aboutsummaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/X86Assembler.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/masm/assembler/X86Assembler.h')
-rw-r--r--src/3rdparty/masm/assembler/X86Assembler.h2540
1 files changed, 2540 insertions, 0 deletions
diff --git a/src/3rdparty/masm/assembler/X86Assembler.h b/src/3rdparty/masm/assembler/X86Assembler.h
new file mode 100644
index 0000000000..092e775ab5
--- /dev/null
+++ b/src/3rdparty/masm/assembler/X86Assembler.h
@@ -0,0 +1,2540 @@
+/*
+ * Copyright (C) 2008, 2012 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef X86Assembler_h
+#define X86Assembler_h
+
+#if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64))
+
+#include "AssemblerBuffer.h"
+#include "JITCompilationEffort.h"
+#include <stdint.h>
+#include <wtf/Assertions.h>
+#include <wtf/Vector.h>
+
+namespace JSC {
+
+inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; }
+
+namespace X86Registers {
+ typedef enum {
+ eax,
+ ecx,
+ edx,
+ ebx,
+ esp,
+ ebp,
+ esi,
+ edi,
+
+#if CPU(X86_64)
+ r8,
+ r9,
+ r10,
+ r11,
+ r12,
+ r13,
+ r14,
+ r15,
+#endif
+ } RegisterID;
+
+ typedef enum {
+ xmm0,
+ xmm1,
+ xmm2,
+ xmm3,
+ xmm4,
+ xmm5,
+ xmm6,
+ xmm7,
+ } XMMRegisterID;
+}
+
+class X86Assembler {
+public:
+ typedef X86Registers::RegisterID RegisterID;
+ typedef X86Registers::XMMRegisterID XMMRegisterID;
+ typedef XMMRegisterID FPRegisterID;
+
+ typedef enum {
+ ConditionO,
+ ConditionNO,
+ ConditionB,
+ ConditionAE,
+ ConditionE,
+ ConditionNE,
+ ConditionBE,
+ ConditionA,
+ ConditionS,
+ ConditionNS,
+ ConditionP,
+ ConditionNP,
+ ConditionL,
+ ConditionGE,
+ ConditionLE,
+ ConditionG,
+
+ ConditionC = ConditionB,
+ ConditionNC = ConditionAE,
+ } Condition;
+
+private:
+ typedef enum {
+ OP_ADD_EvGv = 0x01,
+ OP_ADD_GvEv = 0x03,
+ OP_OR_EvGv = 0x09,
+ OP_OR_GvEv = 0x0B,
+ OP_2BYTE_ESCAPE = 0x0F,
+ OP_AND_EvGv = 0x21,
+ OP_AND_GvEv = 0x23,
+ OP_SUB_EvGv = 0x29,
+ OP_SUB_GvEv = 0x2B,
+ PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E,
+ OP_XOR_EvGv = 0x31,
+ OP_XOR_GvEv = 0x33,
+ OP_CMP_EvGv = 0x39,
+ OP_CMP_GvEv = 0x3B,
+#if CPU(X86_64)
+ PRE_REX = 0x40,
+#endif
+ OP_PUSH_EAX = 0x50,
+ OP_POP_EAX = 0x58,
+#if CPU(X86_64)
+ OP_MOVSXD_GvEv = 0x63,
+#endif
+ PRE_OPERAND_SIZE = 0x66,
+ PRE_SSE_66 = 0x66,
+ OP_PUSH_Iz = 0x68,
+ OP_IMUL_GvEvIz = 0x69,
+ OP_GROUP1_EbIb = 0x80,
+ OP_GROUP1_EvIz = 0x81,
+ OP_GROUP1_EvIb = 0x83,
+ OP_TEST_EbGb = 0x84,
+ OP_TEST_EvGv = 0x85,
+ OP_XCHG_EvGv = 0x87,
+ OP_MOV_EbGb = 0x88,
+ OP_MOV_EvGv = 0x89,
+ OP_MOV_GvEv = 0x8B,
+ OP_LEA = 0x8D,
+ OP_GROUP1A_Ev = 0x8F,
+ OP_NOP = 0x90,
+ OP_CDQ = 0x99,
+ OP_MOV_EAXOv = 0xA1,
+ OP_MOV_OvEAX = 0xA3,
+ OP_MOV_EAXIv = 0xB8,
+ OP_GROUP2_EvIb = 0xC1,
+ OP_RET = 0xC3,
+ OP_GROUP11_EvIb = 0xC6,
+ OP_GROUP11_EvIz = 0xC7,
+ OP_INT3 = 0xCC,
+ OP_GROUP2_Ev1 = 0xD1,
+ OP_GROUP2_EvCL = 0xD3,
+ OP_ESCAPE_DD = 0xDD,
+ OP_CALL_rel32 = 0xE8,
+ OP_JMP_rel32 = 0xE9,
+ PRE_SSE_F2 = 0xF2,
+ PRE_SSE_F3 = 0xF3,
+ OP_HLT = 0xF4,
+ OP_GROUP3_EbIb = 0xF6,
+ OP_GROUP3_Ev = 0xF7,
+ OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test.
