aboutsummaryrefslogtreecommitdiffstats
path: root/src/qml/compiler/qv4ssa.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/qml/compiler/qv4ssa.cpp')
-rw-r--r--src/qml/compiler/qv4ssa.cpp5848
1 files changed, 0 insertions, 5848 deletions
diff --git a/src/qml/compiler/qv4ssa.cpp b/src/qml/compiler/qv4ssa.cpp
deleted file mode 100644
index 72a4a9e751..0000000000
--- a/src/qml/compiler/qv4ssa.cpp
+++ /dev/null
@@ -1,5848 +0,0 @@
-/****************************************************************************
-**
-** Copyright (C) 2016 The Qt Company Ltd.
-** Contact: https://www.qt.io/licensing/
-**
-** This file is part of the QtQml module of the Qt Toolkit.
-**
-** $QT_BEGIN_LICENSE:LGPL$
-** Commercial License Usage
-** Licensees holding valid commercial Qt licenses may use this file in
-** accordance with the commercial license agreement provided with the
-** Software or, alternatively, in accordance with the terms contained in
-** a written agreement between you and The Qt Company. For licensing terms
-** and conditions see https://www.qt.io/terms-conditions. For further
-** information use the contact form at https://www.qt.io/contact-us.
-**
-** GNU Lesser General Public License Usage
-** Alternatively, this file may be used under the terms of the GNU Lesser
-** General Public License version 3 as published by the Free Software
-** Foundation and appearing in the file LICENSE.LGPL3 included in the
-** packaging of this file. Please review the following information to
-** ensure the GNU Lesser General Public License version 3 requirements
-** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
-**
-** GNU General Public License Usage
-** Alternatively, this file may be used under the terms of the GNU
-** General Public License version 2.0 or (at your option) the GNU General
-** Public license version 3 or any later version approved by the KDE Free
-** Qt Foundation. The licenses are as published by the Free Software
-** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
-** included in the packaging of this file. Please review the following
-** information to ensure the GNU General Public License requirements will
-** be met: https://www.gnu.org/licenses/gpl-2.0.html and
-** https://www.gnu.org/licenses/gpl-3.0.html.
-**
-** $QT_END_LICENSE$
-**
-****************************************************************************/
-
-// When building with debug code, the macro below will enable debug helpers when using libc++.
-// For example, the std::vector<T>::operator[] will use _LIBCPP_ASSERT to check if the index is
-// within the array bounds. Note that this only works reliably with OSX 10.9 or later.
-//#define _LIBCPP_DEBUG2 2
-
-#include "qv4ssa_p.h"
-#include "qv4isel_util_p.h"
-#include "qv4util_p.h"
-
-#include <QtCore/QBuffer>
-#include <QtCore/QCoreApplication>
-#include <QtCore/QStringList>
-#include <QtCore/QSet>
-#include <QtCore/QLinkedList>
-#include <QtCore/QStack>
-#include <qv4runtime_p.h>
-#include <cmath>
-#include <iostream>
-#include <cassert>
-
-QT_USE_NAMESPACE
-
-using namespace QV4;
-using namespace IR;
-
-namespace {
-
-enum { DebugMoveMapping = 0 };
-
-#ifdef QT_NO_DEBUG
-enum { DoVerification = 0 };
-#else
-enum { DoVerification = 1 };
-#endif
-
-static void showMeTheCode(IR::Function *function, const char *marker)
-{
- static const bool showCode = qEnvironmentVariableIsSet("QV4_SHOW_IR");
- if (showCode) {
- qDebug() << marker;
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream stream(&buf);
- IRPrinter(&stream).print(function);
- stream << endl;
- qDebug("%s", buf.data().constData());
- }
-}
-
-class ProcessedBlocks
-{
- BitVector processed;
-
-public:
- ProcessedBlocks(IR::Function *function)
- : processed(function->basicBlockCount(), false)
- {}
-
- bool alreadyProcessed(BasicBlock *bb) const
- {
- Q_ASSERT(bb);
-
- return processed.at(bb->index());
- }
-
- void markAsProcessed(BasicBlock *bb)
- {
- processed.setBit(bb->index());
- }
-};
-
-class BasicBlockSet
-{
- typedef BitVector Flags;
-
- QVarLengthArray<int, 8> blockNumbers;
- Flags *blockFlags;
- IR::Function *function;
- enum { MaxVectorCapacity = 8 };
-
-public:
- class const_iterator
- {
- const BasicBlockSet &set;
- // ### These two members could go into a union, but clang won't compile (https://codereview.qt-project.org/#change,74259)
- QVarLengthArray<int, 8>::const_iterator numberIt;
- int flagIt;
-
- friend class BasicBlockSet;
- const_iterator(const BasicBlockSet &set, bool end)
- : set(set)
- {
- if (end || !set.function) {
- if (!set.blockFlags)
- numberIt = set.blockNumbers.end();
- else
- flagIt = set.blockFlags->size();
- } else {
- if (!set.blockFlags)
- numberIt = set.blockNumbers.begin();
- else
- findNextWithFlags(0);
- }
- }
-
- void findNextWithFlags(int start)
- {
- flagIt = set.blockFlags->findNext(start, true, /*wrapAround = */false);
- Q_ASSERT(flagIt <= set.blockFlags->size());
- }
-
- public:
