differentiate
+ // from pointers used as absolute addresses to memory operations
+ struct TrustedImmPtr {
+ TrustedImmPtr() { }
+
+ explicit TrustedImmPtr(const void* value)
+ : m_value(value)
+ {
+ }
+
+ // This is only here so that TrustedImmPtr(0) does not confuse the C++
+ // overload handling rules.
+ explicit TrustedImmPtr(int value)
+ : m_value(0)
+ {
+ ASSERT_UNUSED(value, !value);
+ }
+
+ explicit TrustedImmPtr(size_t value)
+ : m_value(reinterpret_cast<void*>(value))
+ {
+ }
+
+ intptr_t asIntptr()
+ {
+ return reinterpret_cast<intptr_t>(m_value);
+ }
+
+ const void* m_value;
+ };
+
+ struct ImmPtr :
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ private TrustedImmPtr
+#else
+ public TrustedImmPtr
+#endif
+ {
+ explicit ImmPtr(const void* value)
+ : TrustedImmPtr(value)
+ {
+ }
+
+ TrustedImmPtr asTrustedImmPtr() { return *this; }
+ };
+
+ // TrustedImm32:
+ //
+ // A 32bit immediate operand to an instruction - this is wrapped in a
+ // class requiring explicit construction in order to prevent RegisterIDs
+ // (which are implemented as an enum) from accidentally being passed as
+ // immediate values.
+ struct TrustedImm32 {
+ TrustedImm32() { }
+
+ explicit TrustedImm32(int32_t value)
+ : m_value(value)
+ {
+ }
+
+#if !CPU(X86_64)
+ explicit TrustedImm32(TrustedImmPtr ptr)
+ : m_value(ptr.asIntptr())
+ {
+ }
+#endif
+
+ int32_t m_value;
+ };
+
+
+ struct Imm32 :
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ private TrustedImm32
+#else
+ public TrustedImm32
+#endif
+ {
+ explicit Imm32(int32_t value)
+ : TrustedImm32(value)
+ {
+ }
+#if !CPU(X86_64)
+ explicit Imm32(TrustedImmPtr ptr)
+ : TrustedImm32(ptr)
+ {
+ }
+#endif
+ const TrustedImm32& asTrustedImm32() const { return *this; }
+
+ };
+
+ // TrustedImm64:
+ //
+ // A 64bit immediate operand to an instruction - this is wrapped in a
+ // class requiring explicit construction in order to prevent RegisterIDs
+ // (which are implemented as an enum) from accidentally being passed as
+ // immediate values.
+ struct TrustedImm64 {
+ TrustedImm64() { }
+
+ explicit TrustedImm64(int64_t value)
+ : m_value(value)
+ {
+ }
+
+#if CPU(X86_64)
+ explicit TrustedImm64(TrustedImmPtr ptr)
+ : m_value(ptr.asIntptr())
+ {
+ }
+#endif
+
+ int64_t m_value;
+ };
+
+ struct Imm64 :
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ private TrustedImm64
+#else
+ public TrustedImm64
+#endif
+ {
+ explicit Imm64(int64_t value)
+ : TrustedImm64(value)
+ {
+ }
+#if CPU(X86_64)
+ explicit Imm64(TrustedImmPtr ptr)
+ : TrustedImm64(ptr)
+ {
+ }
+#endif
+ const TrustedImm64& asTrustedImm64() const { return *this; }
+ };
+
+ // Section 2: MacroAssembler code buffer handles
+ //
+ // The following types are used to reference items in the code buffer
+ // during JIT code generation. For example, the type Jump is used to
+ // track the location of a jump instruction so that it may later be
+ // linked to a label marking its destination.
+
+
+ // Label:
+ //
+ // A Label records a point in the generated instruction stream, typically such that
+ // it may be used as a destination for a jump.
+ class Label {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+ friend struct DFG::OSRExit;
+ friend class Jump;
+ friend class JumpReplacementWatchpoint;
+ friend class MacroAssemblerCodeRef;
+ friend class LinkBuffer;
+ friend class Watchpoint;
+
+ public:
+ Label()
+ {
+ }
+
+ Label(AbstractMacroAssembler<AssemblerType>* masm)
+ : m_label(masm->m_assembler.label())
+ {
+ }
+
+ bool isSet() const { return m_label.isSet(); }
+ private:
+ AssemblerLabel m_label;
+ };
+
+ // ConvertibleLoadLabel:
+ //
+ // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr
+ // so that:
+ //
+ // loadPtr(Address(a, i), b)
+ //
+ // becomes:
+ //
+ // addPtr(TrustedImmPtr(i), a, b)
+ class ConvertibleLoadLabel {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+ friend class LinkBuffer;
+
+ public:
+ ConvertibleLoadLabel()
+ {
+ }
+
+ ConvertibleLoadLabel(AbstractMacroAssembler<AssemblerType>* masm)
+ : m_label(masm->m_assembler.labelIgnoringWatchpoints())
+ {
+ }
+
+ bool isSet() const { return m_label.isSet(); }
+ private:
+ AssemblerLabel m_label;
+ };
+
+ // DataLabelPtr:
+ //
+ // A DataLabelPtr is used to refer to a location in the code containing a pointer to be
+ // patched after the code has been generated.
+ class DataLabelPtr {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+ friend class LinkBuffer;
+ public:
+ DataLabelPtr()
+ {
+ }
+
+ DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm)
+ : m_label(masm->m_assembler.label())
+ {
+ }
+
+ bool isSet() const { return m_label.isSet(); }
+
+ private:
+ AssemblerLabel m_label;
+ };
+
+ // DataLabel32:
+ //
+ // A DataLabelPtr is used to refer to a location in the code containing a pointer to be
+ // patched after the code has been generated.
+ class DataLabel32 {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+ friend class LinkBuffer;
+ public:
+ DataLabel32()
+ {
+ }
+
+ DataLabel32(AbstractMacroAssembler<AssemblerType>* masm)
+ : m_label(masm->m_assembler.label())
+ {
+ }
+
+ AssemblerLabel label() const { return m_label; }
+
+ private:
+ AssemblerLabel m_label;
+ };
+
+ // DataLabelCompact:
+ //
+ // A DataLabelCompact is used to refer to a location in the code containing a
+ // compact immediate to be patched after the code has been generated.
+ class DataLabelCompact {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+ friend class LinkBuffer;
+ public:
+ DataLabelCompact()
+ {
+ }
+
+ DataLabelCompact(AbstractMacroAssembler<AssemblerType>* masm)
+ : m_label(masm->m_assembler.label())
+ {
+ }
+
+ DataLabelCompact(AssemblerLabel label)
+ : m_label(label)
+ {
+ }
+
+ private:
+ AssemblerLabel m_label;
+ };
+
+ // Call:
+ //
+ // A Call object is a reference to a call instruction that has been planted
+ // into the code buffer - it is typically used to link the call, setting the
+ // relative offset such that when executed it will call to the desired
+ // destination.
+ class Call {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+
+ public:
+ enum Flags {
+ None = 0x0,
+ Linkable = 0x1,
+ Near = 0x2,
+ LinkableNear = 0x3,
+ };
+
+ Call()
+ : m_flags(None)
+ {
+ }
+
+ Call(AssemblerLabel jmp, Flags flags)
+ : m_label(jmp)
+ , m_flags(flags)
+ {
+ }
+
+ bool isFlagSet(Flags flag)
+ {
+ return m_flags & flag;
+ }
+
+ static Call fromTailJump(Jump jump)
+ {
+ return Call(jump.m_label, Linkable);
+ }
+
+ AssemblerLabel m_label;
+ private:
+ Flags m_flags;
+ };
+
+ // Jump:
+ //
+ // A jump object is a reference to a jump instruction that has been planted
+ // into the code buffer - it is typically used to link the jump, setting the
+ // relative offset such that when executed it will jump to the desired
+ // destination.
+ class Jump {
+ template<class TemplateAssemblerType>
+ friend class AbstractMacroAssembler;
+ friend class Call;
+ friend struct DFG::OSRExit;
+ friend class LinkBuffer;
+ public:
+ Jump()
+ {
+ }
+
+#if CPU(ARM_THUMB2)
+ // Fixme: this information should be stored in the instruction stream, not in the Jump object.
+ Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid)
+ : m_label(jmp)
+ , m_type(type)
+ , m_condition(condition)
+ {
+ }
+#elif CPU(SH4)
+ Jump(AssemblerLabel jmp, SH4Assembler::JumpType type = SH4Assembler::JumpFar)
+ : m_label(jmp)
+ , m_type(type)
+ {
+ }
+#else
+ Jump(AssemblerLabel jmp)
+ : m_label(jmp)
+ {
+ }
+#endif
+
+ Label label() const
+ {
+ Label result;
+ result.m_label = m_label;
+ return result;
+ }
+
+ void link(AbstractMacroAssembler<AssemblerType>* masm) const
+ {
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+ masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset());
+#endif
+
+#if CPU(ARM_THUMB2)
+ masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition);
+#elif CPU(SH4)
+ masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type);
+#else
+ masm->m_assembler.linkJump(m_label, masm->m_assembler.label());
+#endif
+ }
+
+ void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) const
+ {
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+ masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset);
+#endif
+
+#if CPU(ARM_THUMB2)
+ masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition);
+#else
+ masm->m_assembler.linkJump(m_label, label.m_label);
+#endif
+ }
+
+ bool isSet() const { return m_label.isSet(); }
+
+ private:
+ AssemblerLabel m_label;
+#if CPU(ARM_THUMB2)
+ ARMv7Assembler::JumpType m_type;
+ ARMv7Assembler::Condition m_condition;
+#endif
+#if CPU(SH4)
+ SH4Assembler::JumpType m_type;
+#endif
+ };
+
+ struct PatchableJump {
+ PatchableJump()
+ {
+ }
+
+ explicit PatchableJump(Jump jump)
+ : m_jump(jump)
+ {
+ }
+
+ operator Jump&() { return m_jump; }
+
+ Jump m_jump;
+ };
+
+ // JumpList:
+ //
+ // A JumpList is a set of Jump objects.
+ // All jumps in the set will be linked to the same destination.
+ class JumpList {
+ friend class LinkBuffer;
+
+ public:
+ typedef Vector<Jump, 2> JumpVector;
+
+ JumpList() { }
+
+ JumpList(Jump jump)
+ {
+ append(jump);
+ }
+
+ void link(AbstractMacroAssembler<AssemblerType>* masm)
+ {
+ size_t size = m_jumps.size();
+ for (size_t i = 0; i < size; ++i)
+ m_jumps[i].link(masm);
+ m_jumps.clear();
+ }
+
+ void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm)
+ {
+ size_t size = m_jumps.size();
+ for (size_t i = 0; i < size; ++i)
+ m_jumps[i].linkTo(label, masm);
+ m_jumps.clear();
+ }
+
+ void append(Jump jump)
+ {
+ m_jumps.append(jump);
+ }
+
+ void append(const JumpList& other)
+ {
+ m_jumps.append(other.m_jumps.begin(), other.m_jumps.size());
+ }
+
+ bool empty()
+ {
+ return !m_jumps.size();
+ }
+
+ void clear()
+ {
+ m_jumps.clear();
+ }
+
+ const JumpVector& jumps() const { return m_jumps; }
+
+ private:
+ JumpVector m_jumps;
+ };
+
+
+ // Section 3: Misc admin methods
+#if ENABLE(DFG_JIT)
+ Label labelIgnoringWatchpoints()
+ {
+ Label result;
+ result.m_label = m_assembler.labelIgnoringWatchpoints();
+ return result;
+ }
+#else
+ Label labelIgnoringWatchpoints()
+ {
+ return label();
+ }
+#endif
+
+ Label label()
+ {
+ return Label(this);
+ }
+
+ void padBeforePatch()
+ {
+ // Rely on the fact that asking for a label already does the padding.