+ OP_GROUP5_Ev = 0xFF,
+ } OneByteOpcodeID;
+
+ typedef enum {
+ OP2_MOVSD_VsdWsd = 0x10,
+ OP2_MOVSD_WsdVsd = 0x11,
+ OP2_MOVSS_VsdWsd = 0x10,
+ OP2_MOVSS_WsdVsd = 0x11,
+ OP2_CVTSI2SD_VsdEd = 0x2A,
+ OP2_CVTTSD2SI_GdWsd = 0x2C,
+ OP2_UCOMISD_VsdWsd = 0x2E,
+ OP2_ADDSD_VsdWsd = 0x58,
+ OP2_MULSD_VsdWsd = 0x59,
+ OP2_CVTSD2SS_VsdWsd = 0x5A,
+ OP2_CVTSS2SD_VsdWsd = 0x5A,
+ OP2_SUBSD_VsdWsd = 0x5C,
+ OP2_DIVSD_VsdWsd = 0x5E,
+ OP2_SQRTSD_VsdWsd = 0x51,
+ OP2_ANDNPD_VpdWpd = 0x55,
+ OP2_XORPD_VpdWpd = 0x57,
+ OP2_MOVD_VdEd = 0x6E,
+ OP2_MOVD_EdVd = 0x7E,
+ OP2_JCC_rel32 = 0x80,
+ OP_SETCC = 0x90,
+ OP2_IMUL_GvEv = 0xAF,
+ OP2_MOVZX_GvEb = 0xB6,
+ OP2_MOVSX_GvEb = 0xBE,
+ OP2_MOVZX_GvEw = 0xB7,
+ OP2_MOVSX_GvEw = 0xBF,
+ OP2_PEXTRW_GdUdIb = 0xC5,
+ OP2_PSLLQ_UdqIb = 0x73,
+ OP2_PSRLQ_UdqIb = 0x73,
+ OP2_POR_VdqWdq = 0XEB,
+ } TwoByteOpcodeID;
+
+ TwoByteOpcodeID jccRel32(Condition cond)
+ {
+ return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond);
+ }
+
+ TwoByteOpcodeID setccOpcode(Condition cond)
+ {
+ return (TwoByteOpcodeID)(OP_SETCC + cond);
+ }
+
+ typedef enum {
+ GROUP1_OP_ADD = 0,
+ GROUP1_OP_OR = 1,
+ GROUP1_OP_ADC = 2,
+ GROUP1_OP_AND = 4,
+ GROUP1_OP_SUB = 5,
+ GROUP1_OP_XOR = 6,
+ GROUP1_OP_CMP = 7,
+
+ GROUP1A_OP_POP = 0,
+
+ GROUP2_OP_ROL = 0,
+ GROUP2_OP_ROR = 1,
+ GROUP2_OP_RCL = 2,
+ GROUP2_OP_RCR = 3,
+
+ GROUP2_OP_SHL = 4,
+ GROUP2_OP_SHR = 5,
+ GROUP2_OP_SAR = 7,
+
+ GROUP3_OP_TEST = 0,
+ GROUP3_OP_NOT = 2,
+ GROUP3_OP_NEG = 3,
+ GROUP3_OP_IDIV = 7,
+
+ GROUP5_OP_CALLN = 2,
+ GROUP5_OP_JMPN = 4,
+ GROUP5_OP_PUSH = 6,
+
+ GROUP11_MOV = 0,
+
+ GROUP14_OP_PSLLQ = 6,
+ GROUP14_OP_PSRLQ = 2,
+
+ ESCAPE_DD_FSTP_doubleReal = 3,
+ } GroupOpcodeID;
+
+ class X86InstructionFormatter;
+public:
+
+ X86Assembler()
+ : m_indexOfLastWatchpoint(INT_MIN)
+ , m_indexOfTailOfLastWatchpoint(INT_MIN)
+ {
+ }
+
+ // Stack operations:
+
+ void push_r(RegisterID reg)
+ {
+ m_formatter.oneByteOp(OP_PUSH_EAX, reg);
+ }
+
+ void pop_r(RegisterID reg)
+ {
+ m_formatter.oneByteOp(OP_POP_EAX, reg);
+ }
+
+ void push_i32(int imm)
+ {
+ m_formatter.oneByteOp(OP_PUSH_Iz);
+ m_formatter.immediate32(imm);
+ }
+
+ void push_m(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset);
+ }
+
+ void pop_m(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset);
+ }
+
+ // Arithmetic operations:
+
+#if !CPU(X86_64)
+ void adcl_im(int imm, const void* addr)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADC, addr);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADC, addr);
+ m_formatter.immediate32(imm);
+ }
+ }
+#endif
+
+ void addl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_ADD_EvGv, src, dst);
+ }
+
+ void addl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset);
+ }
+
+#if !CPU(X86_64)
+ void addl_mr(const void* addr, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_ADD_GvEv, dst, addr);
+ }
+#endif
+
+ void addl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset);
+ }
+
+ void addl_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void addl_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+#if CPU(X86_64)
+ void addq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst);
+ }
+
+ void addq_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, offset);
+ }
+
+ void addq_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void addq_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+#else
+ void addl_im(int imm, const void* addr)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, addr);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, addr);
+ m_formatter.immediate32(imm);
+ }
+ }
+#endif
+
+ void andl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_AND_EvGv, src, dst);
+ }
+
+ void andl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset);
+ }
+
+ void andl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset);
+ }
+
+ void andl_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void andl_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+#if CPU(X86_64)
+ void andq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_AND_EvGv, src, dst);
+ }
+
+ void andq_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+#else
+ void andl_im(int imm, const void* addr)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, addr);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, addr);
+ m_formatter.immediate32(imm);
+ }
+ }
+#endif
+
+ void negl_r(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst);
+ }
+
+#if CPU(X86_64)
+ void negq_r(RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, dst);
+ }
+#endif
+
+ void negl_m(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset);
+ }
+
+ void notl_r(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst);
+ }
+
+ void notl_m(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset);
+ }
+
+ void orl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_OR_EvGv, src, dst);
+ }
+
+ void orl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset);
+ }
+
+ void orl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset);
+ }
+
+ void orl_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void orl_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+#if CPU(X86_64)
+ void orq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_OR_EvGv, src, dst);
+ }
+
+ void orq_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+#else
+ void orl_im(int imm, const void* addr)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, addr);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, addr);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void orl_rm(RegisterID src, const void* addr)
+ {
+ m_formatter.oneByteOp(OP_OR_EvGv, src, addr);
+ }
+#endif
+
+ void subl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_SUB_EvGv, src, dst);
+ }
+
+ void subl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset);
+ }
+
+ void subl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset);
+ }
+
+ void subl_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void subl_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+#if CPU(X86_64)
+ void subq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst);
+ }
+
+ void subq_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+#else
+ void subl_im(int imm, const void* addr)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, addr);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, addr);