- BasicBlock *operator*() const
- {
- if (!set.blockFlags) {
- return set.function->basicBlock(*numberIt);
- } else {
- Q_ASSERT(flagIt <= set.function->basicBlockCount());
- return set.function->basicBlock(flagIt);
- }
- }
-
- bool operator==(const const_iterator &other) const
- {
- if (&set != &other.set)
- return false;
- if (!set.blockFlags)
- return numberIt == other.numberIt;
- else
- return flagIt == other.flagIt;
- }
-
- bool operator!=(const const_iterator &other) const
- { return !(*this == other); }
-
- const_iterator &operator++()
- {
- if (!set.blockFlags)
- ++numberIt;
- else
- findNextWithFlags(flagIt + 1);
-
- return *this;
- }
- };
-
- friend class const_iterator;
-
-public:
- BasicBlockSet(IR::Function *f = 0): blockFlags(0), function(0)
- {
- if (f)
- init(f);
- }
-
-#ifdef Q_COMPILER_RVALUE_REFS
- BasicBlockSet(BasicBlockSet &&other): blockFlags(0)
- {
- std::swap(blockNumbers, other.blockNumbers);
- std::swap(blockFlags, other.blockFlags);
- std::swap(function, other.function);
- }
-#endif // Q_COMPILER_RVALUE_REFS
-
- BasicBlockSet(const BasicBlockSet &other)
- : blockFlags(0)
- , function(other.function)
- {
- if (other.blockFlags)
- blockFlags = new Flags(*other.blockFlags);
- blockNumbers = other.blockNumbers;
- }
-
- BasicBlockSet &operator=(const BasicBlockSet &other)
- {
- if (blockFlags) {
- delete blockFlags;
- blockFlags = 0;
- }
- function = other.function;
- if (other.blockFlags)
- blockFlags = new Flags(*other.blockFlags);
- blockNumbers = other.blockNumbers;
- return *this;
- }
-
- ~BasicBlockSet()
- {
- delete blockFlags;
- }
-
- void init(IR::Function *f)
- {
- Q_ASSERT(!function);
- Q_ASSERT(f);
- function = f;
- }
-
- bool empty() const
- {
- return begin() == end();
- }
-
- void insert(BasicBlock *bb)
- {
- Q_ASSERT(function);
-
- if (blockFlags) {
- blockFlags->setBit(bb->index());
- return;
- }
-
- for (int i = 0; i < blockNumbers.size(); ++i) {
- if (blockNumbers[i] == bb->index())
- return;
- }
-
- if (blockNumbers.size() == MaxVectorCapacity) {
- blockFlags = new Flags(function->basicBlockCount(), false);
- for (int i = 0; i < blockNumbers.size(); ++i) {
- blockFlags->setBit(blockNumbers[i]);
- }
- blockNumbers.clear();
- blockFlags->setBit(bb->index());
- } else {
- blockNumbers.append(bb->index());
- }
- }
-
- void remove(BasicBlock *bb)
- {
- Q_ASSERT(function);
-
- if (blockFlags) {
- blockFlags->clearBit(bb->index());
- return;
- }
-
- for (int i = 0; i < blockNumbers.size(); ++i) {
- if (blockNumbers[i] == bb->index()) {
- blockNumbers.remove(i);
- return;
- }
- }
- }
-
- const_iterator begin() const { return const_iterator(*this, false); }
- const_iterator end() const { return const_iterator(*this, true); }
-
- void collectValues(std::vector<BasicBlock *> &bbs) const
- {
- Q_ASSERT(function);
-
- for (const_iterator it = begin(), eit = end(); it != eit; ++it)
- bbs.push_back(*it);
- }
-
- bool contains(BasicBlock *bb) const
- {
- Q_ASSERT(function);
-
- if (blockFlags)
- return blockFlags->at(bb->index());
-
- for (int i = 0; i < blockNumbers.size(); ++i) {
- if (blockNumbers[i] == bb->index())
- return true;
- }
-
- return false;
- }
-};
-
-class DominatorTree
-{
- enum {
- DebugDominatorFrontiers = 0,
- DebugImmediateDominators = 0,
-
- DebugCodeCanUseLotsOfCpu = 0
- };
-
- typedef int BasicBlockIndex;
- enum { InvalidBasicBlockIndex = -1 };
-
- struct Data
- {
- int N;
- std::vector<int> dfnum; // BasicBlock index -> dfnum
- std::vector<int> vertex;
- std::vector<BasicBlockIndex> parent; // BasicBlock index -> parent BasicBlock index
- std::vector<BasicBlockIndex> ancestor; // BasicBlock index -> ancestor BasicBlock index
- std::vector<BasicBlockIndex> best; // BasicBlock index -> best BasicBlock index
- std::vector<BasicBlockIndex> semi; // BasicBlock index -> semi dominator BasicBlock index
- std::vector<BasicBlockIndex> samedom; // BasicBlock index -> same dominator BasicBlock index
-
- Data(): N(0) {}
- };
-
- IR::Function *function;
- QScopedPointer<Data> d;
- std::vector<BasicBlockIndex> idom; // BasicBlock index -> immediate dominator BasicBlock index
- std::vector<BasicBlockSet> DF; // BasicBlock index -> dominator frontier
-
- struct DFSTodo {
- BasicBlockIndex node, parent;
-
- DFSTodo()
- : node(InvalidBasicBlockIndex)
- , parent(InvalidBasicBlockIndex)
- {}
-
- DFSTodo(BasicBlockIndex node, BasicBlockIndex parent)
- : node(node)
- , parent(parent)
- {}
- };
-
- void DFS(BasicBlockIndex node) {
- std::vector<DFSTodo> worklist;
- worklist.reserve(d->vertex.capacity() / 2);
- DFSTodo todo(node, InvalidBasicBlockIndex);
-
- while (true) {
- BasicBlockIndex n = todo.node;
-
- if (d->dfnum[n] == 0) {
- d->dfnum[n] = d->N;
- d->vertex[d->N] = n;
- d->parent[n] = todo.parent;
- ++d->N;
- const BasicBlock::OutgoingEdges &out = function->basicBlock(n)->out;
- for (int i = out.size() - 1; i > 0; --i)
- worklist.push_back(DFSTodo(out[i]->index(), n));
-
- if (out.size() > 0) {