+ (void)label();
+ }
+
+ Label watchpointLabel()
+ {
+ Label result;
+ result.m_label = m_assembler.labelForWatchpoint();
+ return result;
+ }
+
+ Label align()
+ {
+ m_assembler.align(16);
+ return Label(this);
+ }
+
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+ class RegisterAllocationOffset {
+ public:
+ RegisterAllocationOffset(unsigned offset)
+ : m_offset(offset)
+ {
+ }
+
+ void check(unsigned low, unsigned high)
+ {
+ RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u", m_offset, low, high);
+ }
+
+ private:
+ unsigned m_offset;
+ };
+
+ void addRegisterAllocationAtOffset(unsigned offset)
+ {
+ m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset));
+ }
+
+ void clearRegisterAllocationOffsets()
+ {
+ m_registerAllocationForOffsets.clear();
+ }
+
+ void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2)
+ {
+ if (offset1 > offset2)
+ std::swap(offset1, offset2);
+
+ size_t size = m_registerAllocationForOffsets.size();
+ for (size_t i = 0; i < size; ++i)
+ m_registerAllocationForOffsets[i].check(offset1, offset2);
+ }
+#endif
+
+ template<typename T, typename U>
+ static ptrdiff_t differenceBetween(T from, U to)
+ {
+ return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
+ }
+
+ static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b)
+ {
+ return reinterpret_cast<ptrdiff_t>(b.executableAddress()) - reinterpret_cast<ptrdiff_t>(a.executableAddress());
+ }
+
+ unsigned debugOffset() { return m_assembler.debugOffset(); }
+
+ ALWAYS_INLINE static void cacheFlush(void* code, size_t size)
+ {
+ AssemblerType::cacheFlush(code, size);
+ }
+protected:
+ AbstractMacroAssembler()
+ : m_randomSource(cryptographicallyRandomNumber())
+ {
+ }
+
+ AssemblerType m_assembler;
+
+ uint32_t random()
+ {
+ return m_randomSource.getUint32();
+ }
+
+ WeakRandom m_randomSource;
+
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+ Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets;
+#endif
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ static bool scratchRegisterForBlinding() { return false; }
+ static bool shouldBlindForSpecificArch(uint32_t) { return true; }
+ static bool shouldBlindForSpecificArch(uint64_t) { return true; }
+#endif
+
+ friend class LinkBuffer;
+ friend class RepatchBuffer;
+
+ static void linkJump(void* code, Jump jump, CodeLocationLabel target)
+ {
+ AssemblerType::linkJump(code, jump.m_label, target.dataLocation());
+ }
+
+ static void linkPointer(void* code, AssemblerLabel label, void* value)
+ {
+ AssemblerType::linkPointer(code, label, value);
+ }
+
+ static void* getLinkerAddress(void* code, AssemblerLabel label)
+ {
+ return AssemblerType::getRelocatedAddress(code, label);
+ }
+
+ static unsigned getLinkerCallReturnOffset(Call call)
+ {
+ return AssemblerType::getCallReturnOffset(call.m_label);
+ }
+
+ static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination)
+ {
+ AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation());
+ }
+
+ static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination)
+ {
+ AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress());
+ }
+
+ static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value)
+ {
+ AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value);
+ }
+
+ static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value)
+ {
+ AssemblerType::repatchInt32(dataLabel32.dataLocation(), value);
+ }
+
+ static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value)
+ {
+ AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value);
+ }
+
+ static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr)
+ {
+ return AssemblerType::readPointer(dataLabelPtr.dataLocation());
+ }
+
+ static void replaceWithLoad(CodeLocationConvertibleLoad label)
+ {
+ AssemblerType::replaceWithLoad(label.dataLocation());
+ }
+
+ static void replaceWithAddressComputation(CodeLocationConvertibleLoad label)
+ {
+ AssemblerType::replaceWithAddressComputation(label.dataLocation());
+ }
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // AbstractMacroAssembler_h
diff --git a/src/3rdparty/masm/assembler/AssemblerBuffer.h b/src/3rdparty/masm/assembler/AssemblerBuffer.h
new file mode 100644
index 0000000000..277ec1043c
--- /dev/null
+++ b/src/3rdparty/masm/assembler/AssemblerBuffer.h
@@ -0,0 +1,181 @@
+/*
+ * Copyright (C) 2008, 2012 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef AssemblerBuffer_h
+#define AssemblerBuffer_h
+
+#if ENABLE(ASSEMBLER)
+
+#include "ExecutableAllocator.h"
+#include "JITCompilationEffort.h"
+#include "JSGlobalData.h"
+#include "stdint.h"
+#include <string.h>
+#include <wtf/Assertions.h>
+#include <wtf/FastMalloc.h>
+#include <wtf/StdLibExtras.h>
+
+namespace JSC {
+
+ struct AssemblerLabel {
+ AssemblerLabel()
+ : m_offset(std::numeric_limits<uint32_t>::max())
+ {
+ }
+
+ explicit AssemblerLabel(uint32_t offset)
+ : m_offset(offset)
+ {
+ }
+
+ bool isSet() const { return (m_offset != std::numeric_limits<uint32_t>::max()); }
+
+ AssemblerLabel labelAtOffset(int offset) const
+ {
+ return AssemblerLabel(m_offset + offset);
+ }
+
+ uint32_t m_offset;
+ };
+
+ class AssemblerBuffer {
+ static const int inlineCapacity = 128;
+ public:
+ AssemblerBuffer()
+ : m_storage(inlineCapacity)
+ , m_buffer(&(*m_storage.begin()))
+ , m_capacity(inlineCapacity)
+ , m_index(0)
+ {
+ }
+
+ ~AssemblerBuffer()
+ {
+ }
+
+ bool isAvailable(int space)
+ {
+ return m_index + space <= m_capacity;
+ }
+
+ void ensureSpace(int space)
+ {
+ if (!isAvailable(space))
+ grow();
+ }
+
+ bool isAligned(int alignment) const
+ {
+ return !(m_index & (alignment - 1));
+ }
+
+ template<typename IntegralType>
+ void putIntegral(IntegralType value)
+ {
+ ensureSpace(sizeof(IntegralType));
+ putIntegralUnchecked(value);
+ }
+
+ template<typename IntegralType>
+ void putIntegralUnchecked(IntegralType value)
+ {
+ ASSERT(isAvailable(sizeof(IntegralType)));
+ *reinterpret_cast_ptr<IntegralType*>(m_buffer + m_index) = value;
+ m_index += sizeof(IntegralType);
+ }
+
+ void putByteUnchecked(int8_t value) { putIntegralUnchecked(value); }
+ void putByte(int8_t value) { putIntegral(value); }
+ void putShortUnchecked(int16_t value) { putIntegralUnchecked(value); }
+ void putShort(int16_t value) { putIntegral(value); }
+ void putIntUnchecked(int32_t value) { putIntegralUnchecked(value); }
+ void putInt(int32_t value) { putIntegral(value); }
+ void putInt64Unchecked(int64_t value) { putIntegralUnchecked(value); }
+ void putInt64(int64_t value) { putIntegral(value); }
+
+ void* data() const
+ {
+ return m_buffer;
+ }
+
+ size_t codeSize() const
+ {
+ return m_index;
+ }
+
+ AssemblerLabel label() const
+ {
+ return AssemblerLabel(m_index);
+ }
+
+ PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort)
+ {
+ if (!m_index)
+ return 0;
+
+ RefPtr<ExecutableMemoryHandle> result = globalData.executableAllocator.allocate(globalData, m_index, ownerUID, effort);
+
+ if (!result)
+ return 0;
+
+ ExecutableAllocator::makeWritable(result->start(), result->sizeInBytes());
+
+ memcpy(result->start(), m_buffer, m_index);
+
+ return result.release();
+ }
+
+ unsigned debugOffset() { return m_index; }
+
+ protected:
+ void append(const char* data, int size)
+ {
+ if (!isAvailable(size))
+ grow(size);
+
+ memcpy(m_buffer + m_index, data, size);
+ m_index += size;
+ }
+
+ void grow(int extraCapacity = 0)
+ {
+ m_capacity += m_capacity / 2 + extraCapacity;
+
+ m_storage.grow(m_capacity);
+ m_buffer = &(*m_storage.begin());
+ }
+
+ private:
+ Vector<char, inlineCapacity, UnsafeVectorOverflow> m_storage;
+ char* m_buffer;
+ int m_capacity;
+ int m_index;
+ };
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // AssemblerBuffer_h
diff --git a/src/3rdparty/masm/assembler/AssemblerBufferWithConstantPool.h b/src/3rdparty/masm/assembler/AssemblerBufferWithConstantPool.h
new file mode 100644
index 0000000000..5377ef0c7a
--- /dev/null
+++ b/src/3rdparty/masm/assembler/AssemblerBufferWithConstantPool.h
@@ -0,0 +1,342 @@
+/*
+ * Copyright (C) 2009 University of Szeged
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef AssemblerBufferWithConstantPool_h
+#define AssemblerBufferWithConstantPool_h
+
+#if ENABLE(ASSEMBLER)
+
+#include "AssemblerBuffer.h"
+#include <wtf/SegmentedVector.h>
+
+#define ASSEMBLER_HAS_CONSTANT_POOL 1
+
+namespace JSC {
+
+/*
+ On a constant pool 4 or 8 bytes data can be stored. The values can be
+ constants or addresses. The addresses should be 32 or 64 bits. The constants
+ should be double-precisions float or integer numbers which are hard to be
+ encoded as few machine instructions.
+
+ TODO: The pool is desinged to handle both 32 and 64 bits values, but
+ currently only the 4 bytes constants are implemented and tested.
+
+ The AssemblerBuffer can contain multiple constant pools. Each pool is inserted
+ into the instruction stream - protected by a jump instruction from the
+ execution flow.
+
+ The flush mechanism is called when no space remain to insert the next instruction
+ into the pool. Three values are used to determine when the constant pool itself
+ have to be inserted into the instruction stream (Assembler Buffer):
+
+ - maxPoolSize: size of the constant pool in bytes, this value cannot be
+ larger than the maximum offset of a PC relative memory load
+
+ - barrierSize: size of jump instruction in bytes which protects the
+ constant pool from execution
+
+ - maxInstructionSize: maximum length of a machine instruction in bytes
+
+ There are some callbacks which solve the target architecture specific
+ address handling:
+
+ - TYPE patchConstantPoolLoad(TYPE load, int value):
+ patch the 'load' instruction with the index of the constant in the
+ constant pool and return the patched instruction.
+
+ - void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr):
+ patch the a PC relative load instruction at 'loadAddr' address with the
+ final relative offset. The offset can be computed with help of
+ 'constPoolAddr' (the address of the constant pool) and index of the
+ constant (which is stored previously in the load instruction itself).
+
+ - TYPE placeConstantPoolBarrier(int size):
+ return with a constant pool barrier instruction which jumps over the
+ constant pool.
+
+ The 'put*WithConstant*' functions should be used to place a data into the
+ constant pool.
+*/
+
+template <int maxPoolSize, int barrierSize, int maxInstructionSize, class AssemblerType>
+class AssemblerBufferWithConstantPool : public AssemblerBuffer {
+ typedef SegmentedVector<uint32_t, 512> LoadOffsets;
+ using AssemblerBuffer::putIntegral;
+ using AssemblerBuffer::putIntegralUnchecked;
+public:
+ typedef struct {
+ short high;
+ short low;
+ } TwoShorts;
+
+ enum {
+ UniqueConst,
+ ReusableConst,
+ UnusedEntry,
+ };
+
+ AssemblerBufferWithConstantPool()
+ : AssemblerBuffer()
+ , m_numConsts(0)
+ , m_maxDistance(maxPoolSize)
+ , m_lastConstDelta(0)
+ {
+ m_pool = static_cast<uint32_t*>(fastMalloc(maxPoolSize));
+ m_mask = static_cast<char*>(fastMalloc(maxPoolSize / sizeof(uint32_t)));
+ }
+
+ ~AssemblerBufferWithConstantPool()
+ {
+ fastFree(m_mask);
+ fastFree(m_pool);
+ }
+
+ void ensureSpace(int space)
+ {
+ flushIfNoSpaceFor(space);
+ AssemblerBuffer::ensureSpace(space);
+ }
+
+ void ensureSpace(int insnSpace, int constSpace)
+ {
+ flushIfNoSpaceFor(insnSpace, constSpace);
+ AssemblerBuffer::ensureSpace(insnSpace);
+ }
+
+ void ensureSpaceForAnyInstruction(int amount = 1)
+ {
+ flushIfNoSpaceFor(amount * maxInstructionSize, amount * sizeof(uint64_t));
+ }
+
+ bool isAligned(int alignment)
+ {
+ flushIfNoSpaceFor(alignment);
+ return AssemblerBuffer::isAligned(alignment);
+ }
+
+ void putByteUnchecked(int value)
+ {
+ AssemblerBuffer::putByteUnchecked(value);
+ correctDeltas(1);
+ }
+
+ void putByte(int value)
+ {
+ flushIfNoSpaceFor(1);
+ AssemblerBuffer::putByte(value);
+ correctDeltas(1);
+ }
+
+ void putShortUnchecked(int value)
+ {
+ AssemblerBuffer::putShortUnchecked(value);
+ correctDeltas(2);
+ }
+
+ void putShort(int value)
+ {
+ flushIfNoSpaceFor(2);
+ AssemblerBuffer::putShort(value);
+ correctDeltas(2);
+ }
+
+ void putIntUnchecked(int value)
+ {
+ AssemblerBuffer::putIntUnchecked(value);
+ correctDeltas(4);
+ }
+
+ void putInt(int value)
+ {
+ flushIfNoSpaceFor(4);
+ AssemblerBuffer::putInt(value);
+ correctDeltas(4);
+ }
+
+ void putInt64Unchecked(int64_t value)
+ {
+ AssemblerBuffer::putInt64Unchecked(value);
+ correctDeltas(8);
+ }
+
+ void putIntegral(TwoShorts value)
+ {
+ putIntegral(value.high);
+ putIntegral(value.low);
+ }
+
+ void putIntegralUnchecked(TwoShorts value)
+ {
+ putIntegralUnchecked(value.high);
+ putIntegralUnchecked(value.low);
+ }
+
+ PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort)
+ {
+ flushConstantPool(false);
+ return AssemblerBuffer::executableCopy(globalData, ownerUID, effort);
+ }
+
+ void putShortWithConstantInt(uint16_t insn, uint32_t constant, bool isReusable = false)
+ {
+ putIntegralWithConstantInt(insn, constant, isReusable);
+ }
+
+ void putIntWithConstantInt(uint32_t insn, uint32_t constant, bool isReusable = false)
+ {
+ putIntegralWithConstantInt(insn, constant, isReusable);
+ }
+
+ // This flushing mechanism can be called after any unconditional jumps.
+ void flushWithoutBarrier(bool isForced = false)
+ {
+ // Flush if constant pool is more than 60% full to avoid overuse of this function.
+ if (isForced || 5 * static_cast<uint32_t>(m_numConsts) > 3 * maxPoolSize / sizeof(uint32_t))
+ flushConstantPool(false);
+ }
+
+ uint32_t* poolAddress()
+ {
+ return m_pool;
+ }
+
+ int sizeOfConstantPool()
+ {
+ return m_numConsts;
+ }
+
+private:
+ void correctDeltas(int insnSize)
+ {
+ m_maxDistance -= insnSize;
+ m_lastConstDelta -= insnSize;
+ if (m_lastConstDelta < 0)
+ m_lastConstDelta = 0;
+ }
+
+ void correctDeltas(int insnSize, int constSize)
+ {
+ correctDeltas(insnSize);
+
+ m_maxDistance -= m_lastConstDelta;
+ m_lastConstDelta = constSize;
+ }
+
+ template<typename IntegralType>
+ void putIntegralWithConstantInt(IntegralType insn, uint32_t constant, bool isReusable)
+ {
+ if (!m_numConsts)
+ m_maxDistance = maxPoolSize;
+ flushIfNoSpaceFor(sizeof(IntegralType), 4);
+
+ m_loadOffsets.append(codeSize());
+ if (isReusable) {
+ for (int i = 0; i < m_numConsts; ++i) {
+ if (m_mask[i] == ReusableConst && m_pool[i] == constant) {
+ putIntegral(static_cast<IntegralType>(AssemblerType::patchConstantPoolLoad(insn, i)));
+ correctDeltas(sizeof(IntegralType));
+ return;
+ }
+ }
+ }
+
+ m_pool[m_numConsts] = constant;
+ m_mask[m_numConsts] = static_cast<char>(isReusable ? ReusableConst : UniqueConst);
+
+ putIntegral(static_cast<IntegralType>(AssemblerType::patchConstantPoolLoad(insn, m_numConsts)));
+ ++m_numConsts;
+
+ correctDeltas(sizeof(IntegralType), 4);
+ }
+
+ void flushConstantPool(bool useBarrier = true)
+ {
+ if (m_numConsts == 0)
+ return;
+ int alignPool = (codeSize() + (useBarrier ? barrierSize : 0)) & (sizeof(uint64_t) - 1);
+
+ if (alignPool)
+ alignPool = sizeof(uint64_t) - alignPool;
+
+ // Callback to protect the constant pool from execution
+ if (useBarrier)
+ putIntegral(AssemblerType::placeConstantPoolBarrier(m_numConsts * sizeof(uint32_t) + alignPool));
+
+ if (alignPool) {
+ if (alignPool & 1)
+ AssemblerBuffer::putByte(AssemblerType::padForAlign8);
+ if (alignPool & 2)
+ AssemblerBuffer::putShort(AssemblerType::padForAlign16);
+ if (alignPool & 4)
+ AssemblerBuffer::putInt(AssemblerType::padForAlign32);
+ }
+
+ int constPoolOffset = codeSize();
+ append(reinterpret_cast<char*>(m_pool), m_numConsts * sizeof(uint32_t));
+
+ // Patch each PC relative load
+ for (LoadOffsets::Iterator iter = m_loadOffsets.begin(); iter != m_loadOffsets.end(); ++iter) {
+ void* loadAddr = reinterpret_cast<char*>(data()) + *iter;
+ AssemblerType::patchConstantPoolLoad(loadAddr, reinterpret_cast<char*>(data()) + constPoolOffset);
+ }
+
+ m_loadOffsets.clear();
+ m_numConsts = 0;
+ }
+
+ void flushIfNoSpaceFor(int nextInsnSize)
+ {
+ if (m_numConsts == 0)
+ return;
+ int lastConstDelta = m_lastConstDelta > nextInsnSize ? m_lastConstDelta - nextInsnSize : 0;
+ if ((m_maxDistance < nextInsnSize + lastConstDelta + barrierSize + (int)sizeof(uint32_t)))
+ flushConstantPool();
+ }
+
+ void flushIfNoSpaceFor(int nextInsnSize, int nextConstSize)
+ {
+ if (m_numConsts == 0)
+ return;
+ if ((m_maxDistance < nextInsnSize + m_lastConstDelta + nextConstSize + barrierSize + (int)sizeof(uint32_t)) ||
+ (m_numConsts * sizeof(uint32_t) + nextConstSize >= maxPoolSize))
+ flushConstantPool();
+ }
+
+ uint32_t* m_pool;
+ char* m_mask;
+ LoadOffsets m_loadOffsets;
+
+ int m_numConsts;
+ int m_maxDistance;
+ int m_lastConstDelta;
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // AssemblerBufferWithConstantPool_h
diff --git a/src/3rdparty/masm/assembler/CodeLocation.h b/src/3rdparty/masm/assembler/CodeLocation.h
new file mode 100644
index 0000000000..86d1f2b755
--- /dev/null
+++ b/src/3rdparty/masm/assembler/CodeLocation.h
@@ -0,0 +1,218 @@
+/*
+ * Copyright (C) 2009 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef CodeLocation_h
+#define CodeLocation_h
+
+#include "MacroAssemblerCodeRef.h"
+
+#if ENABLE(ASSEMBLER)
+
+namespace JSC {
+
+class CodeLocationInstruction;
+class CodeLocationLabel;
+class CodeLocationJump;
+class CodeLocationCall;
+class CodeLocationNearCall;
+class CodeLocationDataLabelCompact;
+class CodeLocationDataLabel32;
+class CodeLocationDataLabelPtr;
+class CodeLocationConvertibleLoad;
+
+// The CodeLocation* types are all pretty much do-nothing wrappers around
+// CodePtr (or MacroAssemblerCodePtr, to give it its full name). These
+// classes only exist to provide type-safety when linking and patching code.