+ m_formatter.immediate32(imm);
+ }
+ }
+#endif
+
+ void xorl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_XOR_EvGv, src, dst);
+ }
+
+ void xorl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset);
+ }
+
+ void xorl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset);
+ }
+
+ void xorl_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void xorl_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+#if CPU(X86_64)
+ void xorq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst);
+ }
+
+ void xorq_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void xorq_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, offset);
+ }
+
+ void rorq_i8r(int imm, RegisterID dst)
+ {
+ if (imm == 1)
+ m_formatter.oneByteOp64(OP_GROUP2_Ev1, GROUP2_OP_ROR, dst);
+ else {
+ m_formatter.oneByteOp64(OP_GROUP2_EvIb, GROUP2_OP_ROR, dst);
+ m_formatter.immediate8(imm);
+ }
+ }
+
+#endif
+
+ void sarl_i8r(int imm, RegisterID dst)
+ {
+ if (imm == 1)
+ m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SAR, dst);
+ else {
+ m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SAR, dst);
+ m_formatter.immediate8(imm);
+ }
+ }
+
+ void sarl_CLr(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst);
+ }
+
+ void shrl_i8r(int imm, RegisterID dst)
+ {
+ if (imm == 1)
+ m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SHR, dst);
+ else {
+ m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SHR, dst);
+ m_formatter.immediate8(imm);
+ }
+ }
+
+ void shrl_CLr(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst);
+ }
+
+ void shll_i8r(int imm, RegisterID dst)
+ {
+ if (imm == 1)
+ m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SHL, dst);
+ else {
+ m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SHL, dst);
+ m_formatter.immediate8(imm);
+ }
+ }
+
+ void shll_CLr(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst);
+ }
+
+#if CPU(X86_64)
+ void sarq_CLr(RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst);
+ }
+
+ void sarq_i8r(int imm, RegisterID dst)
+ {
+ if (imm == 1)
+ m_formatter.oneByteOp64(OP_GROUP2_Ev1, GROUP2_OP_SAR, dst);
+ else {
+ m_formatter.oneByteOp64(OP_GROUP2_EvIb, GROUP2_OP_SAR, dst);
+ m_formatter.immediate8(imm);
+ }
+ }
+#endif
+
+ void imull_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src);
+ }
+
+ void imull_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset);
+ }
+
+ void imull_i32r(RegisterID src, int32_t value, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src);
+ m_formatter.immediate32(value);
+ }
+
+ void idivl_r(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst);
+ }
+
+ // Comparisons:
+
+ void cmpl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_CMP_EvGv, src, dst);
+ }
+
+ void cmpl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset);
+ }
+
+ void cmpl_mr(int offset, RegisterID base, RegisterID src)
+ {
+ m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset);
+ }
+
+ void cmpl_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void cmpl_ir_force32(int imm, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
+ m_formatter.immediate32(imm);
+ }
+
+ void cmpl_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void cmpb_im(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset);
+ m_formatter.immediate8(imm);
+ }
+
+ void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate8(imm);
+ }
+
+#if CPU(X86)
+ void cmpb_im(int imm, const void* addr)
+ {
+ m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, addr);
+ m_formatter.immediate8(imm);
+ }
+#endif
+
+ void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void cmpl_im_force32(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
+ m_formatter.immediate32(imm);
+ }
+
+#if CPU(X86_64)
+ void cmpq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst);
+ }
+
+ void cmpq_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset);
+ }
+
+ void cmpq_mr(int offset, RegisterID base, RegisterID src)
+ {
+ m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset);
+ }
+
+ void cmpq_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void cmpq_im(int imm, int offset, RegisterID base)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+
+ void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate32(imm);
+ }
+ }
+#else
+ void cmpl_rm(RegisterID reg, const void* addr)
+ {
+ m_formatter.oneByteOp(OP_CMP_EvGv, reg, addr);
+ }
+
+ void cmpl_im(int imm, const void* addr)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, addr);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, addr);
+ m_formatter.immediate32(imm);
+ }
+ }
+#endif
+
+ void cmpw_ir(int imm, RegisterID dst)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
+ m_formatter.immediate16(imm);
+ }
+ }
+
+ void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset);
+ }
+
+ void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ if (CAN_SIGN_EXTEND_8_32(imm)) {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate8(imm);
+ } else {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
+ m_formatter.immediate16(imm);
+ }
+ }
+
+ void testl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_TEST_EvGv, src, dst);
+ }
+
+ void testl_i32r(int imm, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst);
+ m_formatter.immediate32(imm);
+ }
+
+ void testl_i32m(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
+ m_formatter.immediate32(imm);
+ }
+
+ void testb_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp8(OP_TEST_EbGb, src, dst);
+ }
+
+ void testb_im(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset);
+ m_formatter.immediate8(imm);
+ }
+
+ void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset);
+ m_formatter.immediate8(imm);
+ }
+
+#if CPU(X86)
+ void testb_im(int imm, const void* addr)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, addr);
+ m_formatter.immediate8(imm);
+ }
+#endif
+
+ void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
+ m_formatter.immediate32(imm);
+ }
+
+#if CPU(X86_64)
+ void testq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst);
+ }
+
+ void testq_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64(OP_TEST_EvGv, src, base, offset);
+ }
+
+ void testq_i32r(int imm, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst);
+ m_formatter.immediate32(imm);
+ }
+
+ void testq_i32m(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
