aboutsummaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/MacroAssemblerX86Common.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/masm/assembler/MacroAssemblerX86Common.h')
-rw-r--r--src/3rdparty/masm/assembler/MacroAssemblerX86Common.h1541
1 files changed, 1541 insertions, 0 deletions
diff --git a/src/3rdparty/masm/assembler/MacroAssemblerX86Common.h b/src/3rdparty/masm/assembler/MacroAssemblerX86Common.h
new file mode 100644
index 0000000000..53cb80c210
--- /dev/null
+++ b/src/3rdparty/masm/assembler/MacroAssemblerX86Common.h
@@ -0,0 +1,1541 @@
+/*
+ * Copyright (C) 2008 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef MacroAssemblerX86Common_h
+#define MacroAssemblerX86Common_h
+
+#if ENABLE(ASSEMBLER)
+
+#include "X86Assembler.h"
+#include "AbstractMacroAssembler.h"
+
+namespace JSC {
+
+class MacroAssemblerX86Common : public AbstractMacroAssembler<X86Assembler> {
+protected:
+#if CPU(X86_64)
+ static const X86Registers::RegisterID scratchRegister = X86Registers::r11;
+#endif
+
+ static const int DoubleConditionBitInvert = 0x10;
+ static const int DoubleConditionBitSpecial = 0x20;
+ static const int DoubleConditionBits = DoubleConditionBitInvert | DoubleConditionBitSpecial;
+
+public:
+ typedef X86Assembler::FPRegisterID FPRegisterID;
+ typedef X86Assembler::XMMRegisterID XMMRegisterID;
+
+ static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value)
+ {
+ return value >= -128 && value <= 127;
+ }
+
+ enum RelationalCondition {
+ Equal = X86Assembler::ConditionE,
+ NotEqual = X86Assembler::ConditionNE,
+ Above = X86Assembler::ConditionA,
+ AboveOrEqual = X86Assembler::ConditionAE,
+ Below = X86Assembler::ConditionB,
+ BelowOrEqual = X86Assembler::ConditionBE,
+ GreaterThan = X86Assembler::ConditionG,
+ GreaterThanOrEqual = X86Assembler::ConditionGE,
+ LessThan = X86Assembler::ConditionL,
+ LessThanOrEqual = X86Assembler::ConditionLE
+ };
+
+ enum ResultCondition {
+ Overflow = X86Assembler::ConditionO,
+ Signed = X86Assembler::ConditionS,
+ Zero = X86Assembler::ConditionE,
+ NonZero = X86Assembler::ConditionNE
+ };
+
+ enum DoubleCondition {
+ // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
+ DoubleEqual = X86Assembler::ConditionE | DoubleConditionBitSpecial,
+ DoubleNotEqual = X86Assembler::ConditionNE,
+ DoubleGreaterThan = X86Assembler::ConditionA,
+ DoubleGreaterThanOrEqual = X86Assembler::ConditionAE,
+ DoubleLessThan = X86Assembler::ConditionA | DoubleConditionBitInvert,
+ DoubleLessThanOrEqual = X86Assembler::ConditionAE | DoubleConditionBitInvert,
+ // If either operand is NaN, these conditions always evaluate to true.
+ DoubleEqualOrUnordered = X86Assembler::ConditionE,
+ DoubleNotEqualOrUnordered = X86Assembler::ConditionNE | DoubleConditionBitSpecial,
+ DoubleGreaterThanOrUnordered = X86Assembler::ConditionB | DoubleConditionBitInvert,
+ DoubleGreaterThanOrEqualOrUnordered = X86Assembler::ConditionBE | DoubleConditionBitInvert,
+ DoubleLessThanOrUnordered = X86Assembler::ConditionB,
+ DoubleLessThanOrEqualOrUnordered = X86Assembler::ConditionBE,
+ };
+ COMPILE_ASSERT(
+ !((X86Assembler::ConditionE | X86Assembler::ConditionNE | X86Assembler::ConditionA | X86Assembler::ConditionAE | X86Assembler::ConditionB | X86Assembler::ConditionBE) & DoubleConditionBits),
+ DoubleConditionBits_should_not_interfere_with_X86Assembler_Condition_codes);
+
+ static const RegisterID stackPointerRegister = X86Registers::esp;
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ static bool shouldBlindForSpecificArch(uint32_t value) { return value >= 0x00ffffff; }
+#if CPU(X86_64)
+ static bool shouldBlindForSpecificArch(uint64_t value) { return value >= 0x00ffffff; }
+#if OS(DARWIN) // On 64-bit systems other than DARWIN uint64_t and uintptr_t are the same type so overload is prohibited.
+ static bool shouldBlindForSpecificArch(uintptr_t value) { return value >= 0x00ffffff; }
+#endif
+#endif
+#endif
+
+ // Integer arithmetic operations:
+ //
+ // Operations are typically two operand - operation(source, srcDst)
+ // For many operations the source may be an TrustedImm32, the srcDst operand
+ // may often be a memory location (explictly described using an Address
+ // object).