+//
+// The one new piece of functionallity introduced by these classes is the
+// ability to create (or put another way, to re-discover) another CodeLocation
+// at an offset from one you already know. When patching code to optimize it
+// we often want to patch a number of instructions that are short, fixed
+// offsets apart. To reduce memory overhead we will only retain a pointer to
+// one of the instructions, and we will use the *AtOffset methods provided by
+// CodeLocationCommon to find the other points in the code to modify.
+class CodeLocationCommon : public MacroAssemblerCodePtr {
+public:
+ CodeLocationInstruction instructionAtOffset(int offset);
+ CodeLocationLabel labelAtOffset(int offset);
+ CodeLocationJump jumpAtOffset(int offset);
+ CodeLocationCall callAtOffset(int offset);
+ CodeLocationNearCall nearCallAtOffset(int offset);
+ CodeLocationDataLabelPtr dataLabelPtrAtOffset(int offset);
+ CodeLocationDataLabel32 dataLabel32AtOffset(int offset);
+ CodeLocationDataLabelCompact dataLabelCompactAtOffset(int offset);
+ CodeLocationConvertibleLoad convertibleLoadAtOffset(int offset);
+
+protected:
+ CodeLocationCommon()
+ {
+ }
+
+ CodeLocationCommon(MacroAssemblerCodePtr location)
+ : MacroAssemblerCodePtr(location)
+ {
+ }
+};
+
+class CodeLocationInstruction : public CodeLocationCommon {
+public:
+ CodeLocationInstruction() {}
+ explicit CodeLocationInstruction(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationInstruction(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationLabel : public CodeLocationCommon {
+public:
+ CodeLocationLabel() {}
+ explicit CodeLocationLabel(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationLabel(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationJump : public CodeLocationCommon {
+public:
+ CodeLocationJump() {}
+ explicit CodeLocationJump(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationJump(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationCall : public CodeLocationCommon {
+public:
+ CodeLocationCall() {}
+ explicit CodeLocationCall(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationCall(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationNearCall : public CodeLocationCommon {
+public:
+ CodeLocationNearCall() {}
+ explicit CodeLocationNearCall(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationNearCall(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationDataLabel32 : public CodeLocationCommon {
+public:
+ CodeLocationDataLabel32() {}
+ explicit CodeLocationDataLabel32(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationDataLabel32(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationDataLabelCompact : public CodeLocationCommon {
+public:
+ CodeLocationDataLabelCompact() { }
+ explicit CodeLocationDataLabelCompact(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) { }
+ explicit CodeLocationDataLabelCompact(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) { }
+};
+
+class CodeLocationDataLabelPtr : public CodeLocationCommon {
+public:
+ CodeLocationDataLabelPtr() {}
+ explicit CodeLocationDataLabelPtr(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) {}
+ explicit CodeLocationDataLabelPtr(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) {}
+};
+
+class CodeLocationConvertibleLoad : public CodeLocationCommon {
+public:
+ CodeLocationConvertibleLoad() { }
+ explicit CodeLocationConvertibleLoad(MacroAssemblerCodePtr location)
+ : CodeLocationCommon(location) { }
+ explicit CodeLocationConvertibleLoad(void* location)
+ : CodeLocationCommon(MacroAssemblerCodePtr(location)) { }
+};
+
+inline CodeLocationInstruction CodeLocationCommon::instructionAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationInstruction(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationLabel CodeLocationCommon::labelAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationLabel(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationJump CodeLocationCommon::jumpAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationJump(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationCall CodeLocationCommon::callAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationCall(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationNearCall CodeLocationCommon::nearCallAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationNearCall(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationDataLabelPtr CodeLocationCommon::dataLabelPtrAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationDataLabelPtr(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationDataLabel32 CodeLocationCommon::dataLabel32AtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationDataLabel32(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationDataLabelCompact CodeLocationCommon::dataLabelCompactAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationDataLabelCompact(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+inline CodeLocationConvertibleLoad CodeLocationCommon::convertibleLoadAtOffset(int offset)
+{
+ ASSERT_VALID_CODE_OFFSET(offset);
+ return CodeLocationConvertibleLoad(reinterpret_cast<char*>(dataLocation()) + offset);
+}
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // CodeLocation_h
diff --git a/src/3rdparty/masm/assembler/LinkBuffer.cpp b/src/3rdparty/masm/assembler/LinkBuffer.cpp
new file mode 100644
index 0000000000..645eba5380
--- /dev/null
+++ b/src/3rdparty/masm/assembler/LinkBuffer.cpp
@@ -0,0 +1,230 @@
+/*
+ * Copyright (C) 2012 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "LinkBuffer.h"
+
+#if ENABLE(ASSEMBLER)
+
+#include "Options.h"
+
+namespace JSC {
+
+LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithoutDisassembly()
+{
+ performFinalization();
+
+ return CodeRef(m_executableMemory);
+}
+
+LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithDisassembly(const char* format, ...)
+{
+ ASSERT(Options::showDisassembly() || Options::showDFGDisassembly());
+
+ CodeRef result = finalizeCodeWithoutDisassembly();
+
+ dataLogF("Generated JIT code for ");
+ va_list argList;
+ va_start(argList, format);
+ WTF::dataLogFV(format, argList);
+ va_end(argList);
+ dataLogF(":\n");
+
+ dataLogF(" Code at [%p, %p):\n", result.code().executableAddress(), static_cast<char*>(result.code().executableAddress()) + result.size());
+ disassemble(result.code(), m_size, " ", WTF::dataFile());
+
+ return result;
+}
+
+void LinkBuffer::linkCode(void* ownerUID, JITCompilationEffort effort)
+{
+ ASSERT(!m_code);
+#if !ENABLE(BRANCH_COMPACTION)
+ m_executableMemory = m_assembler->m_assembler.executableCopy(*m_globalData, ownerUID, effort);
+ if (!m_executableMemory)
+ return;
+ m_code = m_executableMemory->start();
+ m_size = m_assembler->m_assembler.codeSize();
+ ASSERT(m_code);
+#else
+ m_initialSize = m_assembler->m_assembler.codeSize();
+ m_executableMemory = m_globalData->executableAllocator.allocate(*m_globalData, m_initialSize, ownerUID, effort);
+ if (!m_executableMemory)
+ return;
+ m_code = (uint8_t*)m_executableMemory->start();
+ ASSERT(m_code);
+ ExecutableAllocator::makeWritable(m_code, m_initialSize);
+ uint8_t* inData = (uint8_t*)m_assembler->unlinkedCode();
+ uint8_t* outData = reinterpret_cast<uint8_t*>(m_code);
+ int readPtr = 0;
+ int writePtr = 0;
+ Vector<LinkRecord, 0, UnsafeVectorOverflow>& jumpsToLink = m_assembler->jumpsToLink();
+ unsigned jumpCount = jumpsToLink.size();
+ for (unsigned i = 0; i < jumpCount; ++i) {
+ int offset = readPtr - writePtr;
+ ASSERT(!(offset & 1));
+
+ // Copy the instructions from the last jump to the current one.
+ size_t regionSize = jumpsToLink[i].from() - readPtr;
+ uint16_t* copySource = reinterpret_cast_ptr<uint16_t*>(inData + readPtr);
+ uint16_t* copyEnd = reinterpret_cast_ptr<uint16_t*>(inData + readPtr + regionSize);
+ uint16_t* copyDst = reinterpret_cast_ptr<uint16_t*>(outData + writePtr);
+ ASSERT(!(regionSize % 2));
+ ASSERT(!(readPtr % 2));
+ ASSERT(!(writePtr % 2));
+ while (copySource != copyEnd)
+ *copyDst++ = *copySource++;
+ m_assembler->recordLinkOffsets(readPtr, jumpsToLink[i].from(), offset);
+ readPtr += regionSize;
+ writePtr += regionSize;
+
+ // Calculate absolute address of the jump target, in the case of backwards
+ // branches we need to be precise, forward branches we are pessimistic
+ const uint8_t* target;
+ if (jumpsToLink[i].to() >= jumpsToLink[i].from())
+ target = outData + jumpsToLink[i].to() - offset; // Compensate for what we have collapsed so far
+ else
+ target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to());
+
+ JumpLinkType jumpLinkType = m_assembler->computeJumpType(jumpsToLink[i], outData + writePtr, target);
+ // Compact branch if we can...
+ if (m_assembler->canCompact(jumpsToLink[i].type())) {
+ // Step back in the write stream
+ int32_t delta = m_assembler->jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType);
+ if (delta) {
+ writePtr -= delta;
+ m_assembler->recordLinkOffsets(jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr);
+ }
+ }
+ jumpsToLink[i].setFrom(writePtr);
+ }
+ // Copy everything after the last jump
+ memcpy(outData + writePtr, inData + readPtr, m_initialSize - readPtr);
+ m_assembler->recordLinkOffsets(readPtr, m_initialSize, readPtr - writePtr);
+
+ for (unsigned i = 0; i < jumpCount; ++i) {
+ uint8_t* location = outData + jumpsToLink[i].from();
+ uint8_t* target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to());
+ m_assembler->link(jumpsToLink[i], location, target);
+ }
+
+ jumpsToLink.clear();
+ m_size = writePtr + m_initialSize - readPtr;
+ m_executableMemory->shrink(m_size);
+
+#if DUMP_LINK_STATISTICS
+ dumpLinkStatistics(m_code, m_initialSize, m_size);
+#endif
+#if DUMP_CODE
+ dumpCode(m_code, m_size);
+#endif
+#endif
+}
+
+void LinkBuffer::performFinalization()
+{
+#ifndef NDEBUG
+ ASSERT(!m_completed);
+ ASSERT(isValid());
+ m_completed = true;
+#endif
+
+#if ENABLE(BRANCH_COMPACTION)
+ ExecutableAllocator::makeExecutable(code(), m_initialSize);
+#else
+ ExecutableAllocator::makeExecutable(code(), m_size);
+#endif
+ MacroAssembler::cacheFlush(code(), m_size);
+}
+
+#if DUMP_LINK_STATISTICS
+void LinkBuffer::dumpLinkStatistics(void* code, size_t initializeSize, size_t finalSize)
+{
+ static unsigned linkCount = 0;
+ static unsigned totalInitialSize = 0;
+ static unsigned totalFinalSize = 0;
+ linkCount++;
+ totalInitialSize += initialSize;
+ totalFinalSize += finalSize;
+ dataLogF("link %p: orig %u, compact %u (delta %u, %.2f%%)\n",
+ code, static_cast<unsigned>(initialSize), static_cast<unsigned>(finalSize),
+ static_cast<unsigned>(initialSize - finalSize),
+ 100.0 * (initialSize - finalSize) / initialSize);
+ dataLogF("\ttotal %u: orig %u, compact %u (delta %u, %.2f%%)\n",
+ linkCount, totalInitialSize, totalFinalSize, totalInitialSize - totalFinalSize,
+ 100.0 * (totalInitialSize - totalFinalSize) / totalInitialSize);
+}
+#endif
+
+#if DUMP_CODE
+void LinkBuffer::dumpCode(void* code, size_t size)
+{
+#if CPU(ARM_THUMB2)
+ // Dump the generated code in an asm file format that can be assembled and then disassembled
+ // for debugging purposes. For example, save this output as jit.s:
+ // gcc -arch armv7 -c jit.s
+ // otool -tv jit.o
+ static unsigned codeCount = 0;
+ unsigned short* tcode = static_cast<unsigned short*>(code);
+ size_t tsize = size / sizeof(short);
+ char nameBuf[128];
+ snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++);
+ dataLogF("\t.syntax unified\n"
+ "\t.section\t__TEXT,__text,regular,pure_instructions\n"
+ "\t.globl\t%s\n"
+ "\t.align 2\n"
+ "\t.code 16\n"
+ "\t.thumb_func\t%s\n"
+ "# %p\n"
+ "%s:\n", nameBuf, nameBuf, code, nameBuf);
+
+ for (unsigned i = 0; i < tsize; i++)
+ dataLogF("\t.short\t0x%x\n", tcode[i]);
+#elif CPU(ARM_TRADITIONAL)
+ // gcc -c jit.s
+ // objdump -D jit.o
+ static unsigned codeCount = 0;
+ unsigned int* tcode = static_cast<unsigned int*>(code);
+ size_t tsize = size / sizeof(unsigned int);
+ char nameBuf[128];
+ snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++);
+ dataLogF("\t.globl\t%s\n"
+ "\t.align 4\n"
+ "\t.code 32\n"
+ "\t.text\n"
+ "# %p\n"
+ "%s:\n", nameBuf, code, nameBuf);
+
+ for (unsigned i = 0; i < tsize; i++)
+ dataLogF("\t.long\t0x%x\n", tcode[i]);
+#endif
+}
+#endif
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+
diff --git a/src/3rdparty/masm/assembler/LinkBuffer.h b/src/3rdparty/masm/assembler/LinkBuffer.h
new file mode 100644
index 0000000000..e1882433c1
--- /dev/null
+++ b/src/3rdparty/masm/assembler/LinkBuffer.h
@@ -0,0 +1,297 @@
+/*
+ * Copyright (C) 2009, 2010, 2012 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef LinkBuffer_h
+#define LinkBuffer_h
+
+#if ENABLE(ASSEMBLER)
+
+#define DUMP_LINK_STATISTICS 0
+#define DUMP_CODE 0
+
+#define GLOBAL_THUNK_ID reinterpret_cast<void*>(static_cast<intptr_t>(-1))
+#define REGEXP_CODE_ID reinterpret_cast<void*>(static_cast<intptr_t>(-2))
+
+#include "JITCompilationEffort.h"
+#include "MacroAssembler.h"
+#include <wtf/DataLog.h>
+#include <wtf/Noncopyable.h>
+
+namespace JSC {
+
+class JSGlobalData;
+
+// LinkBuffer:
+//
+// This class assists in linking code generated by the macro assembler, once code generation
+// has been completed, and the code has been copied to is final location in memory. At this
+// time pointers to labels within the code may be resolved, and relative offsets to external
+// addresses may be fixed.