+ m_formatter.immediate32(imm);
+ }
+
+ void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
+ m_formatter.immediate32(imm);
+ }
+#endif
+
+ void testw_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp(OP_TEST_EvGv, src, dst);
+ }
+
+ void testb_i8r(int imm, RegisterID dst)
+ {
+ m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst);
+ m_formatter.immediate8(imm);
+ }
+
+ void setCC_r(Condition cond, RegisterID dst)
+ {
+ m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst);
+ }
+
+ void sete_r(RegisterID dst)
+ {
+ m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst);
+ }
+
+ void setz_r(RegisterID dst)
+ {
+ sete_r(dst);
+ }
+
+ void setne_r(RegisterID dst)
+ {
+ m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst);
+ }
+
+ void setnz_r(RegisterID dst)
+ {
+ setne_r(dst);
+ }
+
+ // Various move ops:
+
+ void cdq()
+ {
+ m_formatter.oneByteOp(OP_CDQ);
+ }
+
+ void fstpl(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_ESCAPE_DD, ESCAPE_DD_FSTP_doubleReal, base, offset);
+ }
+
+ void xchgl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst);
+ }
+
+#if CPU(X86_64)
+ void xchgq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst);
+ }
+#endif
+
+ void movl_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_MOV_EvGv, src, dst);
+ }
+
+ void movl_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset);
+ }
+
+ void movl_rm_disp32(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset);
+ }
+
+ void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset);
+ }
+
+ void movl_mEAX(const void* addr)
+ {
+ m_formatter.oneByteOp(OP_MOV_EAXOv);
+#if CPU(X86_64)
+ m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
+#else
+ m_formatter.immediate32(reinterpret_cast<int>(addr));
+#endif
+ }
+
+ void movl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset);
+ }
+
+ void movl_mr_disp32(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset);
+ }
+
+ void movl_mr_disp8(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset);
+ }
+
+ void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset);
+ }
+
+ void movl_i32r(int imm, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_MOV_EAXIv, dst);
+ m_formatter.immediate32(imm);
+ }
+
+ void movl_i32m(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
+ m_formatter.immediate32(imm);
+ }
+
+ void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
+ m_formatter.immediate32(imm);
+ }
+
+#if !CPU(X86_64)
+ void movb_i8m(int imm, const void* addr)
+ {
+ ASSERT(-128 <= imm && imm < 128);
+ m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, addr);
+ m_formatter.immediate8(imm);
+ }
+#endif
+
+ void movb_i8m(int imm, int offset, RegisterID base)
+ {
+ ASSERT(-128 <= imm && imm < 128);
+ m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, offset);
+ m_formatter.immediate8(imm);
+ }
+
+ void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ ASSERT(-128 <= imm && imm < 128);
+ m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, index, scale, offset);
+ m_formatter.immediate8(imm);
+ }
+
+ void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, index, scale, offset);
+ }
+
+ void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.prefix(PRE_OPERAND_SIZE);
+ m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, index, scale, offset);
+ }
+
+ void movl_EAXm(const void* addr)
+ {
+ m_formatter.oneByteOp(OP_MOV_OvEAX);
+#if CPU(X86_64)
+ m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
+#else
+ m_formatter.immediate32(reinterpret_cast<int>(addr));
+#endif
+ }
+
+#if CPU(X86_64)
+ void movq_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst);
+ }
+
+ void movq_rm(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset);
+ }
+
+ void movq_rm_disp32(RegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset);
+ }
+
+ void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset);
+ }
+
+ void movq_mEAX(const void* addr)
+ {
+ m_formatter.oneByteOp64(OP_MOV_EAXOv);
+ m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
+ }
+
+ void movq_EAXm(const void* addr)
+ {
+ m_formatter.oneByteOp64(OP_MOV_OvEAX);
+ m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
+ }
+
+ void movq_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset);
+ }
+
+ void movq_mr_disp32(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset);
+ }
+
+ void movq_mr_disp8(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset);
+ }
+
+ void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset);
+ }
+
+ void movq_i32m(int imm, int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
+ m_formatter.immediate32(imm);
+ }
+
+ void movq_i64r(int64_t imm, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_MOV_EAXIv, dst);
+ m_formatter.immediate64(imm);
+ }
+
+ void movsxd_rr(RegisterID src, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src);
+ }
+
+
+#else
+ void movl_rm(RegisterID src, const void* addr)
+ {
+ if (src == X86Registers::eax)
+ movl_EAXm(addr);
+ else
+ m_formatter.oneByteOp(OP_MOV_EvGv, src, addr);
+ }
+
+ void movl_mr(const void* addr, RegisterID dst)
+ {
+ if (dst == X86Registers::eax)
+ movl_mEAX(addr);
+ else
+ m_formatter.oneByteOp(OP_MOV_GvEv, dst, addr);
+ }
+
+ void movl_i32m(int imm, const void* addr)
+ {
+ m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, addr);
+ m_formatter.immediate32(imm);
+ }
+#endif
+
+ void movzwl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset);
+ }
+
+ void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset);
+ }
+
+ void movswl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, offset);
+ }
+
+ void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, index, scale, offset);
+ }
+
+ void movzbl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, offset);
+ }
+
+ void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, index, scale, offset);
+ }
+
+ void movsbl_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, offset);
+ }
+
+ void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
+ {
+ m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, index, scale, offset);
+ }
+
+ void movzbl_rr(RegisterID src, RegisterID dst)
+ {
+ // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register
+ // is in the range ESP-EDI, and the src would not have required a REX). Unneeded
+ // REX prefixes are defined to be silently ignored by the processor.