+
+ void add32(RegisterID src, RegisterID dest)
+ {
+ m_assembler.addl_rr(src, dest);
+ }
+
+ void add32(TrustedImm32 imm, Address address)
+ {
+ m_assembler.addl_im(imm.m_value, address.offset, address.base);
+ }
+
+ void add32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.addl_ir(imm.m_value, dest);
+ }
+
+ void add32(Address src, RegisterID dest)
+ {
+ m_assembler.addl_mr(src.offset, src.base, dest);
+ }
+
+ void add32(RegisterID src, Address dest)
+ {
+ m_assembler.addl_rm(src, dest.offset, dest.base);
+ }
+
+ void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ m_assembler.leal_mr(imm.m_value, src, dest);
+ }
+
+ void and32(RegisterID src, RegisterID dest)
+ {
+ m_assembler.andl_rr(src, dest);
+ }
+
+ void and32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.andl_ir(imm.m_value, dest);
+ }
+
+ void and32(RegisterID src, Address dest)
+ {
+ m_assembler.andl_rm(src, dest.offset, dest.base);
+ }
+
+ void and32(Address src, RegisterID dest)
+ {
+ m_assembler.andl_mr(src.offset, src.base, dest);
+ }
+
+ void and32(TrustedImm32 imm, Address address)
+ {
+ m_assembler.andl_im(imm.m_value, address.offset, address.base);
+ }
+
+ void and32(RegisterID op1, RegisterID op2, RegisterID dest)
+ {
+ if (op1 == op2)
+ zeroExtend32ToPtr(op1, dest);
+ else if (op1 == dest)
+ and32(op2, dest);
+ else {
+ move(op2, dest);
+ and32(op1, dest);
+ }
+ }
+
+ void and32(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ move(src, dest);
+ and32(imm, dest);
+ }
+
+ void lshift32(RegisterID shift_amount, RegisterID dest)
+ {
+ ASSERT(shift_amount != dest);
+
+ if (shift_amount == X86Registers::ecx)
+ m_assembler.shll_CLr(dest);
+ else {
+ // On x86 we can only shift by ecx; if asked to shift by another register we'll
+ // need rejig the shift amount into ecx first, and restore the registers afterwards.
+ // If we dest is ecx, then shift the swapped register!
+ swap(shift_amount, X86Registers::ecx);
+ m_assembler.shll_CLr(dest == X86Registers::ecx ? shift_amount : dest);
+ swap(shift_amount, X86Registers::ecx);
+ }
+ }
+
+ void lshift32(RegisterID src, RegisterID shift_amount, RegisterID dest)
+ {
+ ASSERT(shift_amount != dest);
+
+ if (src != dest)
+ move(src, dest);
+ lshift32(shift_amount, dest);
+ }
+
+ void lshift32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.shll_i8r(imm.m_value, dest);
+ }
+
+ void lshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
+ {
+ if (src != dest)
+ move(src, dest);
+ lshift32(imm, dest);
+ }
+
+ void mul32(RegisterID src, RegisterID dest)
+ {
+ m_assembler.imull_rr(src, dest);
+ }
+
+ void mul32(Address src, RegisterID dest)
+ {
+ m_assembler.imull_mr(src.offset, src.base, dest);
+ }
+
+ void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ m_assembler.imull_i32r(src, imm.m_value, dest);
+ }
+
+ void neg32(RegisterID srcDest)
+ {
+ m_assembler.negl_r(srcDest);
+ }
+
+ void neg32(Address srcDest)
+ {
+ m_assembler.negl_m(srcDest.offset, srcDest.base);
+ }
+
+ void or32(RegisterID src, RegisterID dest)
+ {
+ m_assembler.orl_rr(src, dest);
+ }
+
+ void or32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.orl_ir(imm.m_value, dest);
+ }
+
+ void or32(RegisterID src, Address dest)
+ {
+ m_assembler.orl_rm(src, dest.offset, dest.base);
+ }
+
+ void or32(Address src, RegisterID dest)
+ {
+ m_assembler.orl_mr(src.offset, src.base, dest);
+ }
+
+ void or32(TrustedImm32 imm, Address address)
+ {
+ m_assembler.orl_im(imm.m_value, address.offset, address.base);
+ }
+
+ void or32(RegisterID op1, RegisterID op2, RegisterID dest)
+ {
+ if (op1 == op2)
+ zeroExtend32ToPtr(op1, dest);
+ else if (op1 == dest)
+ or32(op2, dest);
+ else {
+ move(op2, dest);
+ or32(op1, dest);
+ }
+ }
+
+ void or32(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ move(src, dest);
+ or32(imm, dest);
+ }
+
+ void rshift32(RegisterID shift_amount, RegisterID dest)
+ {
+ ASSERT(shift_amount != dest);
+
+ if (shift_amount == X86Registers::ecx)
+ m_assembler.sarl_CLr(dest);
+ else {
+ // On x86 we can only shift by ecx; if asked to shift by another register we'll
+ // need rejig the shift amount into ecx first, and restore the registers afterwards.
+ // If we dest is ecx, then shift the swapped register!
+ swap(shift_amount, X86Registers::ecx);
+ m_assembler.sarl_CLr(dest == X86Registers::ecx ? shift_amount : dest);
+ swap(shift_amount, X86Registers::ecx);
+ }
+ }
+
+ void rshift32(RegisterID src, RegisterID shift_amount, RegisterID dest)
+ {
+ ASSERT(shift_amount != dest);
+
+ if (src != dest)
+ move(src, dest);
+ rshift32(shift_amount, dest);
+ }
+
+ void rshift32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.sarl_i8r(imm.m_value, dest);
+ }
+
+ void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
+ {
+ if (src != dest)
+ move(src, dest);
+ rshift32(imm, dest);
+ }
+
+ void urshift32(RegisterID shift_amount, RegisterID dest)
+ {
+ ASSERT(shift_amount != dest);
+
+ if (shift_amount == X86Registers::ecx)
+ m_assembler.shrl_CLr(dest);
+ else {
+ // On x86 we can only shift by ecx; if asked to shift by another register we'll
+ // need rejig the shift amount into ecx first, and restore the registers afterwards.