+//
+// Specifically:
+// * Jump objects may be linked to external targets,
+// * The address of Jump objects may taken, such that it can later be relinked.
+// * The return address of a Call may be acquired.
+// * The address of a Label pointing into the code may be resolved.
+// * The value referenced by a DataLabel may be set.
+//
+class LinkBuffer {
+ WTF_MAKE_NONCOPYABLE(LinkBuffer);
+ typedef MacroAssemblerCodeRef CodeRef;
+ typedef MacroAssemblerCodePtr CodePtr;
+ typedef MacroAssembler::Label Label;
+ typedef MacroAssembler::Jump Jump;
+ typedef MacroAssembler::PatchableJump PatchableJump;
+ typedef MacroAssembler::JumpList JumpList;
+ typedef MacroAssembler::Call Call;
+ typedef MacroAssembler::DataLabelCompact DataLabelCompact;
+ typedef MacroAssembler::DataLabel32 DataLabel32;
+ typedef MacroAssembler::DataLabelPtr DataLabelPtr;
+ typedef MacroAssembler::ConvertibleLoadLabel ConvertibleLoadLabel;
+#if ENABLE(BRANCH_COMPACTION)
+ typedef MacroAssembler::LinkRecord LinkRecord;
+ typedef MacroAssembler::JumpLinkType JumpLinkType;
+#endif
+
+public:
+ LinkBuffer(JSGlobalData& globalData, MacroAssembler* masm, void* ownerUID, JITCompilationEffort effort = JITCompilationMustSucceed)
+ : m_size(0)
+#if ENABLE(BRANCH_COMPACTION)
+ , m_initialSize(0)
+#endif
+ , m_code(0)
+ , m_assembler(masm)
+ , m_globalData(&globalData)
+#ifndef NDEBUG
+ , m_completed(false)
+ , m_effort(effort)
+#endif
+ {
+ linkCode(ownerUID, effort);
+ }
+
+ ~LinkBuffer()
+ {
+ ASSERT(m_completed || (!m_executableMemory && m_effort == JITCompilationCanFail));
+ }
+
+ bool didFailToAllocate() const
+ {
+ return !m_executableMemory;
+ }
+
+ bool isValid() const
+ {
+ return !didFailToAllocate();
+ }
+
+ // These methods are used to link or set values at code generation time.
+
+ void link(Call call, FunctionPtr function)
+ {
+ ASSERT(call.isFlagSet(Call::Linkable));
+ call.m_label = applyOffset(call.m_label);
+ MacroAssembler::linkCall(code(), call, function);
+ }
+
+ void link(Jump jump, CodeLocationLabel label)
+ {
+ jump.m_label = applyOffset(jump.m_label);
+ MacroAssembler::linkJump(code(), jump, label);
+ }
+
+ void link(JumpList list, CodeLocationLabel label)
+ {
+ for (unsigned i = 0; i < list.m_jumps.size(); ++i)
+ link(list.m_jumps[i], label);
+ }
+
+ void patch(DataLabelPtr label, void* value)
+ {
+ AssemblerLabel target = applyOffset(label.m_label);
+ MacroAssembler::linkPointer(code(), target, value);
+ }
+
+ void patch(DataLabelPtr label, CodeLocationLabel value)
+ {
+ AssemblerLabel target = applyOffset(label.m_label);
+ MacroAssembler::linkPointer(code(), target, value.executableAddress());
+ }
+
+ // These methods are used to obtain handles to allow the code to be relinked / repatched later.
+
+ CodeLocationCall locationOf(Call call)
+ {
+ ASSERT(call.isFlagSet(Call::Linkable));
+ ASSERT(!call.isFlagSet(Call::Near));
+ return CodeLocationCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_label)));
+ }
+
+ CodeLocationNearCall locationOfNearCall(Call call)
+ {
+ ASSERT(call.isFlagSet(Call::Linkable));
+ ASSERT(call.isFlagSet(Call::Near));
+ return CodeLocationNearCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_label)));
+ }
+
+ CodeLocationLabel locationOf(PatchableJump jump)
+ {
+ return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(jump.m_jump.m_label)));
+ }
+
+ CodeLocationLabel locationOf(Label label)
+ {
+ return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
+ }
+
+ CodeLocationDataLabelPtr locationOf(DataLabelPtr label)
+ {
+ return CodeLocationDataLabelPtr(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
+ }
+
+ CodeLocationDataLabel32 locationOf(DataLabel32 label)
+ {
+ return CodeLocationDataLabel32(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
+ }
+
+ CodeLocationDataLabelCompact locationOf(DataLabelCompact label)
+ {
+ return CodeLocationDataLabelCompact(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
+ }
+
+ CodeLocationConvertibleLoad locationOf(ConvertibleLoadLabel label)
+ {
+ return CodeLocationConvertibleLoad(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
+ }
+
+ // This method obtains the return address of the call, given as an offset from
+ // the start of the code.
+ unsigned returnAddressOffset(Call call)
+ {
+ call.m_label = applyOffset(call.m_label);
+ return MacroAssembler::getLinkerCallReturnOffset(call);
+ }
+
+ uint32_t offsetOf(Label label)
+ {
+ return applyOffset(label.m_label).m_offset;
+ }
+
+ // Upon completion of all patching 'FINALIZE_CODE()' should be called once to
+ // complete generation of the code. Alternatively, call
+ // finalizeCodeWithoutDisassembly() directly if you have your own way of
+ // displaying disassembly.
+
+ CodeRef finalizeCodeWithoutDisassembly();
+ CodeRef finalizeCodeWithDisassembly(const char* format, ...) WTF_ATTRIBUTE_PRINTF(2, 3);
+
+ CodePtr trampolineAt(Label label)
+ {
+ return CodePtr(MacroAssembler::AssemblerType_T::getRelocatedAddress(code(), applyOffset(label.m_label)));
+ }
+
+ void* debugAddress()
+ {
+ return m_code;
+ }
+
+ size_t debugSize()
+ {
+ return m_size;
+ }
+
+private:
+ template <typename T> T applyOffset(T src)
+ {
+#if ENABLE(BRANCH_COMPACTION)
+ src.m_offset -= m_assembler->executableOffsetFor(src.m_offset);
+#endif
+ return src;
+ }
+
+ // Keep this private! - the underlying code should only be obtained externally via finalizeCode().
+ void* code()
+ {
+ return m_code;
+ }
+
+ void linkCode(void* ownerUID, JITCompilationEffort);
+
+ void performFinalization();
+
+#if DUMP_LINK_STATISTICS
+ static void dumpLinkStatistics(void* code, size_t initialSize, size_t finalSize);
+#endif
+
+#if DUMP_CODE
+ static void dumpCode(void* code, size_t);
+#endif
+
+ RefPtr<ExecutableMemoryHandle> m_executableMemory;
+ size_t m_size;
+#if ENABLE(BRANCH_COMPACTION)
+ size_t m_initialSize;
+#endif
+ void* m_code;
+ MacroAssembler* m_assembler;
+ JSGlobalData* m_globalData;
+#ifndef NDEBUG
+ bool m_completed;
+ JITCompilationEffort m_effort;
+#endif
+};
+
+#define FINALIZE_CODE_IF(condition, linkBufferReference, dataLogFArgumentsForHeading) \
+ (UNLIKELY((condition)) \
+ ? ((linkBufferReference).finalizeCodeWithDisassembly dataLogFArgumentsForHeading) \
+ : (linkBufferReference).finalizeCodeWithoutDisassembly())
+
+// Use this to finalize code, like so:
+//
+// CodeRef code = FINALIZE_CODE(linkBuffer, ("my super thingy number %d", number));
+//
+// Which, in disassembly mode, will print:
+//
+// Generated JIT code for my super thingy number 42:
+// Code at [0x123456, 0x234567]:
+// 0x123456: mov $0, 0
+// 0x12345a: ret
+//
+// ... and so on.
+//
+// Note that the dataLogFArgumentsForHeading are only evaluated when showDisassembly
+// is true, so you can hide expensive disassembly-only computations inside there.
+
+#define FINALIZE_CODE(linkBufferReference, dataLogFArgumentsForHeading) \
+ FINALIZE_CODE_IF(Options::showDisassembly(), linkBufferReference, dataLogFArgumentsForHeading)
+
+#define FINALIZE_DFG_CODE(linkBufferReference, dataLogFArgumentsForHeading) \
+ FINALIZE_CODE_IF((Options::showDisassembly() || Options::showDFGDisassembly()), linkBufferReference, dataLogFArgumentsForHeading)
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // LinkBuffer_h
diff --git a/src/3rdparty/masm/assembler/MIPSAssembler.h b/src/3rdparty/masm/assembler/MIPSAssembler.h
new file mode 100644
index 0000000000..7f553bb9a1
--- /dev/null
+++ b/src/3rdparty/masm/assembler/MIPSAssembler.h
@@ -0,0 +1,1107 @@
+/*
+ * Copyright (C) 2009 Apple Inc. All rights reserved.
+ * Copyright (C) 2009 University of Szeged
+ * All rights reserved.
+ * Copyright (C) 2010 MIPS Technologies, Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY MIPS TECHNOLOGIES, INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MIPS TECHNOLOGIES, INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef MIPSAssembler_h
+#define MIPSAssembler_h
+
+#if ENABLE(ASSEMBLER) && CPU(MIPS)
+
+#include "AssemblerBuffer.h"
+#include "JITCompilationEffort.h"
+#include <wtf/Assertions.h>
+#include <wtf/SegmentedVector.h>
+
+namespace JSC {
+
+typedef uint32_t MIPSWord;
+
+namespace MIPSRegisters {
+typedef enum {
+ r0 = 0,
+ r1,
+ r2,
+ r3,
+ r4,
+ r5,
+ r6,
+ r7,
+ r8,
+ r9,
+ r10,
+ r11,
+ r12,
+ r13,
+ r14,
+ r15,
+ r16,
+ r17,
+ r18,
+ r19,
+ r20,
+ r21,
+ r22,
+ r23,
+ r24,
+ r25,
+ r26,
+ r27,
+ r28,
+ r29,
+ r30,
+ r31,
+ zero = r0,
+ at = r1,
+ v0 = r2,
+ v1 = r3,
+ a0 = r4,
+ a1 = r5,
+ a2 = r6,
+ a3 = r7,
+ t0 = r8,
+ t1 = r9,
+ t2 = r10,
+ t3 = r11,
+ t4 = r12,
+ t5 = r13,
+ t6 = r14,
+ t7 = r15,
+ s0 = r16,
+ s1 = r17,
+ s2 = r18,
+ s3 = r19,
+ s4 = r20,
+ s5 = r21,
+ s6 = r22,
+ s7 = r23,
+ t8 = r24,
+ t9 = r25,
+ k0 = r26,
+ k1 = r27,
+ gp = r28,
+ sp = r29,
+ fp = r30,
+ ra = r31
+} RegisterID;
+
+typedef enum {
+ f0,
+ f1,
+ f2,
+ f3,
+ f4,
+ f5,
+ f6,
+ f7,
+ f8,
+ f9,
+ f10,
+ f11,
+ f12,
+ f13,
+ f14,
+ f15,
+ f16,
+ f17,
+ f18,
+ f19,
+ f20,
+ f21,
+ f22,
+ f23,
+ f24,
+ f25,
+ f26,
+ f27,
+ f28,
+ f29,
+ f30,
+ f31
+} FPRegisterID;
+
+} // namespace MIPSRegisters
+
+class MIPSAssembler {
+public:
+ typedef MIPSRegisters::RegisterID RegisterID;
+ typedef MIPSRegisters::FPRegisterID FPRegisterID;
+ typedef SegmentedVector<AssemblerLabel, 64> Jumps;
+
+ MIPSAssembler()
+ : m_indexOfLastWatchpoint(INT_MIN)
+ , m_indexOfTailOfLastWatchpoint(INT_MIN)
+ {
+ }
+
+ // MIPS instruction opcode field position
+ enum {
+ OP_SH_RD = 11,
+ OP_SH_RT = 16,
+ OP_SH_RS = 21,
+ OP_SH_SHAMT = 6,
+ OP_SH_CODE = 16,
+ OP_SH_FD = 6,
+ OP_SH_FS = 11,
+ OP_SH_FT = 16
+ };
+
+ void emitInst(MIPSWord op)
+ {
+ void* oldBase = m_buffer.data();
+
+ m_buffer.putInt(op);
+
+ void* newBase = m_buffer.data();
+ if (oldBase != newBase)
+ relocateJumps(oldBase, newBase);
+ }
+
+ void nop()
+ {
+ emitInst(0x00000000);
+ }
+
+ /* Need to insert one load data delay nop for mips1. */
+ void loadDelayNop()
+ {
+#if WTF_MIPS_ISA(1)
+ nop();
+#endif
+ }
+
+ /* Need to insert one coprocessor access delay nop for mips1. */
+ void copDelayNop()
+ {
+#if WTF_MIPS_ISA(1)
+ nop();
+#endif
+ }
+
+ void move(RegisterID rd, RegisterID rs)
+ {
+ /* addu */
+ emitInst(0x00000021 | (rd << OP_SH_RD) | (rs << OP_SH_RS));
+ }
+
+ /* Set an immediate value to a register. This may generate 1 or 2
+ instructions. */
+ void li(RegisterID dest, int imm)
+ {
+ if (imm >= -32768 && imm <= 32767)
+ addiu(dest, MIPSRegisters::zero, imm);
+ else if (imm >= 0 && imm < 65536)
+ ori(dest, MIPSRegisters::zero, imm);
+ else {
+ lui(dest, imm >> 16);
+ if (imm & 0xffff)
+ ori(dest, dest, imm);
+ }
+ }
+
+ void lui(RegisterID rt, int imm)
+ {
+ emitInst(0x3c000000 | (rt << OP_SH_RT) | (imm & 0xffff));
+ }
+
+ void addiu(RegisterID rt, RegisterID rs, int imm)
+ {
+ emitInst(0x24000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void addu(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000021 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void subu(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000023 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void mult(RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000018 | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void div(RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x0000001a | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void mfhi(RegisterID rd)
+ {
+ emitInst(0x00000010 | (rd << OP_SH_RD));
+ }
+
+ void mflo(RegisterID rd)
+ {
+ emitInst(0x00000012 | (rd << OP_SH_RD));
+ }
+
+ void mul(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+#if WTF_MIPS_ISA_AT_LEAST(32)
+ emitInst(0x70000002 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+#else
+ mult(rs, rt);
+ mflo(rd);
+#endif
+ }
+
+ void andInsn(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000024 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void andi(RegisterID rt, RegisterID rs, int imm)
+ {
+ emitInst(0x30000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void nor(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000027 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void orInsn(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000025 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void ori(RegisterID rt, RegisterID rs, int imm)
+ {
+ emitInst(0x34000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void xorInsn(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x00000026 | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void xori(RegisterID rt, RegisterID rs, int imm)
+ {
+ emitInst(0x38000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void slt(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x0000002a | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void sltu(RegisterID rd, RegisterID rs, RegisterID rt)
+ {
+ emitInst(0x0000002b | (rd << OP_SH_RD) | (rs << OP_SH_RS) | (rt << OP_SH_RT));
+ }
+
+ void sltiu(RegisterID rt, RegisterID rs, int imm)
+ {
+ emitInst(0x2c000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void sll(RegisterID rd, RegisterID rt, int shamt)
+ {
+ emitInst(0x00000000 | (rd << OP_SH_RD) | (rt << OP_SH_RT) | ((shamt & 0x1f) << OP_SH_SHAMT));
+ }
+
+ void sllv(RegisterID rd, RegisterID rt, RegisterID rs)
+ {
+ emitInst(0x00000004 | (rd << OP_SH_RD) | (rt << OP_SH_RT) | (rs << OP_SH_RS));
+ }
+
+ void sra(RegisterID rd, RegisterID rt, int shamt)
+ {
+ emitInst(0x00000003 | (rd << OP_SH_RD) | (rt << OP_SH_RT) | ((shamt & 0x1f) << OP_SH_SHAMT));
+ }
+
+ void srav(RegisterID rd, RegisterID rt, RegisterID rs)
+ {
+ emitInst(0x00000007 | (rd << OP_SH_RD) | (rt << OP_SH_RT) | (rs << OP_SH_RS));
+ }
+