+ m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src);
+ }
+
+ void leal_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_LEA, dst, base, offset);
+ }
+#if CPU(X86_64)
+ void leaq_mr(int offset, RegisterID base, RegisterID dst)
+ {
+ m_formatter.oneByteOp64(OP_LEA, dst, base, offset);
+ }
+#endif
+
+ // Flow control:
+
+ AssemblerLabel call()
+ {
+ m_formatter.oneByteOp(OP_CALL_rel32);
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel call(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst);
+ return m_formatter.label();
+ }
+
+ void call_m(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset);
+ }
+
+ AssemblerLabel jmp()
+ {
+ m_formatter.oneByteOp(OP_JMP_rel32);
+ return m_formatter.immediateRel32();
+ }
+
+ // Return a AssemblerLabel so we have a label to the jump, so we can use this
+ // To make a tail recursive call on x86-64. The MacroAssembler
+ // really shouldn't wrap this as a Jump, since it can't be linked. :-/
+ AssemblerLabel jmp_r(RegisterID dst)
+ {
+ m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst);
+ return m_formatter.label();
+ }
+
+ void jmp_m(int offset, RegisterID base)
+ {
+ m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset);
+ }
+
+#if !CPU(X86_64)
+ void jmp_m(const void* address)
+ {
+ m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, address);
+ }
+#endif
+
+ AssemblerLabel jne()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionNE));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jnz()
+ {
+ return jne();
+ }
+
+ AssemblerLabel je()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionE));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jz()
+ {
+ return je();
+ }
+
+ AssemblerLabel jl()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionL));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jb()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionB));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jle()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionLE));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jbe()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionBE));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jge()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionGE));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jg()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionG));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel ja()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionA));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jae()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionAE));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jo()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionO));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jnp()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionNP));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jp()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionP));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel js()
+ {
+ m_formatter.twoByteOp(jccRel32(ConditionS));
+ return m_formatter.immediateRel32();
+ }
+
+ AssemblerLabel jCC(Condition cond)
+ {
+ m_formatter.twoByteOp(jccRel32(cond));
+ return m_formatter.immediateRel32();
+ }
+
+ // SSE operations:
+
+ void addsd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void addsd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset);
+ }
+
+#if !CPU(X86_64)
+ void addsd_mr(const void* address, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, address);
+ }
+#endif
+
+ void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
+ }
+
+ void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
+ }
+
+#if !CPU(X86_64)
+ void cvtsi2sd_mr(const void* address, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, address);
+ }
+#endif
+
+ void cvttsd2si_rr(XMMRegisterID src, RegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src);
+ }
+
+ void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, (RegisterID)src);
+ }
+
+ void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F3);
+ m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, (RegisterID)src);
+ }
+
+#if CPU(X86_64)
+ void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp64(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src);
+ }
+#endif
+
+ void movd_rr(XMMRegisterID src, RegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst);
+ }
+
+ void movd_rr(RegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_MOVD_VdEd, (RegisterID)dst, src);
+ }
+
+#if CPU(X86_64)
+ void movq_rr(XMMRegisterID src, RegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst);
+ }
+
+ void movq_rr(RegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src);
+ }
+#endif
+
+ void movsd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void movsd_rm(XMMRegisterID src, int offset, RegisterID base)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset);
+ }
+
+ void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset);
+ }
+
+ void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
+ {
+ m_formatter.prefix(PRE_SSE_F3);
+ m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset);
+ }
+
+ void movsd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset);
+ }
+
+ void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset);
+ }
+
+ void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F3);
+ m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset);
+ }
+
+#if !CPU(X86_64)
+ void movsd_mr(const void* address, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, address);
+ }
+ void movsd_rm(XMMRegisterID src, const void* address)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, address);
+ }
+#endif
+
+ void mulsd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset);
+ }
+
+ void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src);
+ m_formatter.immediate8(whichWord);
+ }
+
+ void psllq_i8r(int imm, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp8(OP2_PSLLQ_UdqIb, GROUP14_OP_PSLLQ, (RegisterID)dst);
+ m_formatter.immediate8(imm);
+ }
+
+ void psrlq_i8r(int imm, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp8(OP2_PSRLQ_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst);
+ m_formatter.immediate8(imm);
+ }
+
+ void por_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_POR_VdqWdq, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void subsd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void subsd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset);
+ }
+
+ void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset);
+ }
+
+ void divsd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void divsd_mr(int offset, RegisterID base, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset);
+ }
+
+ void xorpd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void andnpd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_66);
+ m_formatter.twoByteOp(OP2_ANDNPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst)
+ {
+ m_formatter.prefix(PRE_SSE_F2);
+ m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
+ }
+
+ // Misc instructions:
+
+ void int3()
+ {
+ m_formatter.oneByteOp(OP_INT3);
+ }
+
+ void ret()
+ {
+ m_formatter.oneByteOp(OP_RET);
+ }
+
+ void predictNotTaken()
+ {
+ m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN);
+ }
+
+ // Assembler admin methods:
+
+ size_t codeSize() const
+ {
+ return m_formatter.codeSize();
+ }
+
+ AssemblerLabel labelForWatchpoint()
+ {
+ AssemblerLabel result = m_formatter.label();
+ if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint)
+ result = label();
+ m_indexOfLastWatchpoint = result.m_offset;
+ m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
+ return result;
+ }
+
+ AssemblerLabel labelIgnoringWatchpoints()
+ {
+ return m_formatter.label();
+ }
+
+ AssemblerLabel label()
+ {
+ AssemblerLabel result = m_formatter.label();
+ while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) {
+ nop();
+ result = m_formatter.label();
+ }
+ return result;
+ }
+
+ AssemblerLabel align(int alignment)
+ {
+ while (!m_formatter.isAligned(alignment))
+ m_formatter.oneByteOp(OP_HLT);
+
+ return label();
+ }
+
+ // Linking & patching:
+ //
+ // 'link' and 'patch' methods are for use on unprotected code - such as the code
+ // within the AssemblerBuffer, and code being patched by the patch buffer. Once
+ // code has been finalized it is (platform support permitting) within a non-
+ // writable region of memory; to modify the code in an execute-only execuable
+ // pool the 'repatch' and 'relink' methods should be used.