- todo.node = out.first()->index();
- todo.parent = n;
- continue;
- }
- }
-
- if (worklist.empty())
- break;
-
- todo = worklist.back();
- worklist.pop_back();
- }
- }
-
- BasicBlockIndex ancestorWithLowestSemi(BasicBlockIndex v, std::vector<BasicBlockIndex> &worklist) {
- worklist.clear();
- for (BasicBlockIndex it = v; it != InvalidBasicBlockIndex; it = d->ancestor[it])
- worklist.push_back(it);
-
- if (worklist.size() < 2)
- return d->best[v];
-
- BasicBlockIndex b = InvalidBasicBlockIndex;
- BasicBlockIndex last = worklist.back();
- Q_ASSERT(worklist.size() <= INT_MAX);
- for (int it = static_cast<int>(worklist.size()) - 2; it >= 0; --it) {
- BasicBlockIndex bbIt = worklist[it];
- d->ancestor[bbIt] = last;
- BasicBlockIndex &best_it = d->best[bbIt];
- if (b != InvalidBasicBlockIndex && d->dfnum[d->semi[b]] < d->dfnum[d->semi[best_it]])
- best_it = b;
- else
- b = best_it;
- }
- return b;
- }
-
- void link(BasicBlockIndex p, BasicBlockIndex n) {
- d->ancestor[n] = p;
- d->best[n] = n;
- }
-
- void calculateIDoms() {
- Q_ASSERT(function->basicBlock(0)->in.isEmpty());
-
- const int bbCount = function->basicBlockCount();
- d->vertex = std::vector<int>(bbCount, InvalidBasicBlockIndex);
- d->parent = std::vector<int>(bbCount, InvalidBasicBlockIndex);
- d->dfnum = std::vector<int>(size_t(bbCount), 0);
- d->semi = std::vector<BasicBlockIndex>(bbCount, InvalidBasicBlockIndex);
- d->ancestor = std::vector<BasicBlockIndex>(bbCount, InvalidBasicBlockIndex);
- idom = std::vector<BasicBlockIndex>(bbCount, InvalidBasicBlockIndex);
- d->samedom = std::vector<BasicBlockIndex>(bbCount, InvalidBasicBlockIndex);
- d->best = std::vector<BasicBlockIndex>(bbCount, InvalidBasicBlockIndex);
-
- QHash<BasicBlockIndex, std::vector<BasicBlockIndex> > bucket;
- bucket.reserve(bbCount);
-
- DFS(function->basicBlock(0)->index());
- Q_ASSERT(d->N == function->liveBasicBlocksCount());
-
- std::vector<BasicBlockIndex> worklist;
- worklist.reserve(d->vertex.capacity() / 2);
-
- for (int i = d->N - 1; i > 0; --i) {
- BasicBlockIndex n = d->vertex[i];
- BasicBlockIndex p = d->parent[n];
- BasicBlockIndex s = p;
-
- for (BasicBlock *v : function->basicBlock(n)->in) {
- BasicBlockIndex ss = InvalidBasicBlockIndex;
- if (d->dfnum[v->index()] <= d->dfnum[n])
- ss = v->index();
- else
- ss = d->semi[ancestorWithLowestSemi(v->index(), worklist)];
- if (d->dfnum[ss] < d->dfnum[s])
- s = ss;
- }
- d->semi[n] = s;
- bucket[s].push_back(n);
- link(p, n);
- if (bucket.contains(p)) {
- for (BasicBlockIndex v : bucket[p]) {
- BasicBlockIndex y = ancestorWithLowestSemi(v, worklist);
- BasicBlockIndex semi_v = d->semi[v];
- if (d->semi[y] == semi_v)
- idom[v] = semi_v;
- else
- d->samedom[v] = y;
- }
- bucket.remove(p);
- }
- }
-
- for (int i = 1; i < d->N; ++i) {
- BasicBlockIndex n = d->vertex[i];
- Q_ASSERT(n != InvalidBasicBlockIndex);
- Q_ASSERT(!bucket.contains(n));
- Q_ASSERT(d->ancestor[n] != InvalidBasicBlockIndex
- && ((d->semi[n] != InvalidBasicBlockIndex
- && d->dfnum[d->ancestor[n]] <= d->dfnum[d->semi[n]]) || d->semi[n] == n));
- BasicBlockIndex sdn = d->samedom[n];
- if (sdn != InvalidBasicBlockIndex)
- idom[n] = idom[sdn];
- }
-
- dumpImmediateDominators();
- }
-
- struct NodeProgress {
- std::vector<BasicBlockIndex> children;
- std::vector<BasicBlockIndex> todo;
- };
-
-public:
- DominatorTree(IR::Function *function)
- : function(function)
- , d(new Data)
- {
- calculateIDoms();
- d.reset();
- }
-
- void computeDF() {
- DF.resize(function->basicBlockCount());
-
- // compute children of each node in the dominator tree
- std::vector<std::vector<BasicBlockIndex> > children; // BasicBlock index -> children
- children.resize(function->basicBlockCount());
- for (BasicBlock *n : function->basicBlocks()) {
- if (n->isRemoved())
- continue;
- const BasicBlockIndex nodeIndex = n->index();
- Q_ASSERT(function->basicBlock(nodeIndex) == n);
- const BasicBlockIndex nodeDominator = idom[nodeIndex];
- if (nodeDominator == InvalidBasicBlockIndex)
- continue; // there is no dominator to add this node to as a child (e.g. the start node)
- children[nodeDominator].push_back(nodeIndex);
- }
-
- // Fill the worklist and initialize the node status for each basic-block
- std::vector<NodeProgress> nodeStatus;
- nodeStatus.resize(function->basicBlockCount());
- std::vector<BasicBlockIndex> worklist;
- worklist.reserve(function->basicBlockCount());
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
- BasicBlockIndex nodeIndex = bb->index();
- worklist.push_back(nodeIndex);
- NodeProgress &np = nodeStatus[nodeIndex];
- np.children = children[nodeIndex];
- np.todo = children[nodeIndex];
- }
-
- BitVector DF_done(function->basicBlockCount(), false);
-
- while (!worklist.empty()) {
- BasicBlockIndex node = worklist.back();
-
- if (DF_done.at(node)) {
- worklist.pop_back();
- continue;
- }
-
- NodeProgress &np = nodeStatus[node];
- std::vector<BasicBlockIndex>::iterator it = np.todo.begin();