+ void srl(RegisterID rd, RegisterID rt, int shamt)
+ {
+ emitInst(0x00000002 | (rd << OP_SH_RD) | (rt << OP_SH_RT) | ((shamt & 0x1f) << OP_SH_SHAMT));
+ }
+
+ void srlv(RegisterID rd, RegisterID rt, RegisterID rs)
+ {
+ emitInst(0x00000006 | (rd << OP_SH_RD) | (rt << OP_SH_RT) | (rs << OP_SH_RS));
+ }
+
+ void lb(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x80000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void lbu(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x90000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void lw(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x8c000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void lwl(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x88000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void lwr(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x98000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void lh(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x84000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void lhu(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0x94000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ loadDelayNop();
+ }
+
+ void sb(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0xa0000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ }
+
+ void sh(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0xa4000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ }
+
+ void sw(RegisterID rt, RegisterID rs, int offset)
+ {
+ emitInst(0xac000000 | (rt << OP_SH_RT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ }
+
+ void jr(RegisterID rs)
+ {
+ emitInst(0x00000008 | (rs << OP_SH_RS));
+ }
+
+ void jalr(RegisterID rs)
+ {
+ emitInst(0x0000f809 | (rs << OP_SH_RS));
+ }
+
+ void jal()
+ {
+ emitInst(0x0c000000);
+ }
+
+ void bkpt()
+ {
+ int value = 512; /* BRK_BUG */
+ emitInst(0x0000000d | ((value & 0x3ff) << OP_SH_CODE));
+ }
+
+ void bgez(RegisterID rs, int imm)
+ {
+ emitInst(0x04010000 | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void bltz(RegisterID rs, int imm)
+ {
+ emitInst(0x04000000 | (rs << OP_SH_RS) | (imm & 0xffff));
+ }
+
+ void beq(RegisterID rs, RegisterID rt, int imm)
+ {
+ emitInst(0x10000000 | (rs << OP_SH_RS) | (rt << OP_SH_RT) | (imm & 0xffff));
+ }
+
+ void bne(RegisterID rs, RegisterID rt, int imm)
+ {
+ emitInst(0x14000000 | (rs << OP_SH_RS) | (rt << OP_SH_RT) | (imm & 0xffff));
+ }
+
+ void bc1t()
+ {
+ emitInst(0x45010000);
+ }
+
+ void bc1f()
+ {
+ emitInst(0x45000000);
+ }
+
+ void appendJump()
+ {
+ m_jumps.append(m_buffer.label());
+ }
+
+ void addd(FPRegisterID fd, FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200000 | (fd << OP_SH_FD) | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ }
+
+ void subd(FPRegisterID fd, FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200001 | (fd << OP_SH_FD) | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ }
+
+ void muld(FPRegisterID fd, FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200002 | (fd << OP_SH_FD) | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ }
+
+ void divd(FPRegisterID fd, FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200003 | (fd << OP_SH_FD) | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ }
+
+ void lwc1(FPRegisterID ft, RegisterID rs, int offset)
+ {
+ emitInst(0xc4000000 | (ft << OP_SH_FT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ copDelayNop();
+ }
+
+ void ldc1(FPRegisterID ft, RegisterID rs, int offset)
+ {
+ emitInst(0xd4000000 | (ft << OP_SH_FT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ }
+
+ void swc1(FPRegisterID ft, RegisterID rs, int offset)
+ {
+ emitInst(0xe4000000 | (ft << OP_SH_FT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ }
+
+ void sdc1(FPRegisterID ft, RegisterID rs, int offset)
+ {
+ emitInst(0xf4000000 | (ft << OP_SH_FT) | (rs << OP_SH_RS) | (offset & 0xffff));
+ }
+
+ void mtc1(RegisterID rt, FPRegisterID fs)
+ {
+ emitInst(0x44800000 | (fs << OP_SH_FS) | (rt << OP_SH_RT));
+ copDelayNop();
+ }
+
+ void mthc1(RegisterID rt, FPRegisterID fs)
+ {
+ emitInst(0x44e00000 | (fs << OP_SH_FS) | (rt << OP_SH_RT));
+ copDelayNop();
+ }
+
+ void mfc1(RegisterID rt, FPRegisterID fs)
+ {
+ emitInst(0x44000000 | (fs << OP_SH_FS) | (rt << OP_SH_RT));
+ copDelayNop();
+ }
+
+ void sqrtd(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46200004 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void movd(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46200006 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void negd(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46200007 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void truncwd(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x4620000d | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void cvtdw(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46800021 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void cvtds(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46000021 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void cvtwd(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46200024 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void cvtsd(FPRegisterID fd, FPRegisterID fs)
+ {
+ emitInst(0x46200020 | (fd << OP_SH_FD) | (fs << OP_SH_FS));
+ }
+
+ void ceqd(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200032 | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void cngtd(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x4620003f | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void cnged(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x4620003d | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void cltd(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x4620003c | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void cled(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x4620003e | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void cueqd(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200033 | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void coled(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200036 | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void coltd(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200034 | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void culed(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200037 | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ void cultd(FPRegisterID fs, FPRegisterID ft)
+ {
+ emitInst(0x46200035 | (fs << OP_SH_FS) | (ft << OP_SH_FT));
+ copDelayNop();
+ }
+
+ // General helpers
+
+ AssemblerLabel labelIgnoringWatchpoints()
+ {
+ return m_buffer.label();
+ }
+
+ AssemblerLabel labelForWatchpoint()
+ {
+ AssemblerLabel result = m_buffer.label();
+ if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint)
+ result = label();
+ m_indexOfLastWatchpoint = result.m_offset;
+ m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
+ return result;
+ }
+
+ AssemblerLabel label()
+ {
+ AssemblerLabel result = m_buffer.label();
+ while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) {
+ nop();
+ result = m_buffer.label();
+ }
+ return result;
+ }
+
+ AssemblerLabel align(int alignment)
+ {
+ while (!m_buffer.isAligned(alignment))
+ bkpt();
+
+ return label();
+ }
+
+ static void* getRelocatedAddress(void* code, AssemblerLabel label)
+ {
+ return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
+ }
+
+ static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
+ {
+ return b.m_offset - a.m_offset;
+ }
+
+ // Assembler admin methods:
+
+ size_t codeSize() const
+ {
+ return m_buffer.codeSize();
+ }
+
+ PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort)
+ {
+ RefPtr<ExecutableMemoryHandle> result = m_buffer.executableCopy(globalData, ownerUID, effort);
+ if (!result)
+ return 0;
+
+ relocateJumps(m_buffer.data(), result->start());
+ return result.release();
+ }
+
+ unsigned debugOffset() { return m_buffer.debugOffset(); }
+
+ // Assembly helpers for moving data between fp and registers.
+ void vmov(RegisterID rd1, RegisterID rd2, FPRegisterID rn)
+ {
+#if WTF_MIPS_ISA_REV(2) && WTF_MIPS_FP64
+ mfc1(rd1, rn);
+ mfhc1(rd2, rn);
+#else
+ mfc1(rd1, rn);
+ mfc1(rd2, FPRegisterID(rn + 1));
+#endif
+ }
+
+ void vmov(FPRegisterID rd, RegisterID rn1, RegisterID rn2)
+ {
+#if WTF_MIPS_ISA_REV(2) && WTF_MIPS_FP64
+ mtc1(rn1, rd);
+ mthc1(rn2, rd);
+#else
+ mtc1(rn1, rd);
+ mtc1(rn2, FPRegisterID(rd + 1));
+#endif
+ }
+
+ static unsigned getCallReturnOffset(AssemblerLabel call)
+ {
+ // The return address is after a call and a delay slot instruction
+ return call.m_offset;
+ }
+
+ // Linking & patching:
+ //
+ // 'link' and 'patch' methods are for use on unprotected code - such as the code
+ // within the AssemblerBuffer, and code being patched by the patch buffer. Once
+ // code has been finalized it is (platform support permitting) within a non-
+ // writable region of memory; to modify the code in an execute-only execuable
+ // pool the 'repatch' and 'relink' methods should be used.
+
+ static size_t linkDirectJump(void* code, void* to)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(code));
+ size_t ops = 0;
+ int32_t slotAddr = reinterpret_cast<int>(insn) + 4;
+ int32_t toAddr = reinterpret_cast<int>(to);
+
+ if ((slotAddr & 0xf0000000) != (toAddr & 0xf0000000)) {
+ // lui
+ *insn = 0x3c000000 | (MIPSRegisters::t9 << OP_SH_RT) | ((toAddr >> 16) & 0xffff);
+ ++insn;
+ // ori
+ *insn = 0x34000000 | (MIPSRegisters::t9 << OP_SH_RT) | (MIPSRegisters::t9 << OP_SH_RS) | (toAddr & 0xffff);
+ ++insn;
+ // jr
+ *insn = 0x00000008 | (MIPSRegisters::t9 << OP_SH_RS);
+ ++insn;
+ ops = 4 * sizeof(MIPSWord);
+ } else {
+ // j
+ *insn = 0x08000000 | ((toAddr & 0x0fffffff) >> 2);
+ ++insn;
+ ops = 2 * sizeof(MIPSWord);
+ }
+ // nop
+ *insn = 0x00000000;
+ return ops;
+ }
+
+ void linkJump(AssemblerLabel from, AssemblerLabel to)
+ {
+ ASSERT(to.isSet());
+ ASSERT(from.isSet());
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(m_buffer.data()) + from.m_offset);
+ MIPSWord* toPos = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(m_buffer.data()) + to.m_offset);
+
+ ASSERT(!(*(insn - 1)) && !(*(insn - 2)) && !(*(insn - 3)) && !(*(insn - 5)));
+ insn = insn - 6;
+ linkWithOffset(insn, toPos);
+ }
+
+ static void linkJump(void* code, AssemblerLabel from, void* to)
+ {
+ ASSERT(from.isSet());
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(code) + from.m_offset);
+
+ ASSERT(!(*(insn - 1)) && !(*(insn - 2)) && !(*(insn - 3)) && !(*(insn - 5)));
+ insn = insn - 6;
+ linkWithOffset(insn, to);
+ }
+
+ static void linkCall(void* code, AssemblerLabel from, void* to)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(code) + from.m_offset);
+ linkCallInternal(insn, to);
+ }
+
+ static void linkPointer(void* code, AssemblerLabel from, void* to)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(code) + from.m_offset);
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ *insn = (*insn & 0xffff0000) | ((reinterpret_cast<intptr_t>(to) >> 16) & 0xffff);
+ insn++;
+ ASSERT((*insn & 0xfc000000) == 0x34000000); // ori
+ *insn = (*insn & 0xffff0000) | (reinterpret_cast<intptr_t>(to) & 0xffff);
+ }
+
+ static void relinkJump(void* from, void* to)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(from);
+
+ ASSERT(!(*(insn - 1)) && !(*(insn - 5)));
+ insn = insn - 6;
+ int flushSize = linkWithOffset(insn, to);
+
+ cacheFlush(insn, flushSize);
+ }
+
+ static void relinkCall(void* from, void* to)
+ {
+ void* start;
+ int size = linkCallInternal(from, to);
+ if (size == sizeof(MIPSWord))
+ start = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(from) - 2 * sizeof(MIPSWord));
+ else
+ start = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(from) - 4 * sizeof(MIPSWord));
+
+ cacheFlush(start, size);
+ }
+
+ static void repatchInt32(void* from, int32_t to)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(from);
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ *insn = (*insn & 0xffff0000) | ((to >> 16) & 0xffff);
+ insn++;
+ ASSERT((*insn & 0xfc000000) == 0x34000000); // ori
+ *insn = (*insn & 0xffff0000) | (to & 0xffff);
+ insn--;
+ cacheFlush(insn, 2 * sizeof(MIPSWord));
+ }
+
+ static int32_t readInt32(void* from)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(from);
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ int32_t result = (*insn & 0x0000ffff) << 16;
+ insn++;
+ ASSERT((*insn & 0xfc000000) == 0x34000000); // ori
+ result |= *insn & 0x0000ffff;
+ return result;
+ }
+
+ static void repatchCompact(void* where, int32_t value)
+ {
+ repatchInt32(where, value);
+ }
+
+ static void repatchPointer(void* from, void* to)
+ {
+ repatchInt32(from, reinterpret_cast<int32_t>(to));
+ }
+
+ static void* readPointer(void* from)
+ {
+ return reinterpret_cast<void*>(readInt32(from));
+ }
+
+ static void* readCallTarget(void* from)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(from);
+ insn -= 4;
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ int32_t result = (*insn & 0x0000ffff) << 16;
+ insn++;
+ ASSERT((*insn & 0xfc000000) == 0x34000000); // ori
+ result |= *insn & 0x0000ffff;
+ return reinterpret_cast<void*>(result);
+ }
+
+ static void cacheFlush(void* code, size_t size)
+ {
+#if GCC_VERSION_AT_LEAST(4, 3, 0)
+#if WTF_MIPS_ISA_REV(2) && !GCC_VERSION_AT_LEAST(4, 4, 3)
+ int lineSize;
+ asm("rdhwr %0, $1" : "=r" (lineSize));
+ //
+ // Modify "start" and "end" to avoid GCC 4.3.0-4.4.2 bug in
+ // mips_expand_synci_loop that may execute synci one more time.