+
+ void linkJump(AssemblerLabel from, AssemblerLabel to)
+ {
+ ASSERT(from.isSet());
+ ASSERT(to.isSet());
+
+ char* code = reinterpret_cast<char*>(m_formatter.data());
+ ASSERT(!reinterpret_cast<int32_t*>(code + from.m_offset)[-1]);
+ setRel32(code + from.m_offset, code + to.m_offset);
+ }
+
+ static void linkJump(void* code, AssemblerLabel from, void* to)
+ {
+ ASSERT(from.isSet());
+
+ setRel32(reinterpret_cast<char*>(code) + from.m_offset, to);
+ }
+
+ static void linkCall(void* code, AssemblerLabel from, void* to)
+ {
+ ASSERT(from.isSet());
+
+ setRel32(reinterpret_cast<char*>(code) + from.m_offset, to);
+ }
+
+ static void linkPointer(void* code, AssemblerLabel where, void* value)
+ {
+ ASSERT(where.isSet());
+
+ setPointer(reinterpret_cast<char*>(code) + where.m_offset, value);
+ }
+
+ static void relinkJump(void* from, void* to)
+ {
+ setRel32(from, to);
+ }
+
+ static void relinkCall(void* from, void* to)
+ {
+ setRel32(from, to);
+ }
+
+ static void repatchCompact(void* where, int32_t value)
+ {
+ ASSERT(value >= std::numeric_limits<int8_t>::min());
+ ASSERT(value <= std::numeric_limits<int8_t>::max());
+ setInt8(where, value);
+ }
+
+ static void repatchInt32(void* where, int32_t value)
+ {
+ setInt32(where, value);
+ }
+
+ static void repatchPointer(void* where, void* value)
+ {
+ setPointer(where, value);
+ }
+
+ static void* readPointer(void* where)
+ {
+ return reinterpret_cast<void**>(where)[-1];
+ }
+
+ static void replaceWithJump(void* instructionStart, void* to)
+ {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
+ uint8_t* dstPtr = reinterpret_cast<uint8_t*>(to);
+ intptr_t distance = (intptr_t)(dstPtr - (ptr + 5));
+ ptr[0] = static_cast<uint8_t>(OP_JMP_rel32);
+ *reinterpret_cast<int32_t*>(ptr + 1) = static_cast<int32_t>(distance);
+ }
+
+ static ptrdiff_t maxJumpReplacementSize()
+ {
+ return 5;
+ }
+
+#if CPU(X86_64)
+ static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst)
+ {
+ const int rexBytes = 1;
+ const int opcodeBytes = 1;
+ ASSERT(rexBytes + opcodeBytes <= maxJumpReplacementSize());
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
+ ptr[0] = PRE_REX | (1 << 3) | (dst >> 3);
+ ptr[1] = OP_MOV_EAXIv | (dst & 7);
+
+ union {
+ uint64_t asWord;
+ uint8_t asBytes[8];
+ } u;
+ u.asWord = imm;
+ for (unsigned i = rexBytes + opcodeBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
+ ptr[i] = u.asBytes[i - rexBytes - opcodeBytes];
+ }
+#endif
+
+ static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst)
+ {
+ const int opcodeBytes = 1;
+ const int modRMBytes = 1;
+ ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize());
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
+ ptr[0] = OP_GROUP1_EvIz;
+ ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst;
+ union {
+ uint32_t asWord;
+ uint8_t asBytes[4];
+ } u;
+ u.asWord = imm;
+ for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
+ ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes];
+ }
+
+ static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst)
+ {
+ ASSERT_UNUSED(offset, !offset);
+ const int opcodeBytes = 1;
+ const int modRMBytes = 1;
+ ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize());
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
+ ptr[0] = OP_GROUP1_EvIz;
+ ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst;
+ union {
+ uint32_t asWord;
+ uint8_t asBytes[4];
+ } u;
+ u.asWord = imm;
+ for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
+ ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes];
+ }
+
+ static void replaceWithLoad(void* instructionStart)
+ {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
+#if CPU(X86_64)
+ if ((*ptr & ~15) == PRE_REX)
+ ptr++;
+#endif
+ switch (*ptr) {
+ case OP_MOV_GvEv:
+ break;
+ case OP_LEA:
+ *ptr = OP_MOV_GvEv;
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+ }
+
+ static void replaceWithAddressComputation(void* instructionStart)
+ {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
+#if CPU(X86_64)
+ if ((*ptr & ~15) == PRE_REX)
+ ptr++;
+#endif
+ switch (*ptr) {
+ case OP_MOV_GvEv:
+ *ptr = OP_LEA;
+ break;
+ case OP_LEA:
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+ }
+
+ static unsigned getCallReturnOffset(AssemblerLabel call)
+ {
+ ASSERT(call.isSet());
+ return call.m_offset;
+ }
+
+ static void* getRelocatedAddress(void* code, AssemblerLabel label)
+ {
+ ASSERT(label.isSet());
+ return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset);
+ }
+
+ static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
+ {
+ return b.m_offset - a.m_offset;
+ }
+
+ PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort)
+ {
+ return m_formatter.executableCopy(globalData, ownerUID, effort);
+ }
+
+ unsigned debugOffset() { return m_formatter.debugOffset(); }
+
+ void nop()
+ {
+ m_formatter.oneByteOp(OP_NOP);
+ }
+
+ // This is a no-op on x86
+ ALWAYS_INLINE static void cacheFlush(void*, size_t) { }
+
+private:
+
+ static void setPointer(void* where, void* value)
+ {
+ reinterpret_cast<void**>(where)[-1] = value;
+ }
+
+ static void setInt32(void* where, int32_t value)
+ {
+ reinterpret_cast<int32_t*>(where)[-1] = value;
+ }
+
+ static void setInt8(void* where, int8_t value)
+ {
+ reinterpret_cast<int8_t*>(where)[-1] = value;
+ }
+
+ static void setRel32(void* from, void* to)
+ {
+ intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from);
+ ASSERT(offset == static_cast<int32_t>(offset));
+
+ setInt32(from, offset);
+ }
+
+ class X86InstructionFormatter {
+
+ static const int maxInstructionSize = 16;
+
+ public:
+
+ enum ModRmMode {
+ ModRmMemoryNoDisp,
+ ModRmMemoryDisp8,
+ ModRmMemoryDisp32,
+ ModRmRegister,
+ };
+
+ // Legacy prefix bytes:
+ //
+ // These are emmitted prior to the instruction.
+
+ void prefix(OneByteOpcodeID pre)
+ {
+ m_buffer.putByte(pre);
+ }
+
+ // Word-sized operands / no operand instruction formatters.