+ // If we dest is ecx, then shift the swapped register!
+ swap(shift_amount, X86Registers::ecx);
+ m_assembler.shrl_CLr(dest == X86Registers::ecx ? shift_amount : dest);
+ swap(shift_amount, X86Registers::ecx);
+ }
+ }
+
+ void urshift32(RegisterID src, RegisterID shift_amount, RegisterID dest)
+ {
+ ASSERT(shift_amount != dest);
+
+ if (src != dest)
+ move(src, dest);
+ urshift32(shift_amount, dest);
+ }
+
+ void urshift32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.shrl_i8r(imm.m_value, dest);
+ }
+
+ void urshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
+ {
+ if (src != dest)
+ move(src, dest);
+ urshift32(imm, dest);
+ }
+
+ void sub32(RegisterID src, RegisterID dest)
+ {
+ m_assembler.subl_rr(src, dest);
+ }
+
+ void sub32(TrustedImm32 imm, RegisterID dest)
+ {
+ m_assembler.subl_ir(imm.m_value, dest);
+ }
+
+ void sub32(TrustedImm32 imm, Address address)
+ {
+ m_assembler.subl_im(imm.m_value, address.offset, address.base);
+ }
+
+ void sub32(Address src, RegisterID dest)
+ {
+ m_assembler.subl_mr(src.offset, src.base, dest);
+ }
+
+ void sub32(RegisterID src, Address dest)
+ {
+ m_assembler.subl_rm(src, dest.offset, dest.base);
+ }
+
+ void xor32(RegisterID src, RegisterID dest)
+ {
+ m_assembler.xorl_rr(src, dest);
+ }
+
+ void xor32(TrustedImm32 imm, Address dest)
+ {
+ if (imm.m_value == -1)
+ m_assembler.notl_m(dest.offset, dest.base);
+ else
+ m_assembler.xorl_im(imm.m_value, dest.offset, dest.base);
+ }
+
+ void xor32(TrustedImm32 imm, RegisterID dest)
+ {
+ if (imm.m_value == -1)
+ m_assembler.notl_r(dest);
+ else
+ m_assembler.xorl_ir(imm.m_value, dest);
+ }
+
+ void xor32(RegisterID src, Address dest)
+ {
+ m_assembler.xorl_rm(src, dest.offset, dest.base);
+ }
+
+ void xor32(Address src, RegisterID dest)
+ {
+ m_assembler.xorl_mr(src.offset, src.base, dest);
+ }
+
+ void xor32(RegisterID op1, RegisterID op2, RegisterID dest)
+ {
+ if (op1 == op2)
+ move(TrustedImm32(0), dest);
+ else if (op1 == dest)
+ xor32(op2, dest);
+ else {
+ move(op2, dest);
+ xor32(op1, dest);
+ }
+ }
+
+ void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ move(src, dest);
+ xor32(imm, dest);
+ }
+
+ void sqrtDouble(FPRegisterID src, FPRegisterID dst)
+ {
+ m_assembler.sqrtsd_rr(src, dst);
+ }
+
+ void absDouble(FPRegisterID src, FPRegisterID dst)
+ {
+ ASSERT(src != dst);
+ static const double negativeZeroConstant = -0.0;
+ loadDouble(&negativeZeroConstant, dst);
+ m_assembler.andnpd_rr(src, dst);
+ }
+
+ void negateDouble(FPRegisterID src, FPRegisterID dst)
+ {
+ ASSERT(src != dst);
+ static const double negativeZeroConstant = -0.0;
+ loadDouble(&negativeZeroConstant, dst);
+ m_assembler.xorpd_rr(src, dst);
+ }
+
+
+ // Memory access operations:
+ //
+ // Loads are of the form load(address, destination) and stores of the form
+ // store(source, address). The source for a store may be an TrustedImm32. Address
+ // operand objects to loads and store will be implicitly constructed if a
+ // register is passed.