+ // "start" points to the fisrt byte of the cache line.
+ // "end" points to the last byte of the line before the last cache line.
+ // Because size is always a multiple of 4, this is safe to set
+ // "end" to the last byte.
+ //
+ intptr_t start = reinterpret_cast<intptr_t>(code) & (-lineSize);
+ intptr_t end = ((reinterpret_cast<intptr_t>(code) + size - 1) & (-lineSize)) - 1;
+ __builtin___clear_cache(reinterpret_cast<char*>(start), reinterpret_cast<char*>(end));
+#else
+ intptr_t end = reinterpret_cast<intptr_t>(code) + size;
+ __builtin___clear_cache(reinterpret_cast<char*>(code), reinterpret_cast<char*>(end));
+#endif
+#else
+ _flush_cache(reinterpret_cast<char*>(code), size, BCACHE);
+#endif
+ }
+
+ static ptrdiff_t maxJumpReplacementSize()
+ {
+ return sizeof(MIPSWord) * 4;
+ }
+
+ static void revertJumpToMove(void* instructionStart, RegisterID rt, int imm)
+ {
+ MIPSWord* insn = static_cast<MIPSWord*>(instructionStart);
+ size_t codeSize = 2 * sizeof(MIPSWord);
+
+ // lui
+ *insn = 0x3c000000 | (rt << OP_SH_RT) | ((imm >> 16) & 0xffff);
+ ++insn;
+ // ori
+ *insn = 0x34000000 | (rt << OP_SH_RS) | (rt << OP_SH_RT) | (imm & 0xffff);
+ ++insn;
+ // if jr $t9
+ if (*insn == 0x03200008) {
+ *insn = 0x00000000;
+ codeSize += sizeof(MIPSWord);
+ }
+ cacheFlush(insn, codeSize);
+ }
+
+ static void replaceWithJump(void* instructionStart, void* to)
+ {
+ ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 3));
+ ASSERT(!(bitwise_cast<uintptr_t>(to) & 3));
+ size_t ops = linkDirectJump(instructionStart, to);
+ cacheFlush(instructionStart, ops);
+ }
+
+ static void replaceWithLoad(void* instructionStart)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(instructionStart);
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ insn++;
+ ASSERT((*insn & 0xfc0007ff) == 0x00000021); // addu
+ insn++;
+ *insn = 0x8c000000 | ((*insn) & 0x3ffffff); // lw
+ cacheFlush(insn, 4);
+ }
+
+ static void replaceWithAddressComputation(void* instructionStart)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(instructionStart);
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ insn++;
+ ASSERT((*insn & 0xfc0007ff) == 0x00000021); // addu
+ insn++;
+ *insn = 0x24000000 | ((*insn) & 0x3ffffff); // addiu
+ cacheFlush(insn, 4);
+ }
+
+private:
+ /* Update each jump in the buffer of newBase. */
+ void relocateJumps(void* oldBase, void* newBase)
+ {
+ // Check each jump
+ for (Jumps::Iterator iter = m_jumps.begin(); iter != m_jumps.end(); ++iter) {
+ int pos = iter->m_offset;
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(reinterpret_cast<intptr_t>(newBase) + pos);
+ insn = insn + 2;
+ // Need to make sure we have 5 valid instructions after pos
+ if ((unsigned)pos >= m_buffer.codeSize() - 5 * sizeof(MIPSWord))
+ continue;
+
+ if ((*insn & 0xfc000000) == 0x08000000) { // j
+ int offset = *insn & 0x03ffffff;
+ int oldInsnAddress = (int)insn - (int)newBase + (int)oldBase;
+ int topFourBits = (oldInsnAddress + 4) >> 28;
+ int oldTargetAddress = (topFourBits << 28) | (offset << 2);
+ int newTargetAddress = oldTargetAddress - (int)oldBase + (int)newBase;
+ int newInsnAddress = (int)insn;
+ if (((newInsnAddress + 4) >> 28) == (newTargetAddress >> 28))
+ *insn = 0x08000000 | ((newTargetAddress >> 2) & 0x3ffffff);
+ else {
+ /* lui */
+ *insn = 0x3c000000 | (MIPSRegisters::t9 << OP_SH_RT) | ((newTargetAddress >> 16) & 0xffff);
+ /* ori */
+ *(insn + 1) = 0x34000000 | (MIPSRegisters::t9 << OP_SH_RT) | (MIPSRegisters::t9 << OP_SH_RS) | (newTargetAddress & 0xffff);
+ /* jr */
+ *(insn + 2) = 0x00000008 | (MIPSRegisters::t9 << OP_SH_RS);
+ }
+ } else if ((*insn & 0xffe00000) == 0x3c000000) { // lui
+ int high = (*insn & 0xffff) << 16;
+ int low = *(insn + 1) & 0xffff;
+ int oldTargetAddress = high | low;
+ int newTargetAddress = oldTargetAddress - (int)oldBase + (int)newBase;
+ /* lui */
+ *insn = 0x3c000000 | (MIPSRegisters::t9 << OP_SH_RT) | ((newTargetAddress >> 16) & 0xffff);
+ /* ori */
+ *(insn + 1) = 0x34000000 | (MIPSRegisters::t9 << OP_SH_RT) | (MIPSRegisters::t9 << OP_SH_RS) | (newTargetAddress & 0xffff);
+ }
+ }
+ }
+
+ static int linkWithOffset(MIPSWord* insn, void* to)
+ {
+ ASSERT((*insn & 0xfc000000) == 0x10000000 // beq
+ || (*insn & 0xfc000000) == 0x14000000 // bne
+ || (*insn & 0xffff0000) == 0x45010000 // bc1t
+ || (*insn & 0xffff0000) == 0x45000000); // bc1f
+ intptr_t diff = (reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(insn) - 4) >> 2;
+
+ if (diff < -32768 || diff > 32767 || *(insn + 2) != 0x10000003) {
+ /*
+ Convert the sequence:
+ beq $2, $3, target
+ nop
+ b 1f
+ nop
+ nop
+ nop
+ 1:
+
+ to the new sequence if possible:
+ bne $2, $3, 1f
+ nop
+ j target
+ nop
+ nop
+ nop
+ 1:
+
+ OR to the new sequence:
+ bne $2, $3, 1f
+ nop
+ lui $25, target >> 16
+ ori $25, $25, target & 0xffff
+ jr $25
+ nop
+ 1:
+
+ Note: beq/bne/bc1t/bc1f are converted to bne/beq/bc1f/bc1t.
+ */
+
+ if (*(insn + 2) == 0x10000003) {
+ if ((*insn & 0xfc000000) == 0x10000000) // beq
+ *insn = (*insn & 0x03ff0000) | 0x14000005; // bne
+ else if ((*insn & 0xfc000000) == 0x14000000) // bne
+ *insn = (*insn & 0x03ff0000) | 0x10000005; // beq
+ else if ((*insn & 0xffff0000) == 0x45010000) // bc1t
+ *insn = 0x45000005; // bc1f
+ else if ((*insn & 0xffff0000) == 0x45000000) // bc1f
+ *insn = 0x45010005; // bc1t
+ else
+ ASSERT(0);
+ }
+
+ insn = insn + 2;
+ if ((reinterpret_cast<intptr_t>(insn) + 4) >> 28
+ == reinterpret_cast<intptr_t>(to) >> 28) {
+ *insn = 0x08000000 | ((reinterpret_cast<intptr_t>(to) >> 2) & 0x3ffffff);
+ *(insn + 1) = 0;
+ return 4 * sizeof(MIPSWord);
+ }
+
+ intptr_t newTargetAddress = reinterpret_cast<intptr_t>(to);
+ /* lui */
+ *insn = 0x3c000000 | (MIPSRegisters::t9 << OP_SH_RT) | ((newTargetAddress >> 16) & 0xffff);
+ /* ori */
+ *(insn + 1) = 0x34000000 | (MIPSRegisters::t9 << OP_SH_RT) | (MIPSRegisters::t9 << OP_SH_RS) | (newTargetAddress & 0xffff);
+ /* jr */
+ *(insn + 2) = 0x00000008 | (MIPSRegisters::t9 << OP_SH_RS);
+ return 5 * sizeof(MIPSWord);
+ }
+
+ *insn = (*insn & 0xffff0000) | (diff & 0xffff);
+ return sizeof(MIPSWord);
+ }
+
+ static int linkCallInternal(void* from, void* to)
+ {
+ MIPSWord* insn = reinterpret_cast<MIPSWord*>(from);
+ insn = insn - 4;
+
+ if ((*(insn + 2) & 0xfc000000) == 0x0c000000) { // jal
+ if ((reinterpret_cast<intptr_t>(from) - 4) >> 28
+ == reinterpret_cast<intptr_t>(to) >> 28) {
+ *(insn + 2) = 0x0c000000 | ((reinterpret_cast<intptr_t>(to) >> 2) & 0x3ffffff);
+ return sizeof(MIPSWord);
+ }
+
+ /* lui $25, (to >> 16) & 0xffff */
+ *insn = 0x3c000000 | (MIPSRegisters::t9 << OP_SH_RT) | ((reinterpret_cast<intptr_t>(to) >> 16) & 0xffff);
+ /* ori $25, $25, to & 0xffff */
+ *(insn + 1) = 0x34000000 | (MIPSRegisters::t9 << OP_SH_RT) | (MIPSRegisters::t9 << OP_SH_RS) | (reinterpret_cast<intptr_t>(to) & 0xffff);
+ /* jalr $25 */
+ *(insn + 2) = 0x0000f809 | (MIPSRegisters::t9 << OP_SH_RS);
+ return 3 * sizeof(MIPSWord);
+ }
+
+ ASSERT((*insn & 0xffe00000) == 0x3c000000); // lui
+ ASSERT((*(insn + 1) & 0xfc000000) == 0x34000000); // ori
+
+ /* lui */
+ *insn = (*insn & 0xffff0000) | ((reinterpret_cast<intptr_t>(to) >> 16) & 0xffff);
+ /* ori */
+ *(insn + 1) = (*(insn + 1) & 0xffff0000) | (reinterpret_cast<intptr_t>(to) & 0xffff);
+ return 2 * sizeof(MIPSWord);
+ }
+
+ AssemblerBuffer m_buffer;
+ Jumps m_jumps;
+ int m_indexOfLastWatchpoint;
+ int m_indexOfTailOfLastWatchpoint;
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER) && CPU(MIPS)
+
+#endif // MIPSAssembler_h
diff --git a/src/3rdparty/masm/assembler/MacroAssembler.h b/src/3rdparty/masm/assembler/MacroAssembler.h
new file mode 100644
index 0000000000..f74680d7fc
--- /dev/null
+++ b/src/3rdparty/masm/assembler/MacroAssembler.h
@@ -0,0 +1,1465 @@
+/*
+ * Copyright (C) 2008, 2012 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef MacroAssembler_h
+#define MacroAssembler_h
+
+#include <wtf/Platform.h>
+
+#if ENABLE(ASSEMBLER)
+
+#if CPU(ARM_THUMB2)
+#include "MacroAssemblerARMv7.h"
+namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; };
+
+#elif CPU(ARM_TRADITIONAL)
+#include "MacroAssemblerARM.h"
+namespace JSC { typedef MacroAssemblerARM MacroAssemblerBase; };
+
+#elif CPU(MIPS)
+#include "MacroAssemblerMIPS.h"
+namespace JSC {
+typedef MacroAssemblerMIPS MacroAssemblerBase;
+};
+
+#elif CPU(X86)
+#include "MacroAssemblerX86.h"
+namespace JSC { typedef MacroAssemblerX86 MacroAssemblerBase; };
+
+#elif CPU(X86_64)
+#include "MacroAssemblerX86_64.h"
+namespace JSC { typedef MacroAssemblerX86_64 MacroAssemblerBase; };
+
+#elif CPU(SH4)
+#include "MacroAssemblerSH4.h"
+namespace JSC {
+typedef MacroAssemblerSH4 MacroAssemblerBase;
+};
+
+#else
+#error "The MacroAssembler is not supported on this platform."
+#endif
+
+namespace JSC {
+
+class MacroAssembler : public MacroAssemblerBase {
+public:
+
+ using MacroAssemblerBase::pop;
+ using MacroAssemblerBase::jump;
+ using MacroAssemblerBase::branch32;
+ using MacroAssemblerBase::move;
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ using MacroAssemblerBase::add32;
+ using MacroAssemblerBase::and32;
+ using MacroAssemblerBase::branchAdd32;
+ using MacroAssemblerBase::branchMul32;
+ using MacroAssemblerBase::branchSub32;
+ using MacroAssemblerBase::lshift32;
+ using MacroAssemblerBase::or32;
+ using MacroAssemblerBase::rshift32;
+ using MacroAssemblerBase::store32;
+ using MacroAssemblerBase::sub32;
+ using MacroAssemblerBase::urshift32;
+ using MacroAssemblerBase::xor32;
+#endif
+
+ static const double twoToThe32; // This is super useful for some double code.
+
+ // Utilities used by the DFG JIT.
+#if ENABLE(DFG_JIT)
+ using MacroAssemblerBase::invert;
+
+ static DoubleCondition invert(DoubleCondition cond)
+ {
+ switch (cond) {
+ case DoubleEqual:
+ return DoubleNotEqualOrUnordered;
+ case DoubleNotEqual:
+ return DoubleEqualOrUnordered;
+ case DoubleGreaterThan:
+ return DoubleLessThanOrEqualOrUnordered;
+ case DoubleGreaterThanOrEqual:
+ return DoubleLessThanOrUnordered;
+ case DoubleLessThan:
+ return DoubleGreaterThanOrEqualOrUnordered;
+ case DoubleLessThanOrEqual:
+ return DoubleGreaterThanOrUnordered;
+ case DoubleEqualOrUnordered:
+ return DoubleNotEqual;
+ case DoubleNotEqualOrUnordered:
+ return DoubleEqual;
+ case DoubleGreaterThanOrUnordered:
+ return DoubleLessThanOrEqual;
+ case DoubleGreaterThanOrEqualOrUnordered:
+ return DoubleLessThan;
+ case DoubleLessThanOrUnordered:
+ return DoubleGreaterThanOrEqual;
+ case DoubleLessThanOrEqualOrUnordered:
+ return DoubleGreaterThan;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ return DoubleEqual; // make compiler happy
+ }
+ }
+
+ static bool isInvertible(ResultCondition cond)
+ {
+ switch (cond) {
+ case Zero:
+ case NonZero:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ static ResultCondition invert(ResultCondition cond)
+ {
+ switch (cond) {
+ case Zero:
+ return NonZero;
+ case NonZero:
+ return Zero;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ return Zero; // Make compiler happy for release builds.
+ }
+ }
+#endif
+
+ // Platform agnostic onvenience functions,
+ // described in terms of other macro assembly methods.