+ //
+ // In addition to the opcode, the following operand permutations are supported:
+ // * None - instruction takes no operands.
+ // * One register - the low three bits of the RegisterID are added into the opcode.
+ // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place).
+ // * Three argument ModRM - a register, and a register and an offset describing a memory operand.
+ // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand.
+ //
+ // For 32-bit x86 targets, the address operand may also be provided as a void*.
+ // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used.
+ //
+ // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F).
+
+ void oneByteOp(OneByteOpcodeID opcode)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ m_buffer.putByteUnchecked(opcode);
+ }
+
+ void oneByteOp(OneByteOpcodeID opcode, RegisterID reg)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(0, 0, reg);
+ m_buffer.putByteUnchecked(opcode + (reg & 7));
+ }
+
+ void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, 0, rm);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(reg, rm);
+ }
+
+ void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, 0, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, offset);
+ }
+
+ void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, 0, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM_disp32(reg, base, offset);
+ }
+
+ void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, 0, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM_disp8(reg, base, offset);
+ }
+
+ void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, index, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, index, scale, offset);
+ }
+
+#if !CPU(X86_64)
+ void oneByteOp(OneByteOpcodeID opcode, int reg, const void* address)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, address);
+ }
+#endif
+
+ void twoByteOp(TwoByteOpcodeID opcode)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ }
+
+ void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, 0, rm);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(reg, rm);
+ }
+
+ void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, 0, base);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, offset);
+ }
+
+ void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIfNeeded(reg, index, base);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, index, scale, offset);
+ }
+
+#if !CPU(X86_64)
+ void twoByteOp(TwoByteOpcodeID opcode, int reg, const void* address)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, address);
+ }
+#endif
+
+#if CPU(X86_64)
+ // Quad-word-sized operands:
+ //
+ // Used to format 64-bit operantions, planting a REX.w prefix.
+ // When planting d64 or f64 instructions, not requiring a REX.w prefix,
+ // the normal (non-'64'-postfixed) formatters should be used.
+
+ void oneByteOp64(OneByteOpcodeID opcode)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(0, 0, 0);
+ m_buffer.putByteUnchecked(opcode);
+ }
+
+ void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(0, 0, reg);
+ m_buffer.putByteUnchecked(opcode + (reg & 7));
+ }
+
+ void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(reg, 0, rm);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(reg, rm);
+ }
+
+ void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(reg, 0, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, offset);
+ }
+
+ void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(reg, 0, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM_disp32(reg, base, offset);
+ }
+
+ void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(reg, 0, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM_disp8(reg, base, offset);
+ }
+
+ void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(reg, index, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, index, scale, offset);
+ }
+
+ void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexW(reg, 0, rm);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(reg, rm);
+ }
+#endif
+
+ // Byte-operands:
+ //
+ // These methods format byte operations. Byte operations differ from the normal
+ // formatters in the circumstances under which they will decide to emit REX prefixes.
+ // These should be used where any register operand signifies a byte register.
+ //
+ // The disctinction is due to the handling of register numbers in the range 4..7 on
+ // x86-64. These register numbers may either represent the second byte of the first
+ // four registers (ah..bh) or the first byte of the second four registers (spl..dil).
+ //
+ // Since ah..bh cannot be used in all permutations of operands (specifically cannot
+ // be accessed where a REX prefix is present), these are likely best treated as
+ // deprecated. In order to ensure the correct registers spl..dil are selected a
+ // REX prefix will be emitted for any byte register operand in the range 4..15.
+ //
+ // These formatters may be used in instructions where a mix of operand sizes, in which
+ // case an unnecessary REX will be emitted, for example:
+ // movzbl %al, %edi
+ // In this case a REX will be planted since edi is 7 (and were this a byte operand
+ // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will
+ // be silently ignored by the processor.
+ //
+ // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex()
+ // is provided to check byte register operands.
+
+ void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIf(byteRegRequiresRex(rm), 0, 0, rm);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(groupOp, rm);
+ }
+
+ void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIf(byteRegRequiresRex(reg) || byteRegRequiresRex(rm), reg, 0, rm);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(reg, rm);
+ }
+
+ void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index) || regRequiresRex(base), reg, index, base);
+ m_buffer.putByteUnchecked(opcode);
+ memoryModRM(reg, base, index, scale, offset);
+ }
+
+ void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIf(byteRegRequiresRex(reg)|byteRegRequiresRex(rm), reg, 0, rm);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(reg, rm);
+ }
+
+ void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm)
+ {
+ m_buffer.ensureSpace(maxInstructionSize);
+ emitRexIf(byteRegRequiresRex(rm), 0, 0, rm);
+ m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE);
+ m_buffer.putByteUnchecked(opcode);
+ registerModRM(groupOp, rm);
+ }
+
+ // Immediates:
+ //
+ // An immedaite should be appended where appropriate after an op has been emitted.
+ // The writes are unchecked since the opcode formatters above will have ensured space.
+
+ void immediate8(int imm)
+ {
+ m_buffer.putByteUnchecked(imm);
+ }
+
+ void immediate16(int imm)
+ {
+ m_buffer.putShortUnchecked(imm);
+ }
+
+ void immediate32(int imm)
+ {
+ m_buffer.putIntUnchecked(imm);
+ }
+
+ void immediate64(int64_t imm)
+ {
+ m_buffer.putInt64Unchecked(imm);
+ }
+
+ AssemblerLabel immediateRel32()
+ {
+ m_buffer.putIntUnchecked(0);
+ return label();
+ }
+
+ // Administrative methods:
+
+ size_t codeSize() const { return m_buffer.codeSize(); }
+ AssemblerLabel label() const { return m_buffer.label(); }
+ bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); }
+ void* data() const { return m_buffer.data(); }
+
+ PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort)
+ {
+ return m_buffer.executableCopy(globalData, ownerUID, effort);
+ }
+
+ unsigned debugOffset() { return m_buffer.debugOffset(); }
+
+ private:
+
+ // Internals; ModRm and REX formatters.