- while (it != np.todo.end()) {
- if (DF_done.at(*it)) {
- it = np.todo.erase(it);
- } else {
- worklist.push_back(*it);
- break;
- }
- }
-
- if (np.todo.empty()) {
- BasicBlockSet &S = DF[node];
- S.init(function);
- for (BasicBlock *y : function->basicBlock(node)->out)
- if (idom[y->index()] != node)
- S.insert(y);
- for (BasicBlockIndex child : np.children) {
- const BasicBlockSet &ws = DF[child];
- for (BasicBlockSet::const_iterator it = ws.begin(), eit = ws.end(); it != eit; ++it) {
- BasicBlock *w = *it;
- const BasicBlockIndex wIndex = w->index();
- if (node == wIndex || !dominates(node, w->index()))
- S.insert(w);
- }
- }
- DF_done.setBit(node);
- worklist.pop_back();
- }
- }
-
- if (DebugDominatorFrontiers) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout << "Dominator Frontiers:" << endl;
- for (BasicBlock *n : function->basicBlocks()) {
- if (n->isRemoved())
- continue;
-
- qout << "\tDF[" << n->index() << "]: {";
- const BasicBlockSet &SList = DF[n->index()];
- for (BasicBlockSet::const_iterator i = SList.begin(), ei = SList.end(); i != ei; ++i) {
- if (i != SList.begin())
- qout << ", ";
- qout << (*i)->index();
- }
- qout << "}" << endl;
- }
- qDebug("%s", buf.data().constData());
- }
-
- if (DebugDominatorFrontiers && DebugCodeCanUseLotsOfCpu) {
- for (BasicBlock *n : function->basicBlocks()) {
- if (n->isRemoved())
- continue;
- const BasicBlockSet &fBlocks = DF[n->index()];
- for (BasicBlockSet::const_iterator it = fBlocks.begin(), eit = fBlocks.end(); it != eit; ++it) {
- BasicBlock *fBlock = *it;
- Q_ASSERT(!dominates(n, fBlock) || fBlock == n);
- bool hasDominatedSucc = false;
- for (BasicBlock *succ : fBlock->in) {
- if (dominates(n, succ)) {
- hasDominatedSucc = true;
- break;
- }
- }
- if (!hasDominatedSucc) {
- qDebug("%d in DF[%d] has no dominated predecessors", fBlock->index(), n->index());
- }
- Q_ASSERT(hasDominatedSucc);
- }
- }
- }
- }
-
- const BasicBlockSet &dominatorFrontier(BasicBlock *n) const {
- return DF[n->index()];
- }
-
- BasicBlock *immediateDominator(BasicBlock *bb) const {
- const BasicBlockIndex idx = idom[bb->index()];
- if (idx == -1)
- return 0;
- return function->basicBlock(idx);
- }
-
- void dumpImmediateDominators() const
- {
- if (DebugImmediateDominators) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout << "Immediate dominators:" << endl;
- for (BasicBlock *to : function->basicBlocks()) {
- if (to->isRemoved())
- continue;
-
- qout << '\t';
- BasicBlockIndex from = idom.at(to->index());
- if (from != InvalidBasicBlockIndex)
- qout << from;
- else
- qout << "(none)";
- qout << " dominates " << to->index() << endl;
- }
- qDebug("%s", buf.data().constData());
- }
- }
-
- void setImmediateDominator(BasicBlock *bb, BasicBlock *newDominator)
- {
- Q_ASSERT(bb->index() >= 0);
- Q_ASSERT(!newDominator || newDominator->index() >= 0);
-
- if (static_cast<std::vector<BasicBlockIndex>::size_type>(bb->index()) >= idom.size()) {
- // This is a new block, probably introduced by edge splitting. So, we'll have to grow
- // the array before inserting the immediate dominator.
- idom.resize(function->basicBlockCount(), InvalidBasicBlockIndex);
- }
-
- const BasicBlockIndex newIdx = newDominator ? newDominator->index() : InvalidBasicBlockIndex;
- if (DebugImmediateDominators)
- qDebug() << "Setting idom of" << bb->index() << "from" << idom[bb->index()] << "to" << newIdx;
- idom[bb->index()] = newIdx;
- }
-
- void collectSiblings(BasicBlock *node, BasicBlockSet &siblings)
- {
- siblings.insert(node);
- const BasicBlockIndex dominator = idom[node->index()];
- if (dominator == InvalidBasicBlockIndex)
- return;
- for (size_t i = 0, ei = idom.size(); i != ei; ++i) {
- if (idom[i] == dominator) {
- BasicBlock *bb = function->basicBlock(int(i));
- if (!bb->isRemoved())
- siblings.insert(bb);
- }
- }
- }
-
- void recalculateIDoms(const BasicBlockSet &nodes, BasicBlock *limit = 0)
- {
- const BasicBlockIndex limitIndex = limit ? limit->index() : InvalidBasicBlockIndex;
- BasicBlockSet todo(nodes), postponed(function);
- while (!todo.empty())
- recalculateIDom(*todo.begin(), todo, postponed, limitIndex);
- }
-
- bool dominates(BasicBlock *dominator, BasicBlock *dominated) const {
- return dominates(dominator->index(), dominated->index());
- }
-
- struct Cmp {
- std::vector<int> *nodeDepths;
- Cmp(std::vector<int> *nodeDepths)
- : nodeDepths(nodeDepths)
- { Q_ASSERT(nodeDepths); }
- bool operator()(BasicBlock *one, BasicBlock *two) const
- {
- if (one->isRemoved())
- return false;
- if (two->isRemoved())
- return true;
- return nodeDepths->at(one->index()) > nodeDepths->at(two->index());
- }
- };
-
- // Calculate a depth-first iteration order on the nodes of the dominator tree.
- //
- // The order of the nodes in the vector is not the same as one where a recursive depth-first
- // iteration is done on a tree. Rather, the nodes are (reverse) sorted on tree depth.