+ void pop()
+ {
+ addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister);
+ }
+
+ void peek(RegisterID dest, int index = 0)
+ {
+ loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest);
+ }
+
+ Address addressForPoke(int index)
+ {
+ return Address(stackPointerRegister, (index * sizeof(void*)));
+ }
+
+ void poke(RegisterID src, int index = 0)
+ {
+ storePtr(src, addressForPoke(index));
+ }
+
+ void poke(TrustedImm32 value, int index = 0)
+ {
+ store32(value, addressForPoke(index));
+ }
+
+ void poke(TrustedImmPtr imm, int index = 0)
+ {
+ storePtr(imm, addressForPoke(index));
+ }
+
+#if CPU(X86_64)
+ void peek64(RegisterID dest, int index = 0)
+ {
+ load64(Address(stackPointerRegister, (index * sizeof(void*))), dest);
+ }
+
+ void poke(TrustedImm64 value, int index = 0)
+ {
+ store64(value, addressForPoke(index));
+ }
+
+ void poke64(RegisterID src, int index = 0)
+ {
+ store64(src, addressForPoke(index));
+ }
+#endif
+
+#if CPU(MIPS)
+ void poke(FPRegisterID src, int index = 0)
+ {
+ ASSERT(!(index & 1));
+ storeDouble(src, addressForPoke(index));
+ }
+#endif
+
+ // Backwards banches, these are currently all implemented using existing forwards branch mechanisms.
+ void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target)
+ {
+ branchPtr(cond, op1, imm).linkTo(target, this);
+ }
+ void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target)
+ {
+ branchPtr(cond, op1, imm).linkTo(target, this);
+ }
+
+ void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target)
+ {
+ branch32(cond, op1, op2).linkTo(target, this);
+ }
+
+ void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target)
+ {
+ branch32(cond, op1, imm).linkTo(target, this);
+ }
+
+ void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target)
+ {
+ branch32(cond, op1, imm).linkTo(target, this);
+ }
+
+ void branch32(RelationalCondition cond, RegisterID left, Address right, Label target)
+ {
+ branch32(cond, left, right).linkTo(target, this);
+ }
+
+ Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right)
+ {
+ return branch32(commute(cond), right, left);
+ }
+
+ Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right)
+ {
+ return branch32(commute(cond), right, left);
+ }
+
+ void branchTestPtr(ResultCondition cond, RegisterID reg, Label target)
+ {
+ branchTestPtr(cond, reg).linkTo(target, this);
+ }
+
+#if !CPU(ARM_THUMB2)
+ PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(0))
+ {
+ return PatchableJump(branchPtr(cond, left, right));
+ }
+
+ PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
+ {
+ return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue));
+ }
+
+ PatchableJump patchableJump()
+ {
+ return PatchableJump(jump());
+ }
+
+ PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return PatchableJump(branchTest32(cond, reg, mask));
+ }
+#endif // !CPU(ARM_THUMB2)
+
+#if !CPU(ARM)
+ PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm)
+ {
+ return PatchableJump(branch32(cond, reg, imm));
+ }
+#endif // !(CPU(ARM)
+
+ void jump(Label target)
+ {
+ jump().linkTo(target, this);
+ }
+
+ // Commute a relational condition, returns a new condition that will produce
+ // the same results given the same inputs but with their positions exchanged.
+ static RelationalCondition commute(RelationalCondition condition)
+ {
+ switch (condition) {
+ case Above:
+ return Below;
+ case AboveOrEqual:
+ return BelowOrEqual;
+ case Below:
+ return Above;
+ case BelowOrEqual:
+ return AboveOrEqual;
+ case GreaterThan:
+ return LessThan;
+ case GreaterThanOrEqual:
+ return LessThanOrEqual;
+ case LessThan:
+ return GreaterThan;
+ case LessThanOrEqual:
+ return GreaterThanOrEqual;
+ default:
+ break;
+ }
+
+ ASSERT(condition == Equal || condition == NotEqual);
+ return condition;
+ }
+
+ static const unsigned BlindingModulus = 64;
+ bool shouldConsiderBlinding()
+ {
+ return !(random() & (BlindingModulus - 1));
+ }
+
+ // Ptr methods
+ // On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents.
+ // FIXME: should this use a test for 32-bitness instead of this specific exception?
+#if !CPU(X86_64)
+ void addPtr(Address src, RegisterID dest)
+ {
+ add32(src, dest);
+ }
+
+ void addPtr(AbsoluteAddress src, RegisterID dest)
+ {
+ add32(src, dest);
+ }
+
+ void addPtr(RegisterID src, RegisterID dest)
+ {
+ add32(src, dest);
+ }
+
+ void addPtr(TrustedImm32 imm, RegisterID srcDest)
+ {
+ add32(imm, srcDest);
+ }
+
+ void addPtr(TrustedImmPtr imm, RegisterID dest)
+ {
+ add32(TrustedImm32(imm), dest);
+ }
+
+ void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ add32(imm, src, dest);
+ }
+
+ void addPtr(TrustedImm32 imm, AbsoluteAddress address)
+ {
+ add32(imm, address);
+ }
+
+ void andPtr(RegisterID src, RegisterID dest)
+ {
+ and32(src, dest);
+ }
+
+ void andPtr(TrustedImm32 imm, RegisterID srcDest)
+ {
+ and32(imm, srcDest);
+ }
+
+ void negPtr(RegisterID dest)
+ {
+ neg32(dest);
+ }
+
+ void orPtr(RegisterID src, RegisterID dest)
+ {
+ or32(src, dest);
+ }
+
+ void orPtr(RegisterID op1, RegisterID op2, RegisterID dest)
+ {
+ or32(op1, op2, dest);
+ }
+
+ void orPtr(TrustedImmPtr imm, RegisterID dest)
+ {
+ or32(TrustedImm32(imm), dest);
+ }
+
+ void orPtr(TrustedImm32 imm, RegisterID dest)
+ {
+ or32(imm, dest);
+ }
+
+ void subPtr(RegisterID src, RegisterID dest)
+ {
+ sub32(src, dest);
+ }
+
+ void subPtr(TrustedImm32 imm, RegisterID dest)
+ {
+ sub32(imm, dest);
+ }
+
+ void subPtr(TrustedImmPtr imm, RegisterID dest)
+ {
+ sub32(TrustedImm32(imm), dest);
+ }
+
+ void xorPtr(RegisterID src, RegisterID dest)
+ {
+ xor32(src, dest);
+ }
+
+ void xorPtr(TrustedImm32 imm, RegisterID srcDest)
+ {
+ xor32(imm, srcDest);
+ }
+
+
+ void loadPtr(ImplicitAddress address, RegisterID dest)
+ {
+ load32(address, dest);
+ }
+
+ void loadPtr(BaseIndex address, RegisterID dest)
+ {
+ load32(address, dest);
+ }
+
+ void loadPtr(const void* address, RegisterID dest)
+ {
+ load32(address, dest);
+ }
+
+ DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ return load32WithAddressOffsetPatch(address, dest);
+ }
+
+ DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ return load32WithCompactAddressOffsetPatch(address, dest);
+ }
+
+ void move(ImmPtr imm, RegisterID dest)
+ {
+ move(Imm32(imm.asTrustedImmPtr()), dest);
+ }
+
+ void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
+ {
+ compare32(cond, left, right, dest);
+ }
+
+ void storePtr(RegisterID src, ImplicitAddress address)
+ {
+ store32(src, address);
+ }
+
+ void storePtr(RegisterID src, BaseIndex address)
+ {
+ store32(src, address);
+ }
+
+ void storePtr(RegisterID src, void* address)
+ {
+ store32(src, address);
+ }
+
+ void storePtr(TrustedImmPtr imm, ImplicitAddress address)
+ {
+ store32(TrustedImm32(imm), address);
+ }
+
+ void storePtr(ImmPtr imm, Address address)
+ {
+ store32(Imm32(imm.asTrustedImmPtr()), address);
+ }
+
+ void storePtr(TrustedImmPtr imm, void* address)
+ {
+ store32(TrustedImm32(imm), address);
+ }
+
+ DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address)
+ {
+ return store32WithAddressOffsetPatch(src, address);
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right)
+ {
+ return branch32(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right)
+ {
+ return branch32(cond, left, TrustedImm32(right));
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right)
+ {
+ return branch32(cond, left, Imm32(right.asTrustedImmPtr()));
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, Address right)
+ {
+ return branch32(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, Address left, RegisterID right)
+ {
+ return branch32(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
+ {
+ return branch32(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right)
+ {
+ return branch32(cond, left, TrustedImm32(right));
+ }
+
+ Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right)
+ {
+ return branch32(cond, left, TrustedImm32(right));
+ }
+
+ Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ return branchSub32(cond, src, dest);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask)
+ {
+ return branchTest32(cond, reg, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest32(cond, reg, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest32(cond, address, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest32(cond, address, mask);
+ }
+
+ Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ return branchAdd32(cond, src, dest);
+ }
+
+ Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
+ {
+ return branchSub32(cond, imm, dest);
+ }
+ using MacroAssemblerBase::branchTest8;
+ Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask);
+ }
+#else
+ void addPtr(RegisterID src, RegisterID dest)
+ {
+ add64(src, dest);
+ }
+
+ void addPtr(Address src, RegisterID dest)
+ {
+ add64(src, dest);
+ }
+
+ void addPtr(TrustedImm32 imm, RegisterID srcDest)
+ {
+ add64(imm, srcDest);
+ }
+
+ void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ add64(imm, src, dest);
+ }
+
+ void addPtr(TrustedImm32 imm, Address address)
+ {
+ add64(imm, address);
+ }
+
+ void addPtr(AbsoluteAddress src, RegisterID dest)
+ {
+ add64(src, dest);
+ }
+
+ void addPtr(TrustedImmPtr imm, RegisterID dest)
+ {
+ add64(TrustedImm64(imm), dest);
+ }
+
+ void addPtr(TrustedImm32 imm, AbsoluteAddress address)
+ {
+ add64(imm, address);
+ }
+
+ void andPtr(RegisterID src, RegisterID dest)
+ {
+ and64(src, dest);
+ }
+
+ void andPtr(TrustedImm32 imm, RegisterID srcDest)
+ {
+ and64(imm, srcDest);
+ }
+
+ void negPtr(RegisterID dest)
+ {
+ neg64(dest);
+ }
+
+ void orPtr(RegisterID src, RegisterID dest)
+ {
+ or64(src, dest);
+ }
+
+ void orPtr(TrustedImm32 imm, RegisterID dest)
+ {
+ or64(imm, dest);
+ }
+
+ void orPtr(TrustedImmPtr imm, RegisterID dest)
+ {
+ or64(TrustedImm64(imm), dest);
+ }
+
+ void orPtr(RegisterID op1, RegisterID op2, RegisterID dest)
+ {
+ or64(op1, op2, dest);
+ }
+
+ void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ or64(imm, src, dest);
+ }
+
+ void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst)
+ {
+ rotateRight64(imm, srcDst);
+ }
+
+ void subPtr(RegisterID src, RegisterID dest)
+ {
+ sub64(src, dest);
+ }
+
+ void subPtr(TrustedImm32 imm, RegisterID dest)
+ {
+ sub64(imm, dest);
+ }
+
+ void subPtr(TrustedImmPtr imm, RegisterID dest)
+ {
+ sub64(TrustedImm64(imm), dest);
+ }
+
+ void xorPtr(RegisterID src, RegisterID dest)
+ {
+ xor64(src, dest);
+ }
+
+ void xorPtr(RegisterID src, Address dest)
+ {
+ xor64(src, dest);
+ }
+
+ void xorPtr(TrustedImm32 imm, RegisterID srcDest)
+ {
+ xor64(imm, srcDest);
+ }
+
+ void loadPtr(ImplicitAddress address, RegisterID dest)
+ {
+ load64(address, dest);
+ }
+
+ void loadPtr(BaseIndex address, RegisterID dest)
+ {
+ load64(address, dest);
+ }
+
+ void loadPtr(const void* address, RegisterID dest)
+ {
+ load64(address, dest);
+ }
+
+ DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ return load64WithAddressOffsetPatch(address, dest);
+ }
+
+ DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ return load64WithCompactAddressOffsetPatch(address, dest);
+ }
+
+ void storePtr(RegisterID src, ImplicitAddress address)
+ {
+ store64(src, address);
+ }
+
+ void storePtr(RegisterID src, BaseIndex address)
+ {
+ store64(src, address);
+ }
+
+ void storePtr(RegisterID src, void* address)
+ {
+ store64(src, address);
+ }
+
+ void storePtr(TrustedImmPtr imm, ImplicitAddress address)
+ {
+ store64(TrustedImm64(imm), address);
+ }
+
+ void storePtr(TrustedImmPtr imm, BaseIndex address)
+ {
+ store64(TrustedImm64(imm), address);
+ }
+
+ DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address)
+ {
+ return store64WithAddressOffsetPatch(src, address);
+ }
+
+ void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
+ {
+ compare64(cond, left, right, dest);
+ }
+
+ void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
+ {
+ compare64(cond, left, right, dest);
+ }
+
+ void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
+ {
+ test64(cond, reg, mask, dest);
+ }
+
+ void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
+ {
+ test64(cond, reg, mask, dest);
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right)
+ {
+ return branch64(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right)
+ {
+ return branch64(cond, left, TrustedImm64(right));
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, Address right)
+ {
+ return branch64(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, Address left, RegisterID right)
+ {
+ return branch64(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
+ {
+ return branch64(cond, left, right);
+ }
+
+ Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right)
+ {
+ return branch64(cond, left, TrustedImm64(right));
+ }
+
+ Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask)
+ {
+ return branchTest64(cond, reg, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest64(cond, reg, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest64(cond, address, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg)
+ {
+ return branchTest64(cond, address, reg);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest64(cond, address, mask);
+ }
+
+ Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return branchTest64(cond, address, mask);
+ }
+
+ Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
+ {
+ return branchAdd64(cond, imm, dest);
+ }
+
+ Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ return branchAdd64(cond, src, dest);
+ }
+
+ Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
+ {
+ return branchSub64(cond, imm, dest);
+ }
+
+ Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ return branchSub64(cond, src, dest);
+ }
+
+ Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
+ {
+ return branchSub64(cond, src1, src2, dest);
+ }
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ using MacroAssemblerBase::and64;
+ using MacroAssemblerBase::convertInt32ToDouble;
+ using MacroAssemblerBase::store64;
+ bool shouldBlindDouble(double value)
+ {
+ // Don't trust NaN or +/-Infinity
+ if (!std::isfinite(value))
+ return shouldConsiderBlinding();
+
+ // Try to force normalisation, and check that there's no change
+ // in the bit pattern
+ if (bitwise_cast<uint64_t>(value * 1.0) != bitwise_cast<uint64_t>(value))
+ return shouldConsiderBlinding();
+
+ value = abs(value);
+ // Only allow a limited set of fractional components
+ double scaledValue = value * 8;
+ if (scaledValue / 8 != value)
+ return shouldConsiderBlinding();
+ double frac = scaledValue - floor(scaledValue);
+ if (frac != 0.0)
+ return shouldConsiderBlinding();
+
+ return value > 0xff;
+ }
+
+ bool shouldBlind(ImmPtr imm)
+ {
+#if ENABLE(FORCED_JIT_BLINDING)
+ UNUSED_PARAM(imm);
+ // Debug always blind all constants, if only so we know
+ // if we've broken blinding during patch development.