+
+ static const RegisterID noBase = X86Registers::ebp;
+ static const RegisterID hasSib = X86Registers::esp;
+ static const RegisterID noIndex = X86Registers::esp;
+#if CPU(X86_64)
+ static const RegisterID noBase2 = X86Registers::r13;
+ static const RegisterID hasSib2 = X86Registers::r12;
+
+ // Registers r8 & above require a REX prefixe.
+ inline bool regRequiresRex(int reg)
+ {
+ return (reg >= X86Registers::r8);
+ }
+
+ // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed).
+ inline bool byteRegRequiresRex(int reg)
+ {
+ return (reg >= X86Registers::esp);
+ }
+
+ // Format a REX prefix byte.
+ inline void emitRex(bool w, int r, int x, int b)
+ {
+ ASSERT(r >= 0);
+ ASSERT(x >= 0);
+ ASSERT(b >= 0);
+ m_buffer.putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3));
+ }
+
+ // Used to plant a REX byte with REX.w set (for 64-bit operations).
+ inline void emitRexW(int r, int x, int b)
+ {
+ emitRex(true, r, x, b);
+ }
+
+ // Used for operations with byte operands - use byteRegRequiresRex() to check register operands,
+ // regRequiresRex() to check other registers (i.e. address base & index).
+ inline void emitRexIf(bool condition, int r, int x, int b)
+ {
+ if (condition) emitRex(false, r, x, b);
+ }
+
+ // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above).
+ inline void emitRexIfNeeded(int r, int x, int b)
+ {
+ emitRexIf(regRequiresRex(r) || regRequiresRex(x) || regRequiresRex(b), r, x, b);
+ }
+#else
+ // No REX prefix bytes on 32-bit x86.
+ inline bool regRequiresRex(int) { return false; }
+ inline bool byteRegRequiresRex(int) { return false; }
+ inline void emitRexIf(bool, int, int, int) {}
+ inline void emitRexIfNeeded(int, int, int) {}
+#endif
+
+ void putModRm(ModRmMode mode, int reg, RegisterID rm)
+ {
+ m_buffer.putByteUnchecked((mode << 6) | ((reg & 7) << 3) | (rm & 7));
+ }
+
+ void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale)
+ {
+ ASSERT(mode != ModRmRegister);
+
+ putModRm(mode, reg, hasSib);
+ m_buffer.putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7));
+ }
+
+ void registerModRM(int reg, RegisterID rm)
+ {
+ putModRm(ModRmRegister, reg, rm);
+ }
+
+ void memoryModRM(int reg, RegisterID base, int offset)
+ {
+ // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
+#if CPU(X86_64)
+ if ((base == hasSib) || (base == hasSib2)) {
+#else
+ if (base == hasSib) {
+#endif
+ if (!offset) // No need to check if the base is noBase, since we know it is hasSib!
+ putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0);
+ else if (CAN_SIGN_EXTEND_8_32(offset)) {
+ putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0);
+ m_buffer.putByteUnchecked(offset);
+ } else {
+ putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0);
+ m_buffer.putIntUnchecked(offset);
+ }
+ } else {
+#if CPU(X86_64)
+ if (!offset && (base != noBase) && (base != noBase2))
+#else
+ if (!offset && (base != noBase))
+#endif
+ putModRm(ModRmMemoryNoDisp, reg, base);
+ else if (CAN_SIGN_EXTEND_8_32(offset)) {
+ putModRm(ModRmMemoryDisp8, reg, base);
+ m_buffer.putByteUnchecked(offset);
+ } else {
+ putModRm(ModRmMemoryDisp32, reg, base);
+ m_buffer.putIntUnchecked(offset);
+ }
+ }
+ }
+
+ void memoryModRM_disp8(int reg, RegisterID base, int offset)
+ {
+ // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
+ ASSERT(CAN_SIGN_EXTEND_8_32(offset));
+#if CPU(X86_64)
+ if ((base == hasSib) || (base == hasSib2)) {
+#else
+ if (base == hasSib) {
+#endif
+ putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0);
+ m_buffer.putByteUnchecked(offset);
+ } else {
+ putModRm(ModRmMemoryDisp8, reg, base);
+ m_buffer.putByteUnchecked(offset);
+ }
+ }
+
+ void memoryModRM_disp32(int reg, RegisterID base, int offset)
+ {
+ // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
+#if CPU(X86_64)
+ if ((base == hasSib) || (base == hasSib2)) {
+#else
+ if (base == hasSib) {
+#endif
+ putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0);
+ m_buffer.putIntUnchecked(offset);
+ } else {
+ putModRm(ModRmMemoryDisp32, reg, base);
+ m_buffer.putIntUnchecked(offset);
+ }
+ }
+
+ void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset)
+ {
+ ASSERT(index != noIndex);
+
+#if CPU(X86_64)
+ if (!offset && (base != noBase) && (base != noBase2))
+#else
+ if (!offset && (base != noBase))
+#endif
+ putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale);
+ else if (CAN_SIGN_EXTEND_8_32(offset)) {
+ putModRmSib(ModRmMemoryDisp8, reg, base, index, scale);
+ m_buffer.putByteUnchecked(offset);
+ } else {
+ putModRmSib(ModRmMemoryDisp32, reg, base, index, scale);
+ m_buffer.putIntUnchecked(offset);
+ }
+ }
+
+#if !CPU(X86_64)
+ void memoryModRM(int reg, const void* address)
+ {
+ // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32!
+ putModRm(ModRmMemoryNoDisp, reg, noBase);
+ m_buffer.putIntUnchecked(reinterpret_cast<int32_t>(address));
+ }
+#endif
+
+ AssemblerBuffer m_buffer;
+ } m_formatter;
+ int m_indexOfLastWatchpoint;
+ int m_indexOfTailOfLastWatchpoint;
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER) && CPU(X86)
+
+#endif // X86Assembler_h