- // So for the:
- // 1 dominates 2
- // 2 dominates 3
- // 3 dominates 4
- // 2 dominates 5
- // the order will be:
- // 4, 3, 5, 2, 1
- // or:
- // 4, 5, 3, 2, 1
- // So the order of nodes on the same depth is undefined, but it will be after the nodes
- // they dominate, and before the nodes that dominate them.
- //
- // The reason for this order is that a proper DFS pre-/post-order would require inverting
- // the idom vector by either building a real tree datastructure or by searching the idoms
- // for siblings and children. Both have a higher time complexity than sorting by depth.
- QVector<BasicBlock *> calculateDFNodeIterOrder() const
- {
- std::vector<int> depths = calculateNodeDepths();
- QVector<BasicBlock *> order = function->basicBlocks();
- std::sort(order.begin(), order.end(), Cmp(&depths));
- for (int i = 0; i < order.size(); ) {
- if (order[i]->isRemoved())
- order.remove(i);
- else
- ++i;
- }
- return order;
- }
-
- void mergeIntoPredecessor(BasicBlock *successor)
- {
- int succIdx = successor->index();
- if (succIdx == InvalidBasicBlockIndex) {
- return;
- }
-
- int succDom = idom[unsigned(succIdx)];
- for (BasicBlockIndex &idx : idom) {
- if (idx == succIdx) {
- idx = succDom;
- }
- }
- }
-
-private:
- bool dominates(BasicBlockIndex dominator, BasicBlockIndex dominated) const {
- // dominator can be Invalid when the dominated block has no dominator (i.e. the start node)
- Q_ASSERT(dominated != InvalidBasicBlockIndex);
-
- if (dominator == dominated)
- return false;
-
- for (BasicBlockIndex it = idom[dominated]; it != InvalidBasicBlockIndex; it = idom[it]) {
- if (it == dominator)
- return true;
- }
-
- return false;
- }
-
- // Algorithm:
- // - for each node:
- // - get the depth of a node. If it's unknown (-1):
- // - get the depth of the immediate dominator.
- // - if that's unknown too, calculate it by calling calculateNodeDepth
- // - set the current node's depth to that of immediate dominator + 1
- std::vector<int> calculateNodeDepths() const
- {
- std::vector<int> nodeDepths(size_t(function->basicBlockCount()), -1);
- nodeDepths[0] = 0;
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- int &bbDepth = nodeDepths[bb->index()];
- if (bbDepth == -1) {
- const int immDom = idom[bb->index()];
- int immDomDepth = nodeDepths[immDom];
- if (immDomDepth == -1)
- immDomDepth = calculateNodeDepth(immDom, nodeDepths);
- bbDepth = immDomDepth + 1;
- }
- }
- return nodeDepths;
- }
-
- // Algorithm:
- // - search for the first dominator of a node that has a known depth. As all nodes are
- // reachable from the start node, and that node's depth is 0, this is finite.
- // - while doing that search, put all unknown nodes in the worklist
- // - pop all nodes from the worklist, and set their depth to the previous' (== dominating)
- // node's depth + 1
- // This way every node's depth is calculated once, and the complexity is O(n).
- int calculateNodeDepth(int nodeIdx, std::vector<int> &nodeDepths) const
- {
- std::vector<int> worklist;
- worklist.reserve(8);
- int depth = -1;
-
- do {
- worklist.push_back(nodeIdx);
- nodeIdx = idom[nodeIdx];
- depth = nodeDepths[nodeIdx];
- } while (depth == -1);
-
- for (std::vector<int>::const_reverse_iterator it = worklist.rbegin(), eit = worklist.rend(); it != eit; ++it)
- nodeDepths[*it] = ++depth;
-
- return depth;
- }
-
- // The immediate-dominator recalculation is used when edges are removed from the CFG. See
- // [Ramalingam] for a description. Note that instead of calculating the priority, a recursive
- // algorithm is used: when recalculating the immediate dominator of a node by looking for the
- // least-common ancestor, and a node is hit that also needs recalculation, a recursive call
- // is done to calculate that nodes immediate dominator first.
- //
- // Note that this simplified algorithm cannot cope with back-edges. It only works for
- // non-looping edges (which is our use-case).
- void recalculateIDom(BasicBlock *node, BasicBlockSet &todo, BasicBlockSet &postponed, BasicBlockIndex limit) {
- Q_ASSERT(!postponed.contains(node));
- Q_ASSERT(todo.contains(node));
- todo.remove(node);
-
- if (node->in.size() == 1) {
- // Special case: if the node has only one incoming edge, then that is the immediate
- // dominator.
- setImmediateDominator(node, node->in.first());
- return;
- }
-
- std::vector<BasicBlockIndex> prefix;
- prefix.reserve(32);
-
- for (BasicBlock *in : node->in) {
- if (node == in) // back-edge to self
- continue;
- if (dominates(node->index(), in->index())) // a known back-edge
- continue;
-
- if (prefix.empty()) {
- calculatePrefix(node, in, prefix, todo, postponed, limit);
-
- if (!prefix.empty()) {
- std::reverse(prefix.begin(), prefix.end());
- Q_ASSERT(!prefix.empty());
- Q_ASSERT(prefix.front() == limit || limit == InvalidBasicBlockIndex);
- }
- } else {
- std::vector<BasicBlockIndex> anotherPrefix;
- anotherPrefix.reserve(prefix.size());
- calculatePrefix(node, in, anotherPrefix, todo, postponed, limit);
-
- if (!anotherPrefix.empty())
- commonPrefix(prefix, anotherPrefix);
- }
- }
-
- Q_ASSERT(!prefix.empty());
- idom[node->index()] = prefix.back();
- }
-
- void calculatePrefix(BasicBlock *node, BasicBlock *in, std::vector<BasicBlockIndex> &prefix, BasicBlockSet &todo, BasicBlockSet &postponed, BasicBlockIndex limit)
- {
- for (BasicBlockIndex it = in->index(); it != InvalidBasicBlockIndex; it = idom[it]) {
- prefix.push_back(it);
- if (it == limit)
- return;
- BasicBlock *n = function->basicBlock(it);
- if (postponed.contains(n)) { // possible back-edge, bail out.