+
+ void load32(ImplicitAddress address, RegisterID dest)
+ {
+ m_assembler.movl_mr(address.offset, address.base, dest);
+ }
+
+ void load32(BaseIndex address, RegisterID dest)
+ {
+ m_assembler.movl_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+
+ void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
+ {
+ load32(address, dest);
+ }
+
+ void load16Unaligned(BaseIndex address, RegisterID dest)
+ {
+ load16(address, dest);
+ }
+
+ DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ padBeforePatch();
+ m_assembler.movl_mr_disp32(address.offset, address.base, dest);
+ return DataLabel32(this);
+ }
+
+ DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ padBeforePatch();
+ m_assembler.movl_mr_disp8(address.offset, address.base, dest);
+ return DataLabelCompact(this);
+ }
+
+ static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value)
+ {
+ ASSERT(isCompactPtrAlignedAddressOffset(value));
+ AssemblerType_T::repatchCompact(dataLabelCompact.dataLocation(), value);
+ }
+
+ DataLabelCompact loadCompactWithAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ padBeforePatch();
+ m_assembler.movl_mr_disp8(address.offset, address.base, dest);
+ return DataLabelCompact(this);
+ }
+
+ void load8(BaseIndex address, RegisterID dest)
+ {
+ m_assembler.movzbl_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+
+ void load8(ImplicitAddress address, RegisterID dest)
+ {
+ m_assembler.movzbl_mr(address.offset, address.base, dest);
+ }
+
+ void load8Signed(BaseIndex address, RegisterID dest)
+ {
+ m_assembler.movsbl_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+
+ void load8Signed(ImplicitAddress address, RegisterID dest)
+ {
+ m_assembler.movsbl_mr(address.offset, address.base, dest);
+ }
+
+ void load16(BaseIndex address, RegisterID dest)
+ {
+ m_assembler.movzwl_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+
+ void load16(Address address, RegisterID dest)
+ {
+ m_assembler.movzwl_mr(address.offset, address.base, dest);
+ }
+
+ void load16Signed(BaseIndex address, RegisterID dest)
+ {
+ m_assembler.movswl_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+
+ void load16Signed(Address address, RegisterID dest)
+ {
+ m_assembler.movswl_mr(address.offset, address.base, dest);
+ }
+
+ DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
+ {
+ padBeforePatch();
+ m_assembler.movl_rm_disp32(src, address.offset, address.base);
+ return DataLabel32(this);
+ }
+
+ void store32(RegisterID src, ImplicitAddress address)
+ {
+ m_assembler.movl_rm(src, address.offset, address.base);
+ }
+
+ void store32(RegisterID src, BaseIndex address)
+ {
+ m_assembler.movl_rm(src, address.offset, address.base, address.index, address.scale);
+ }
+
+ void store32(TrustedImm32 imm, ImplicitAddress address)
+ {
+ m_assembler.movl_i32m(imm.m_value, address.offset, address.base);
+ }
+
+ void store32(TrustedImm32 imm, BaseIndex address)
+ {
+ m_assembler.movl_i32m(imm.m_value, address.offset, address.base, address.index, address.scale);
+ }
+
+ void store8(TrustedImm32 imm, Address address)
+ {
+ ASSERT(-128 <= imm.m_value && imm.m_value < 128);
+ m_assembler.movb_i8m(imm.m_value, address.offset, address.base);
+ }
+
+ void store8(TrustedImm32 imm, BaseIndex address)
+ {
+ ASSERT(-128 <= imm.m_value && imm.m_value < 128);
+ m_assembler.movb_i8m(imm.m_value, address.offset, address.base, address.index, address.scale);
+ }
+
+ void store8(RegisterID src, BaseIndex address)
+ {
+#if CPU(X86)
+ // On 32-bit x86 we can only store from the first 4 registers;
+ // esp..edi are mapped to the 'h' registers!
+ if (src >= 4) {
+ // Pick a temporary register.
+ RegisterID temp;
+ if (address.base != X86Registers::eax && address.index != X86Registers::eax)
+ temp = X86Registers::eax;
+ else if (address.base != X86Registers::ebx && address.index != X86Registers::ebx)
+ temp = X86Registers::ebx;
+ else {
+ ASSERT(address.base != X86Registers::ecx && address.index != X86Registers::ecx);
+ temp = X86Registers::ecx;
+ }
+
+ // Swap to the temporary register to perform the store.
+ swap(src, temp);
+ m_assembler.movb_rm(temp, address.offset, address.base, address.index, address.scale);
+ swap(src, temp);
+ return;
+ }
+#endif
+ m_assembler.movb_rm(src, address.offset, address.base, address.index, address.scale);
+ }
+
+ void store16(RegisterID src, BaseIndex address)
+ {
+#if CPU(X86)
+ // On 32-bit x86 we can only store from the first 4 registers;
+ // esp..edi are mapped to the 'h' registers!
+ if (src >= 4) {
+ // Pick a temporary register.
+ RegisterID temp;
+ if (address.base != X86Registers::eax && address.index != X86Registers::eax)
+ temp = X86Registers::eax;
+ else if (address.base != X86Registers::ebx && address.index != X86Registers::ebx)
+ temp = X86Registers::ebx;
+ else {
+ ASSERT(address.base != X86Registers::ecx && address.index != X86Registers::ecx);
+ temp = X86Registers::ecx;
+ }
+
+ // Swap to the temporary register to perform the store.
+ swap(src, temp);
+ m_assembler.movw_rm(temp, address.offset, address.base, address.index, address.scale);
+ swap(src, temp);
+ return;
+ }
+#endif
+ m_assembler.movw_rm(src, address.offset, address.base, address.index, address.scale);
+ }
+
+
+ // Floating-point operation:
+ //
+ // Presently only supports SSE, not x87 floating point.