+ return true;
+#endif
+
+ // First off we'll special case common, "safe" values to avoid hurting
+ // performance too much
+ uintptr_t value = imm.asTrustedImmPtr().asIntptr();
+ switch (value) {
+ case 0xffff:
+ case 0xffffff:
+ case 0xffffffffL:
+ case 0xffffffffffL:
+ case 0xffffffffffffL:
+ case 0xffffffffffffffL:
+ case 0xffffffffffffffffL:
+ return false;
+ default: {
+ if (value <= 0xff)
+ return false;
+ if (~value <= 0xff)
+ return false;
+ }
+ }
+
+ if (!shouldConsiderBlinding())
+ return false;
+
+ return shouldBlindForSpecificArch(value);
+ }
+
+ struct RotatedImmPtr {
+ RotatedImmPtr(uintptr_t v1, uint8_t v2)
+ : value(v1)
+ , rotation(v2)
+ {
+ }
+ TrustedImmPtr value;
+ TrustedImm32 rotation;
+ };
+
+ RotatedImmPtr rotationBlindConstant(ImmPtr imm)
+ {
+ uint8_t rotation = random() % (sizeof(void*) * 8);
+ uintptr_t value = imm.asTrustedImmPtr().asIntptr();
+ value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation));
+ return RotatedImmPtr(value, rotation);
+ }
+
+ void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest)
+ {
+ move(constant.value, dest);
+ rotateRightPtr(constant.rotation, dest);
+ }
+
+ bool shouldBlind(Imm64 imm)
+ {
+#if ENABLE(FORCED_JIT_BLINDING)
+ UNUSED_PARAM(imm);
+ // Debug always blind all constants, if only so we know
+ // if we've broken blinding during patch development.
+ return true;
+#endif
+
+ // First off we'll special case common, "safe" values to avoid hurting
+ // performance too much
+ uint64_t value = imm.asTrustedImm64().m_value;
+ switch (value) {
+ case 0xffff:
+ case 0xffffff:
+ case 0xffffffffL:
+ case 0xffffffffffL:
+ case 0xffffffffffffL:
+ case 0xffffffffffffffL:
+ case 0xffffffffffffffffL:
+ return false;
+ default: {
+ if (value <= 0xff)
+ return false;
+ if (~value <= 0xff)
+ return false;
+
+ JSValue jsValue = JSValue::decode(value);
+ if (jsValue.isInt32())
+ return shouldBlind(Imm32(jsValue.asInt32()));
+ if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble()))
+ return false;
+
+ if (!shouldBlindDouble(bitwise_cast<double>(value)))
+ return false;
+ }
+ }
+
+ if (!shouldConsiderBlinding())
+ return false;
+
+ return shouldBlindForSpecificArch(value);
+ }
+
+ struct RotatedImm64 {
+ RotatedImm64(uint64_t v1, uint8_t v2)
+ : value(v1)
+ , rotation(v2)
+ {
+ }
+ TrustedImm64 value;
+ TrustedImm32 rotation;
+ };
+
+ RotatedImm64 rotationBlindConstant(Imm64 imm)
+ {
+ uint8_t rotation = random() % (sizeof(int64_t) * 8);
+ uint64_t value = imm.asTrustedImm64().m_value;
+ value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation));
+ return RotatedImm64(value, rotation);
+ }
+
+ void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest)
+ {
+ move(constant.value, dest);
+ rotateRight64(constant.rotation, dest);
+ }
+
+ void convertInt32ToDouble(Imm32 imm, FPRegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister);
+ convertInt32ToDouble(scratchRegister, dest);
+ } else
+ convertInt32ToDouble(imm.asTrustedImm32(), dest);
+ }
+
+ void move(ImmPtr imm, RegisterID dest)
+ {
+ if (shouldBlind(imm))
+ loadRotationBlindedConstant(rotationBlindConstant(imm), dest);
+ else
+ move(imm.asTrustedImmPtr(), dest);
+ }
+
+ void move(Imm64 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm))
+ loadRotationBlindedConstant(rotationBlindConstant(imm), dest);
+ else
+ move(imm.asTrustedImm64(), dest);
+ }
+
+ void and64(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = andBlindedConstant(imm);
+ and64(key.value1, dest);
+ and64(key.value2, dest);
+ } else
+ and64(imm.asTrustedImm32(), dest);
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right)
+ {
+ if (shouldBlind(right)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister);
+ return branchPtr(cond, left, scratchRegister);
+ }
+ return branchPtr(cond, left, right.asTrustedImmPtr());
+ }
+
+ void storePtr(ImmPtr imm, Address dest)
+ {
+ if (shouldBlind(imm)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
+ storePtr(scratchRegister, dest);
+ } else
+ storePtr(imm.asTrustedImmPtr(), dest);
+ }
+
+ void store64(Imm64 imm, Address dest)
+ {
+ if (shouldBlind(imm)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
+ store64(scratchRegister, dest);
+ } else
+ store64(imm.asTrustedImm64(), dest);
+ }
+
+#endif
+
+#endif // !CPU(X86_64)
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ bool shouldBlind(Imm32 imm)
+ {
+#if ENABLE(FORCED_JIT_BLINDING)
+ UNUSED_PARAM(imm);
+ // Debug always blind all constants, if only so we know
+ // if we've broken blinding during patch development.
+ return true;
+#else
+
+ // First off we'll special case common, "safe" values to avoid hurting
+ // performance too much
+ uint32_t value = imm.asTrustedImm32().m_value;
+ switch (value) {
+ case 0xffff:
+ case 0xffffff:
+ case 0xffffffff:
+ return false;
+ default:
+ if (value <= 0xff)
+ return false;
+ if (~value <= 0xff)
+ return false;
+ }
+
+ if (!shouldConsiderBlinding())
+ return false;
+
+ return shouldBlindForSpecificArch(value);
+#endif
+ }
+
+ struct BlindedImm32 {
+ BlindedImm32(int32_t v1, int32_t v2)
+ : value1(v1)
+ , value2(v2)
+ {
+ }
+ TrustedImm32 value1;
+ TrustedImm32 value2;
+ };
+
+ uint32_t keyForConstant(uint32_t value, uint32_t& mask)
+ {
+ uint32_t key = random();
+ if (value <= 0xff)
+ mask = 0xff;
+ else if (value <= 0xffff)
+ mask = 0xffff;
+ else if (value <= 0xffffff)
+ mask = 0xffffff;
+ else
+ mask = 0xffffffff;
+ return key & mask;
+ }
+
+ uint32_t keyForConstant(uint32_t value)
+ {
+ uint32_t mask = 0;
+ return keyForConstant(value, mask);
+ }
+
+ BlindedImm32 xorBlindConstant(Imm32 imm)
+ {
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t key = keyForConstant(baseValue);
+ return BlindedImm32(baseValue ^ key, key);
+ }
+
+ BlindedImm32 additionBlindedConstant(Imm32 imm)
+ {
+ // The addition immediate may be used as a pointer offset. Keep aligned based on "imm".
+ static uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff };
+
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3];
+ if (key > baseValue)
+ key = key - baseValue;
+ return BlindedImm32(baseValue - key, key);
+ }
+
+ BlindedImm32 andBlindedConstant(Imm32 imm)
+ {
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t mask = 0;
+ uint32_t key = keyForConstant(baseValue, mask);
+ ASSERT((baseValue & mask) == baseValue);
+ return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask);
+ }
+
+ BlindedImm32 orBlindedConstant(Imm32 imm)
+ {
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t mask = 0;
+ uint32_t key = keyForConstant(baseValue, mask);
+ ASSERT((baseValue & mask) == baseValue);
+ return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask);
+ }
+
+ void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest)
+ {
+ move(constant.value1, dest);
+ xor32(constant.value2, dest);
+ }
+
+ void add32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ add32(key.value1, dest);
+ add32(key.value2, dest);
+ } else
+ add32(imm.asTrustedImm32(), dest);
+ }
+
+ void addPtr(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ addPtr(key.value1, dest);
+ addPtr(key.value2, dest);
+ } else
+ addPtr(imm.asTrustedImm32(), dest);
+ }
+
+ void and32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = andBlindedConstant(imm);
+ and32(key.value1, dest);
+ and32(key.value2, dest);
+ } else
+ and32(imm.asTrustedImm32(), dest);
+ }
+
+ void andPtr(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = andBlindedConstant(imm);
+ andPtr(key.value1, dest);
+ andPtr(key.value2, dest);
+ } else
+ andPtr(imm.asTrustedImm32(), dest);
+ }
+
+ void and32(Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ if (src == dest)
+ return and32(imm.asTrustedImm32(), dest);
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ and32(src, dest);
+ } else
+ and32(imm.asTrustedImm32(), src, dest);
+ }
+
+ void move(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm))
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ else
+ move(imm.asTrustedImm32(), dest);
+ }
+
+ void or32(Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ if (src == dest)
+ return or32(imm, dest);
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ or32(src, dest);
+ } else
+ or32(imm.asTrustedImm32(), src, dest);
+ }
+
+ void or32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = orBlindedConstant(imm);
+ or32(key.value1, dest);
+ or32(key.value2, dest);
+ } else
+ or32(imm.asTrustedImm32(), dest);
+ }
+
+ void poke(Imm32 value, int index = 0)
+ {
+ store32(value, addressForPoke(index));
+ }
+
+ void poke(ImmPtr value, int index = 0)
+ {
+ storePtr(value, addressForPoke(index));
+ }
+
+#if CPU(X86_64)
+ void poke(Imm64 value, int index = 0)
+ {
+ store64(value, addressForPoke(index));
+ }
+#endif
+
+ void store32(Imm32 imm, Address dest)
+ {
+ if (shouldBlind(imm)) {
+#if CPU(X86) || CPU(X86_64)
+ BlindedImm32 blind = xorBlindConstant(imm);
+ store32(blind.value1, dest);
+ xor32(blind.value2, dest);
+#else
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister);
+ store32(scratchRegister, dest);
+ } else {
+ // If we don't have a scratch register available for use, we'll just
+ // place a random number of nops.
+ uint32_t nopCount = random() & 3;
+ while (nopCount--)
+ nop();
+ store32(imm.asTrustedImm32(), dest);
+ }
+#endif
+ } else
+ store32(imm.asTrustedImm32(), dest);
+ }
+
+ void sub32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ sub32(key.value1, dest);
+ sub32(key.value2, dest);
+ } else
+ sub32(imm.asTrustedImm32(), dest);
+ }
+
+ void subPtr(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ subPtr(key.value1, dest);
+ subPtr(key.value2, dest);
+ } else
+ subPtr(imm.asTrustedImm32(), dest);
+ }
+
+ void xor32(Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 blind = xorBlindConstant(imm);
+ xor32(blind.value1, src, dest);
+ xor32(blind.value2, dest);
+ } else
+ xor32(imm.asTrustedImm32(), src, dest);
+ }
+
+ void xor32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 blind = xorBlindConstant(imm);
+ xor32(blind.value1, dest);
+ xor32(blind.value2, dest);
+ } else
+ xor32(imm.asTrustedImm32(), dest);
+ }
+
+ Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right)
+ {
+ if (shouldBlind(right)) {
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ loadXorBlindedConstant(xorBlindConstant(right), scratchRegister);
+ return branch32(cond, left, scratchRegister);
+ }
+ // If we don't have a scratch register available for use, we'll just
+ // place a random number of nops.
+ uint32_t nopCount = random() & 3;
+ while (nopCount--)
+ nop();
+ return branch32(cond, left, right.asTrustedImm32());
+ }
+
+ return branch32(cond, left, right.asTrustedImm32());
+ }
+
+ Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest)
+ {
+ if (src == dest)
+ ASSERT(scratchRegisterForBlinding());
+
+ if (shouldBlind(imm)) {
+ if (src == dest) {
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ move(src, scratchRegister);
+ src = scratchRegister;
+ }
+ }
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ return branchAdd32(cond, src, dest);
+ }
+ return branchAdd32(cond, src, imm.asTrustedImm32(), dest);
+ }
+
+ Jump branchMul32(ResultCondition cond, Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (src == dest)
+ ASSERT(scratchRegisterForBlinding());
+
+ if (shouldBlind(imm)) {
+ if (src == dest) {
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ move(src, scratchRegister);
+ src = scratchRegister;
+ }
+ }
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ return branchMul32(cond, src, dest);
+ }
+ return branchMul32(cond, imm.asTrustedImm32(), src, dest);
+ }
+
+ // branchSub32 takes a scratch register as 32 bit platforms make use of this,
+ // with src == dst, and on x86-32 we don't have a platform scratch register.
+ Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch)
+ {
+ if (shouldBlind(imm)) {
+ ASSERT(scratch != dest);
+ ASSERT(scratch != src);
+ loadXorBlindedConstant(xorBlindConstant(imm), scratch);
+ return branchSub32(cond, src, scratch, dest);
+ }
+ return branchSub32(cond, src, imm.asTrustedImm32(), dest);
+ }
+
+ // Immediate shifts only have 5 controllable bits
+ // so we'll consider them safe for now.
+ TrustedImm32 trustedImm32ForShift(Imm32 imm)
+ {
+ return TrustedImm32(imm.asTrustedImm32().m_value & 31);
+ }
+
+ void lshift32(Imm32 imm, RegisterID dest)
+ {
+ lshift32(trustedImm32ForShift(imm), dest);
+ }
+
+ void lshift32(RegisterID src, Imm32 amount, RegisterID dest)
+ {
+ lshift32(src, trustedImm32ForShift(amount), dest);
+ }
+
+ void rshift32(Imm32 imm, RegisterID dest)
+ {
+ rshift32(trustedImm32ForShift(imm), dest);
+ }
+
+ void rshift32(RegisterID src, Imm32 amount, RegisterID dest)
+ {
+ rshift32(src, trustedImm32ForShift(amount), dest);
+ }
+
+ void urshift32(Imm32 imm, RegisterID dest)
+ {
+ urshift32(trustedImm32ForShift(imm), dest);
+ }
+
+ void urshift32(RegisterID src, Imm32 amount, RegisterID dest)
+ {
+ urshift32(src, trustedImm32ForShift(amount), dest);
+ }
+#endif
+};
+
+} // namespace JSC
+
+#else // ENABLE(ASSEMBLER)
+
+// If there is no assembler for this platform, at least allow code to make references to
+// some of the things it would otherwise define, albeit without giving that code any way
+// of doing anything useful.
+class MacroAssembler {
+private:
+ MacroAssembler() { }
+
+public:
+
+ enum RegisterID { NoRegister };
+ enum FPRegisterID { NoFPRegister };
+};
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // MacroAssembler_h
diff --git a/src/3rdparty/masm/assembler/MacroAssemblerARM.cpp b/src/3rdparty/masm/assembler/MacroAssemblerARM.cpp
new file mode 100644
index 0000000000..98dc3e9879
--- /dev/null
+++ b/src/3rdparty/masm/assembler/MacroAssemblerARM.cpp
@@ -0,0 +1,99 @@
+/*
+ * Copyright (C) 2009 University of Szeged
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in bin