- prefix.clear();
- return;
- }
- if (todo.contains(n)) {
- postponed.insert(node);
- recalculateIDom(n, todo, postponed, limit);
- postponed.remove(node);
- }
- }
- }
-
- // Calculate the LCA (Least Common Ancestor) by finding the longest common prefix between two
- // dominator chains. Note that "anotherPrefix" has the node's immediate dominator first, while
- // "bestPrefix" has it last (meaning: is in reverse order). The reason for this is that removing
- // nodes from "bestPrefix" is cheaper because it's done at the end of the vector, while
- // reversing all "anotherPrefix" nodes would take unnecessary time.
- static void commonPrefix(std::vector<BasicBlockIndex> &bestPrefix, const std::vector<BasicBlockIndex> &anotherPrefix)
- {
- const size_t anotherSize = anotherPrefix.size();
- size_t minLen = qMin(bestPrefix.size(), anotherPrefix.size());
- while (minLen != 0) {
- --minLen;
- if (bestPrefix[minLen] == anotherPrefix[anotherSize - minLen - 1]) {
- ++minLen;
- break;
- }
- }
- if (minLen != bestPrefix.size())
- bestPrefix.erase(bestPrefix.begin() + minLen, bestPrefix.end());
- }
-};
-
-class VariableCollector {
- std::vector<Temp> _allTemps;
- std::vector<BasicBlockSet> _defsites;
- std::vector<std::vector<int> > A_orig;
- BitVector nonLocals;
- BitVector killed;
-
- BasicBlock *currentBB;
- bool isCollectable(Temp *t) const
- {
- Q_UNUSED(t);
- Q_ASSERT(t->kind != Temp::PhysicalRegister && t->kind != Temp::StackSlot);
- return true;
- }
-
- void addDefInCurrentBlock(Temp *t)
- {
- std::vector<int> &temps = A_orig[currentBB->index()];
- if (std::find(temps.begin(), temps.end(), t->index) == temps.end())
- temps.push_back(t->index);
- }
-
- void addTemp(Temp *t)
- {
- if (_allTemps[t->index].kind == Temp::Invalid)
- _allTemps[t->index] = *t;
- }
-
-public:
- VariableCollector(IR::Function *function)
- {
- _allTemps.resize(function->tempCount);
- _defsites.resize(function->tempCount);
- for (int i = 0; i < function->tempCount; ++i)
- _defsites[i].init(function);
- nonLocals.resize(function->tempCount);
- const size_t ei = function->basicBlockCount();
- A_orig.resize(ei);
- for (size_t i = 0; i != ei; ++i)
- A_orig[i].reserve(8);
-
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- currentBB = bb;
- killed.assign(function->tempCount, false);
- for (Stmt *s : bb->statements())
- visit(s);
- }
- }
-
- const std::vector<Temp> &allTemps() const
- { return _allTemps; }
-
- void collectDefSites(const Temp &n, std::vector<BasicBlock *> &bbs) const {
- Q_ASSERT(!n.isInvalid());
- Q_ASSERT(n.index < _defsites.size());
- _defsites[n.index].collectValues(bbs);
- }
-
- const std::vector<int> &inBlock(BasicBlock *n) const
- {
- return A_orig.at(n->index());
- }
-
- bool isNonLocal(const Temp &var) const
- {
- Q_ASSERT(!var.isInvalid());
- Q_ASSERT(static_cast<int>(var.index) < nonLocals.size());
- return nonLocals.at(var.index);
- }
-
-private:
- void visit(Stmt *s)
- {
- if (s->asPhi()) {
- // nothing to do
- } else if (auto move = s->asMove()) {
- visit(move->source);
-
- if (Temp *t = move->target->asTemp()) {
- addTemp(t);
-
- if (isCollectable(t)) {
- _defsites[t->index].insert(currentBB);
- addDefInCurrentBlock(t);
-
- // For semi-pruned SSA:
- killed.setBit(t->index);
- }
- } else {
- visit(move->target);
- }
- } else {
- STMT_VISIT_ALL_KINDS(s)
- }
- }
-
- void visit(Expr *e)
- {
- if (auto t = e->asTemp()) {
- addTemp(t);
-
- if (isCollectable(t)) {
- if (!killed.at(t->index)) {
- nonLocals.setBit(t->index);
- }
- }
- } else {
- EXPR_VISIT_ALL_KINDS(e);
- }
- }
-};
-
-struct UntypedTemp {
- Temp temp;
- UntypedTemp() {}
- UntypedTemp(const Temp &t): temp(t) {}
-};
-inline bool operator==(const UntypedTemp &t1, const UntypedTemp &t2) Q_DECL_NOTHROW
-{ return t1.temp.index == t2.temp.index && t1.temp.kind == t2.temp.kind; }
-inline bool operator!=(const UntypedTemp &t1, const UntypedTemp &t2) Q_DECL_NOTHROW
-{ return !(t1 == t2); }
-
-class DefUses
-{
-public:
- struct DefUse {
- DefUse()
- : defStmt(0)
- , blockOfStatement(0)
- { uses.reserve(8); }
- Temp temp;
- Stmt *defStmt;
- BasicBlock *blockOfStatement;
- QVector<Stmt *> uses;
-
- bool isValid() const
- { return temp.kind != Temp::Invalid; }
-
- void clear()
- { defStmt = 0; blockOfStatement = 0; uses.clear(); }
- };
-
-private:
- std::vector<DefUse> _defUses;
- typedef QVarLengthArray<Temp, 4> Temps;
- std::vector<Temps> _usesPerStatement;
-
- void ensure(Temp *newTemp)
- {
- if (_defUses.size() <= newTemp->index) {
- _defUses.resize(newTemp->index + 1);
- }
- }
-
- void ensure(Stmt *s)
- {
- Q_ASSERT(s->id() >= 0);
- if (static_cast<unsigned>(s->id()) >= _usesPerStatement.size()) {
- _usesPerStatement.resize(s->id() + 1);
- }
- }
-
- void addUseForStatement(Stmt *s, const Temp &var)
- {
- ensure(s);
- _usesPerStatement[s->id()].push_back(var);
- }
-