+
+ void moveDouble(FPRegisterID src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ if (src != dest)
+ m_assembler.movsd_rr(src, dest);
+ }
+
+ void loadDouble(const void* address, FPRegisterID dest)
+ {
+#if CPU(X86)
+ ASSERT(isSSE2Present());
+ m_assembler.movsd_mr(address, dest);
+#else
+ move(TrustedImmPtr(address), scratchRegister);
+ loadDouble(scratchRegister, dest);
+#endif
+ }
+
+ void loadDouble(ImplicitAddress address, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movsd_mr(address.offset, address.base, dest);
+ }
+
+ void loadDouble(BaseIndex address, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movsd_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+ void loadFloat(BaseIndex address, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movss_mr(address.offset, address.base, address.index, address.scale, dest);
+ }
+
+ void storeDouble(FPRegisterID src, ImplicitAddress address)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movsd_rm(src, address.offset, address.base);
+ }
+
+ void storeDouble(FPRegisterID src, BaseIndex address)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movsd_rm(src, address.offset, address.base, address.index, address.scale);
+ }
+
+ void storeFloat(FPRegisterID src, BaseIndex address)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movss_rm(src, address.offset, address.base, address.index, address.scale);
+ }
+
+ void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvtsd2ss_rr(src, dst);
+ }
+
+ void convertFloatToDouble(FPRegisterID src, FPRegisterID dst)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvtss2sd_rr(src, dst);
+ }
+
+ void addDouble(FPRegisterID src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.addsd_rr(src, dest);
+ }
+
+ void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ if (op1 == dest)
+ addDouble(op2, dest);
+ else {
+ moveDouble(op2, dest);
+ addDouble(op1, dest);
+ }
+ }
+
+ void addDouble(Address src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.addsd_mr(src.offset, src.base, dest);
+ }
+
+ void divDouble(FPRegisterID src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.divsd_rr(src, dest);
+ }
+
+ void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
+ {
+ // B := A / B is invalid.
+ ASSERT(op1 == dest || op2 != dest);
+
+ moveDouble(op1, dest);
+ divDouble(op2, dest);
+ }
+
+ void divDouble(Address src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.divsd_mr(src.offset, src.base, dest);
+ }
+
+ void subDouble(FPRegisterID src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.subsd_rr(src, dest);
+ }
+
+ void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
+ {
+ // B := A - B is invalid.
+ ASSERT(op1 == dest || op2 != dest);
+
+ moveDouble(op1, dest);
+ subDouble(op2, dest);
+ }
+
+ void subDouble(Address src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.subsd_mr(src.offset, src.base, dest);
+ }
+
+ void mulDouble(FPRegisterID src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.mulsd_rr(src, dest);
+ }
+
+ void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ if (op1 == dest)
+ mulDouble(op2, dest);
+ else {
+ moveDouble(op2, dest);
+ mulDouble(op1, dest);
+ }
+ }
+
+ void mulDouble(Address src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.mulsd_mr(src.offset, src.base, dest);
+ }
+
+ void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvtsi2sd_rr(src, dest);
+ }
+
+ void convertInt32ToDouble(Address src, FPRegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvtsi2sd_mr(src.offset, src.base, dest);
+ }
+
+ Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
+ {
+ ASSERT(isSSE2Present());
+
+ if (cond & DoubleConditionBitInvert)
+ m_assembler.ucomisd_rr(left, right);
+ else
+ m_assembler.ucomisd_rr(right, left);
+
+ if (cond == DoubleEqual) {
+ if (left == right)
+ return Jump(m_assembler.jnp());
+ Jump isUnordered(m_assembler.jp());
+ Jump result = Jump(m_assembler.je());
+ isUnordered.link(this);
+ return result;
+ } else if (cond == DoubleNotEqualOrUnordered) {
+ if (left == right)
+ return Jump(m_assembler.jp());
+ Jump isUnordered(m_assembler.jp());
+ Jump isEqual(m_assembler.je());
+ isUnordered.link(this);
+ Jump result = jump();
+ isEqual.link(this);
+ return result;
+ }
+
+ ASSERT(!(cond & DoubleConditionBitSpecial));
+ return Jump(m_assembler.jCC(static_cast<X86Assembler::Condition>(cond & ~DoubleConditionBits)));
+ }
+
+ // Truncates 'src' to an integer, and places the resulting 'dest'.
+ // If the result is not representable as a 32 bit value, branch.
+ // May also branch for some values that are representable in 32 bits
+ // (specifically, in this case, INT_MIN).
+ enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful };
+ Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvttsd2si_rr(src, dest);
+ return branch32(branchType ? NotEqual : Equal, dest, TrustedImm32(0x80000000));
+ }
+
+ Jump branchTruncateDoubleToUint32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvttsd2si_rr(src, dest);
+ return branch32(branchType ? GreaterThanOrEqual : LessThan, dest, TrustedImm32(0));
+ }
+
+ void truncateDoubleToInt32(FPRegisterID src, RegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvttsd2si_rr(src, dest);
+ }
+
+#if CPU(X86_64)
+ void truncateDoubleToUint32(FPRegisterID src, RegisterID dest)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvttsd2siq_rr(src, dest);
+ }
+#endif
+
+ // Convert 'src' to an integer, and places the resulting 'dest'.
+ // If the result is not representable as a 32 bit value, branch.
+ // May also branch for some values that are representable in 32 bits
+ // (specifically, in this case, 0).
+ void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.cvttsd2si_rr(src, dest);
+
+ // If the result is zero, it might have been -0.0, and the double comparison won't catch this!
+ failureCases.append(branchTest32(Zero, dest));
+
+ // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
+ convertInt32ToDouble(dest, fpTemp);
+ m_assembler.ucomisd_rr(fpTemp, src);
+ failureCases.append(m_assembler.jp());
+ failureCases.append(m_assembler.jne());
+ }
+
+ Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.xorpd_rr(scratch, scratch);
+ return branchDouble(DoubleNotEqual, reg, scratch);
+ }
+
+ Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.xorpd_rr(scratch, scratch);
+ return branchDouble(DoubleEqualOrUnordered, reg, scratch);
+ }
+
+ void lshiftPacked(TrustedImm32 imm, XMMRegisterID reg)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.psllq_i8r(imm.m_value, reg);
+ }
+
+ void rshiftPacked(TrustedImm32 imm, XMMRegisterID reg)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.psrlq_i8r(imm.m_value, reg);
+ }
+
+ void orPacked(XMMRegisterID src, XMMRegisterID dst)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.por_rr(src, dst);
+ }
+
+ void moveInt32ToPacked(RegisterID src, XMMRegisterID dst)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movd_rr(src, dst);
+ }
+
+ void movePackedToInt32(XMMRegisterID src, RegisterID dst)
+ {
+ ASSERT(isSSE2Present());
+ m_assembler.movd_rr(src, dst);
+ }
+
+ // Stack manipulation operations:
+ //
+ // The ABI is assumed to provide a stack abstraction to memory,
+ // containing machine word sized units of data. Push and pop
+ // operations add and remove a single register sized unit of data
+ // to or from the stack. Peek and poke operations read or write
+ // values on the stack, without moving the current stack position.
+
+ void pop(RegisterID dest)
+ {
+ m_assembler.pop_r(dest);
+ }
+
+ void push(RegisterID src)
+ {
+ m_assembler.push_r(src);
+ }
+
+ void push(Address address)
+ {
+ m_assembler.push_m(address.offset, address.base);
+ }
+
+ void push(TrustedImm32 imm)
+ {
+ m_assembler.push_i32(imm.m_value);
+ }
+
+
+ // Register move operations:
+ //
+ // Move values in registers.
+
+ void move(TrustedImm32 imm, RegisterID dest)
+ {
+ // Note: on 64-bit the TrustedImm32 value is zero extended into the register, it
+ // may be useful to have a separate version that sign extends the value?
+ if (!imm.m_value)
+ m_assembler.xorl_rr(dest, dest);
+ else
+ m_assembler.movl_i32r(imm.m_value, dest);
+ }
+
+#if CPU(X86_64)
+ void move(RegisterID src, RegisterID dest)
+ {
+ // Note: on 64-bit this is is a full register move; perhaps it would be
+ // useful to have separate move32 & movePtr, with move32 zero extending?
+ if (src != dest)
+ m_assembler.movq_rr(src, dest);
+ }
+
+ void move(TrustedImmPtr imm, RegisterID dest)
+ {
+ m_assembler.movq_i64r(imm.asIntptr(), dest);
+ }
+
+ void move(TrustedImm64 imm, RegisterID dest)
+ {
+ m_assembler.movq_i64r(imm.m_value, dest);
+ }
+
+ void swap(RegisterID reg1, RegisterID reg2)
+ {
+ if (reg1 != reg2)
+ m_assembler.xchgq_rr(reg1, reg2);
+ }
+
+ void signExtend32ToPtr(RegisterID src, RegisterID dest)
+ {
+ m_assembler.movsxd_rr(src, dest);
+ }
+
+ void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
+ {
+ m_assembler.movl_rr(src, dest);
+ }
+#else
+ void move(RegisterID src, RegisterID dest)
+ {
+ if (src != dest)
+ m_assembler.movl_rr(src, dest);
+ }
+
+ void move(TrustedImmPtr imm, RegisterID dest)
+ {
+ m_assembler.movl_i32r(imm.asIntptr(), dest);
+ }
+
+ void swap(RegisterID reg1, RegisterID reg2)
+ {
+ if (reg1 != reg2)
+ m_assembler.xchgl_rr(reg1, reg2);
+ }
+
+ void signExtend32ToPtr(RegisterID src, RegisterID dest)
+ {
+ move(src, dest);
+ }
+
+ void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
+ {
+ move(src, dest);
+ }
+#endif
+
+
+ // Forwards / external control flow operations:
+ //
+ // This set of jump and conditional branch operations return a Jump
+ // object which may linked at a later point, allow forwards jump,
+ // or jumps that will require external linkage (after the code has been
+ // relocated).
+ //
+ // For branches, signed <, >, <= and >= are denoted as l, g, le, and ge
+ // respecitvely, for unsigned comparisons the names b, a, be, and ae are
+ // used (representing the names 'below' and 'above').
+ //
+ // Operands to the comparision are provided in the expected order, e.g.
+ // jle32(reg1, TrustedImm32(5)) will branch if the value held in reg1, when
+ // treated as a signed 32bit value, is less than or equal to 5.
+ //
+ // jz and jnz test whether the first operand is equal to zero, and take
+ // an optional second operand of a mask under which to perform the test.