-public:
- DefUses(IR::Function *function)
- {
- _usesPerStatement.resize(function->statementCount());
- _defUses.resize(function->tempCount);
- }
-
- void cleanup()
- {
- for (size_t i = 0, ei = _defUses.size(); i != ei; ++i) {
- DefUse &defUse = _defUses[i];
- if (defUse.isValid() && !defUse.defStmt)
- defUse.clear();
- }
- }
-
- unsigned statementCount() const
- { return unsigned(_usesPerStatement.size()); }
-
- unsigned tempCount() const
- { return unsigned(_defUses.size()); }
-
- const Temp &temp(int idx) const
- { return _defUses[idx].temp; }
-
- void addDef(Temp *newTemp, Stmt *defStmt, BasicBlock *defBlock)
- {
- ensure(newTemp);
- DefUse &defUse = _defUses[newTemp->index];
- Q_ASSERT(!defUse.isValid());
- defUse.temp = *newTemp;
- defUse.defStmt = defStmt;
- defUse.blockOfStatement = defBlock;
- }
-
- QVector<UntypedTemp> defsUntyped() const
- {
- QVector<UntypedTemp> res;
- res.reserve(tempCount());
- for (const DefUse &du : _defUses)
- if (du.isValid())
- res.append(UntypedTemp(du.temp));
- return res;
- }
-
- std::vector<const Temp *> defs() const {
- std::vector<const Temp *> res;
- const size_t ei = _defUses.size();
- res.reserve(ei);
- for (size_t i = 0; i != ei; ++i) {
- const DefUse &du = _defUses.at(i);
- if (du.isValid())
- res.push_back(&du.temp);
- }
- return res;
- }
-
- void removeDef(const Temp &variable) {
- Q_ASSERT(static_cast<unsigned>(variable.index) < _defUses.size());
- _defUses[variable.index].clear();
- }
-
- void addUses(const Temp &variable, const QVector<Stmt *> &newUses)
- {
- Q_ASSERT(static_cast<unsigned>(variable.index) < _defUses.size());
- QVector<Stmt *> &uses = _defUses[variable.index].uses;
- for (Stmt *stmt : newUses)
- if (std::find(uses.begin(), uses.end(), stmt) == uses.end())
- uses.push_back(stmt);
- }
-
- void addUse(const Temp &variable, Stmt *newUse)
- {
- if (_defUses.size() <= variable.index) {
- _defUses.resize(variable.index + 1);
- DefUse &du = _defUses[variable.index];
- du.temp = variable;
- du.uses.push_back(newUse);
- addUseForStatement(newUse, variable);
- return;
- }
-
- QVector<Stmt *> &uses = _defUses[variable.index].uses;
- if (std::find(uses.begin(), uses.end(), newUse) == uses.end())
- uses.push_back(newUse);
- addUseForStatement(newUse, variable);
- }
-
- int useCount(const Temp &variable) const
- {
- Q_ASSERT(static_cast<unsigned>(variable.index) < _defUses.size());
- return _defUses[variable.index].uses.size();
- }
-
- Stmt *defStmt(const Temp &variable) const
- {
- Q_ASSERT(static_cast<unsigned>(variable.index) < _defUses.size());
- return _defUses[variable.index].defStmt;
- }
-
- BasicBlock *defStmtBlock(const Temp &variable) const
- {
- Q_ASSERT(static_cast<unsigned>(variable.index) < _defUses.size());
- return _defUses[variable.index].blockOfStatement;
- }
-
- void replaceBasicBlock(BasicBlock *from, BasicBlock *to)
- {
- for (auto &du : _defUses) {
- if (du.blockOfStatement == from) {
- du.blockOfStatement = to;
- }
- }
- }
-
- void removeUse(Stmt *usingStmt, const Temp &var)
- {
- Q_ASSERT(static_cast<unsigned>(var.index) < _defUses.size());
- QVector<Stmt *> &uses = _defUses[var.index].uses;
- uses.erase(std::remove(uses.begin(), uses.end(), usingStmt), uses.end());
- }
-
- void registerNewStatement(Stmt *s)
- {
- ensure(s);
- }
-
- const Temps &usedVars(Stmt *s) const
- {
- Q_ASSERT(s->id() >= 0);
- Q_ASSERT(static_cast<unsigned>(s->id()) < _usesPerStatement.size());
- return _usesPerStatement[s->id()];
- }
-
- const QVector<Stmt *> &uses(const Temp &var) const
- {
- return _defUses[var.index].uses;
- }
-
- QVector<Stmt*> removeDefUses(Stmt *s)
- {
- QVector<Stmt*> defStmts;
- for (const Temp &usedVar : usedVars(s)) {
- if (Stmt *ds = defStmt(usedVar))
- defStmts += ds;
- removeUse(s, usedVar);
- }
- if (Move *m = s->asMove()) {
- if (Temp *t = m->target->asTemp())
- removeDef(*t);
- } else if (Phi *p = s->asPhi()) {
- removeDef(*p->targetTemp);
- }
-
- return defStmts;
- }
-
- void dump() const
- {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout << "Defines and uses:" << endl;
- for (const DefUse &du : _defUses) {
- if (!du.isValid())
- continue;
- qout << '%' << du.temp.index;
- qout << " -> defined in block " << du.blockOfStatement->index()
- << ", statement: " << du.defStmt->id()
- << endl;
- qout << " uses:";
- for (Stmt *s : du.uses)
- qout << ' ' << s->id();
- qout << endl;
- }
- qout << "Uses per statement:" << endl;
- for (size_t i = 0, ei = _usesPerStatement.size(); i != ei; ++i) {
- qout << " " << i << ":";
- for (const Temp &t : _usesPerStatement[i])
- qout << ' ' << t.index;
- qout << endl;
- }
- qDebug("%s", buf.data().constData());
- }
-};
-
-void insertPhiNode(const Temp &a, BasicBlock *y, IR::Function *f) {
- Phi *phiNode = f->NewStmt<Phi>();
- phiNode->targetTemp = f->New<Temp>();
- phiNode->targetTemp->init(a.kind, a.index);