+
+public:
+ Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right)
+ {
+ m_assembler.cmpb_im(right.m_value, left.offset, left.base);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right)
+ {
+ m_assembler.cmpl_rr(right, left);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right)
+ {
+ if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
+ m_assembler.testl_rr(left, left);
+ else
+ m_assembler.cmpl_ir(right.m_value, left);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32(RelationalCondition cond, RegisterID left, Address right)
+ {
+ m_assembler.cmpl_mr(right.offset, right.base, left);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32(RelationalCondition cond, Address left, RegisterID right)
+ {
+ m_assembler.cmpl_rm(right, left.offset, left.base);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right)
+ {
+ m_assembler.cmpl_im(right.m_value, left.offset, left.base);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
+ {
+ m_assembler.cmpl_im(right.m_value, left.offset, left.base, left.index, left.scale);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
+ {
+ return branch32(cond, left, right);
+ }
+
+ Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask)
+ {
+ m_assembler.testl_rr(reg, mask);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ // if we are only interested in the low seven bits, this can be tested with a testb
+ if (mask.m_value == -1)
+ m_assembler.testl_rr(reg, reg);
+ else
+ m_assembler.testl_i32r(mask.m_value, reg);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ if (mask.m_value == -1)
+ m_assembler.cmpl_im(0, address.offset, address.base);
+ else
+ m_assembler.testl_i32m(mask.m_value, address.offset, address.base);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ if (mask.m_value == -1)
+ m_assembler.cmpl_im(0, address.offset, address.base, address.index, address.scale);
+ else
+ m_assembler.testl_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ // Byte in TrustedImm32 is not well defined, so be a little permisive here, but don't accept nonsense values.
+ ASSERT(mask.m_value >= -128 && mask.m_value <= 255);
+ if (mask.m_value == -1)
+ m_assembler.cmpb_im(0, address.offset, address.base);
+ else
+ m_assembler.testb_im(mask.m_value, address.offset, address.base);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchTest8(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ // Byte in TrustedImm32 is not well defined, so be a little permisive here, but don't accept nonsense values.
+ ASSERT(mask.m_value >= -128 && mask.m_value <= 255);
+ if (mask.m_value == -1)
+ m_assembler.cmpb_im(0, address.offset, address.base, address.index, address.scale);
+ else
+ m_assembler.testb_im(mask.m_value, address.offset, address.base, address.index, address.scale);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
+ {
+ ASSERT(!(right.m_value & 0xFFFFFF00));
+
+ m_assembler.cmpb_im(right.m_value, left.offset, left.base, left.index, left.scale);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump jump()
+ {
+ return Jump(m_assembler.jmp());
+ }
+
+ void jump(RegisterID target)
+ {
+ m_assembler.jmp_r(target);
+ }
+
+ // Address is a memory location containing the address to jump to
+ void jump(Address address)
+ {
+ m_assembler.jmp_m(address.offset, address.base);
+ }
+
+
+ // Arithmetic control flow operations:
+ //
+ // This set of conditional branch operations branch based
+ // on the result of an arithmetic operation. The operation
+ // is performed as normal, storing the result.
+ //
+ // * jz operations branch if the result is zero.
+ // * jo operations branch if the (signed) arithmetic
+ // operation caused an overflow to occur.
+
+ Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ add32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
+ {
+ add32(imm, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchAdd32(ResultCondition cond, TrustedImm32 src, Address dest)
+ {
+ add32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchAdd32(ResultCondition cond, RegisterID src, Address dest)
+ {
+ add32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchAdd32(ResultCondition cond, Address src, RegisterID dest)
+ {
+ add32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchAdd32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
+ {
+ if (src1 == dest)
+ return branchAdd32(cond, src2, dest);
+ move(src2, dest);
+ return branchAdd32(cond, src1, dest);
+ }
+
+ Jump branchAdd32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest)
+ {
+ move(src, dest);
+ return branchAdd32(cond, imm, dest);
+ }
+
+ Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ mul32(src, dest);
+ if (cond != Overflow)
+ m_assembler.testl_rr(dest, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchMul32(ResultCondition cond, Address src, RegisterID dest)
+ {
+ mul32(src, dest);
+ if (cond != Overflow)
+ m_assembler.testl_rr(dest, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchMul32(ResultCondition cond, TrustedImm32 imm, RegisterID src, RegisterID dest)
+ {
+ mul32(imm, src, dest);
+ if (cond != Overflow)
+ m_assembler.testl_rr(dest, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
+ {
+ if (src1 == dest)
+ return branchMul32(cond, src2, dest);
+ move(src2, dest);
+ return branchMul32(cond, src1, dest);
+ }
+
+ Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ sub32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
+ {
+ sub32(imm, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchSub32(ResultCondition cond, TrustedImm32 imm, Address dest)
+ {
+ sub32(imm, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchSub32(ResultCondition cond, RegisterID src, Address dest)
+ {
+ sub32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchSub32(ResultCondition cond, Address src, RegisterID dest)
+ {
+ sub32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchSub32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
+ {
+ // B := A - B is invalid.
+ ASSERT(src1 == dest || src2 != dest);
+
+ move(src1, dest);
+ return branchSub32(cond, src2, dest);
+ }
+
+ Jump branchSub32(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
+ {
+ move(src1, dest);
+ return branchSub32(cond, src2, dest);
+ }
+
+ Jump branchNeg32(ResultCondition cond, RegisterID srcDest)
+ {
+ neg32(srcDest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+ Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest)
+ {
+ or32(src, dest);
+ return Jump(m_assembler.jCC(x86Condition(cond)));
+ }
+
+
+ // Miscellaneous operations:
+
+ void breakpoint()
+ {
+ m_assembler.int3();
+ }
+
+ Call nearCall()
+ {
+ return Call(m_assembler.call(), Call::LinkableNear);
+ }
+
+ Call call(RegisterID target)
+ {
+ return Call(m_assembler.call(target), Call::None);
+ }
+
+ void call(Address address)
+ {
+ m_assembler.call_m(address.offset, address.base);
+ }
+
+ void ret()
+ {
+ m_assembler.ret();
+ }
+
+ void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest)
+ {
+ m_assembler.cmpb_im(right.m_value, left.offset, left.base);
+ set32(x86Condition(cond), dest);
+ }
+
+ void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
+ {
+ m_assembler.cmpl_rr(right, left);
+ set32(x86Condition(cond), dest);
+ }
+
+ void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
+ {
+ if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
+ m_assembler.testl_rr(left, left);
+ else
+ m_assembler.cmpl_ir(right.m_value, left);
+ set32(x86Condition(cond), dest);
+ }
+
+ // FIXME:
+ // The mask should be optional... perhaps the argument order should be
+ // dest-src, operations always have a dest? ... possibly not true, considering
+ // asm ops like test, or pseudo ops like pop().
+
+ void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
+ {
+ if (mask.m_value == -1)
+ m_assembler.cmpb_im(0, address.offset, address.base);
+ else
+ m_assembler.testb_im(mask.m_value, address.offset, address.base);
+ set32(x86Condition(cond), dest);
+ }
+
+ void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
+ {
+ if (mask.m_value == -1)
+ m_assembler.cmpl_im(0, address.offset, address.base);
+ else
+ m_assembler.testl_i32m(mask.m_value, address.offset, address.base);
+ set32(x86Condition(cond), dest);
+ }
+
+ // Invert a relational condition, e.g. == becomes !=, < becomes >=, etc.
+ static RelationalCondition invert(RelationalCondition cond)
+ {
+ return static_cast<RelationalCondition>(cond ^ 1);
+ }
+
+ void nop()
+ {
+ m_assembler.nop();
+ }
+
+ static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination)
+ {
+ X86Assembler::replaceWithJump(instructionStart.executableAddress(), destination.executableAddress());
+ }
+
+ static ptrdiff_t maxJumpReplacementSize()
+ {
+ return X86Assembler::maxJumpReplacementSize();
+ }
+
+protected:
+ X86Assembler::Condition x86Condition(RelationalCondition cond)
+ {
+ return static_cast<X86Assembler::Condition>(cond);
+ }
+
+ X86Assembler::Condition x86Condition(ResultCondition cond)
+ {
+ return static_cast<X86Assembler::Condition>(cond);
+ }
+
+ void set32(X86Assembler::Condition cond, RegisterID dest)
+ {
+#if CPU(X86)
+ // On 32-bit x86 we can only set the first 4 registers;
+ // esp..edi are mapped to the 'h' registers!
+ if (dest >= 4) {
+ m_assembler.xchgl_rr(dest, X86Registers::eax);
+ m_assembler.setCC_r(cond, X86Registers::eax);
+ m_assembler.movzbl_rr(X86Registers::eax, X86Registers::eax);
+ m_assembler.xchgl_rr(dest, X86Registers::eax);
+ return;
+ }
+#endif
+ m_assembler.setCC_r(cond, dest);
+ m_assembler.movzbl_rr(dest, dest);
+ }
+
+private:
+ // Only MacroAssemblerX86 should be using the following method; SSE2 is always available on
+ // x86_64, and clients & subclasses of MacroAssembler should be using 'supportsFloatingPoint()'.
+ friend class MacroAssemblerX86;
+
+#if CPU(X86)
+#if OS(MAC_OS_X)
+
+ // All X86 Macs are guaranteed to support at least SSE2,
+ static bool isSSE2Present()
+ {
+ return true;
+ }
+
+#else // OS(MAC_OS_X)
+
+ enum SSE2CheckState {
+ NotCheckedSSE2,
+ HasSSE2,
+ NoSSE2
+ };
+
+ static bool isSSE2Present()
+ {
+ if (s_sse2CheckState == NotCheckedSSE2) {
+ // Default the flags value to zero; if the compiler is
+ // not MSVC or GCC we will read this as SSE2 not present.
+ int flags = 0;
+#if COMPILER(MSVC)
+ _asm {
+ mov eax, 1 // cpuid function 1 gives us the standard feature set
+ cpuid;
+ mov flags, edx;
+ }
+#elif COMPILER(GCC)
+ asm (
+ "movl $0x1, %%eax;"
+ "pushl %%ebx;"
+ "cpuid;"
+ "popl %%ebx;"
+ "movl %%edx, %0;"
+ : "=g" (flags)
+ :
+ : "%eax", "%ecx", "%edx"
+ );
+#endif
+ static const int SSE2FeatureBit = 1 << 26;
+ s_sse2CheckState = (flags & SSE2FeatureBit) ? HasSSE2 : NoSSE2;
+ }
+ // Only check once.
+ ASSERT(s_sse2CheckState != NotCheckedSSE2);
+
+ return s_sse2CheckState == HasSSE2;
+ }
+
+ static SSE2CheckState s_sse2CheckState;
+
+#endif // OS(MAC_OS_X)
+#elif !defined(NDEBUG) // CPU(X86)
+
+ // On x86-64 we should never be checking for SSE2 in a non-debug build,
+ // but non debug add this method to keep the asserts above happy.
+ static bool isSSE2Present()
+ {
+ return true;
+ }
+
+#endif
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER)
+
+#endif // MacroAssemblerX86Common_h