- y->prependStatement(phiNode);
-
- phiNode->incoming.resize(y->in.size());
- for (int i = 0, ei = y->in.size(); i < ei; ++i) {
- Temp *t = f->New<Temp>();
- t->init(a.kind, a.index);
- phiNode->incoming[i] = t;
- }
-}
-
-// High-level (recursive) algorithm:
-// Mapping: old temp number -> new temp number
-//
-// Start:
-// Rename(start-node)
-//
-// Rename(node, mapping):
-// for each statement S in block n
-// if S not in a phi-function
-// for each use of some variable x in S
-// y = mapping[x]
-// replace the use of x with y in S
-// for each definition of some variable a in S [1]
-// a_new = generate new/unique temp
-// mapping[a] = a_new
-// replace definition of a with definition of a_new in S
-// for each successor Y of block n
-// Suppose n is the j-th predecessor of Y
-// for each phi function in Y
-// suppose the j-th operand of the phi-function is a
-// i = mapping[a]
-// replace the j-th operand with a_i
-// for each child X of n [2]
-// Rename(X)
-// for each newly generated temp from step [1] restore the old value [3]
-//
-// This algorithm can run out of CPU stack space when there are lots of basic-blocks, like in a
-// switch statement with 8000 cases that all fall-through. The iterativer version below uses a
-// work-item stack, where step [1] from the algorithm above also pushes an "undo mapping change",
-// and step [2] pushes a "rename(X)" action. This eliminates step [3].
-//
-// Iterative version:
-// Mapping: old temp number -> new temp number
-//
-// The stack can hold two kinds of actions:
-// "Rename basic block n"
-// "Restore count for temp"
-//
-// Start:
-// counter = 0
-// push "Rename start node" onto the stack
-// while the stack is not empty:
-// take the last item, and process it
-//
-// Rename(n) =
-// for each statement S in block n
-// if S not in a phi-function
-// for each use of some variable x in S
-// y = mapping[x]
-// replace the use of x with y in S
-// for each definition of some variable a in S
-// old = mapping[a]
-// push Undo(a, old)
-// counter = counter + 1
-// new = counter;
-// mapping[a] = new
-// replace definition of a with definition of a_new in S
-// for each successor Y of block n
-// Suppose n is the j-th predecessor of Y
-// for each phi function in Y
-// suppose the j-th operand of the phi-function is a
-// i = mapping[a]
-// replace the j-th operand with a_i
-// for each child X of n
-// push Rename(X)
-//
-// Undo(t, c) =
-// mapping[t] = c
-class VariableRenamer
-{
- Q_DISABLE_COPY(VariableRenamer)
-
- IR::Function *function;
- DefUses &defUses;
- unsigned tempCount;
-
- typedef std::vector<int> Mapping; // maps from existing/old temp number to the new and unique temp number.
- enum { Absent = -1 };
- Mapping vregMapping;
- ProcessedBlocks processed;
-
- BasicBlock *currentBB;
- Stmt *currentStmt;
-
- struct TodoAction {
- enum { RestoreVReg, Rename } action;
- union {
- struct {
- unsigned temp;
- int previous;
- } restoreData;
- struct {
- BasicBlock *basicBlock;
- } renameData;
- };
-
- bool isValid() const { return action != Rename || renameData.basicBlock != 0; }
-
- TodoAction()
- {
- action = Rename;
- renameData.basicBlock = 0;
- }
-
- TodoAction(const Temp &t, int prev)
- {
- Q_ASSERT(t.kind == Temp::VirtualRegister);
-
- action = RestoreVReg;
- restoreData.temp = t.index;
- restoreData.previous = prev;
- }
-
- TodoAction(BasicBlock *bb)
- {
- Q_ASSERT(bb);
-
- action = Rename;
- renameData.basicBlock = bb;
- }
- };
-
- QVector<TodoAction> todo;
-
-public:
- VariableRenamer(IR::Function *f, DefUses &defUses)
- : function(f)
- , defUses(defUses)
- , tempCount(0)
- , processed(f)
- {
- vregMapping.assign(f->tempCount, Absent);
- todo.reserve(f->basicBlockCount());
- }
-
- void run() {
- todo.append(TodoAction(function->basicBlock(0)));
-
- while (!todo.isEmpty()) {
- TodoAction todoAction = todo.back();
- Q_ASSERT(todoAction.isValid());
- todo.pop_back();
-
- switch (todoAction.action) {
- case TodoAction::Rename:
- rename(todoAction.renameData.basicBlock);
- break;
- case TodoAction::RestoreVReg:
- restore(vregMapping, todoAction.restoreData.temp, todoAction.restoreData.previous);
- break;
- default:
- Q_UNREACHABLE();
- }
- }
-
- function->tempCount = tempCount;
- }
-
-private:
- static inline void restore(Mapping &mapping, int temp, int previous)
- {
- mapping[temp] = previous;
- }
-
- void rename(BasicBlock *bb)
- {
- while (bb && !processed.alreadyProcessed(bb)) {
- renameStatementsAndPhis(bb);
- processed.markAsProcessed(bb);
-
- BasicBlock *next = 0;
- for (BasicBlock *out : bb->out) {
- if (processed.alreadyProcessed(out))
- continue;
- if (!next)
- next = out;
- else
- todo.append(TodoAction(out));
- }
- bb = next;
- }
- }
-
- void renameStatementsAndPhis(BasicBlock *bb)
- {
- currentBB = bb;
-
- for (Stmt *s : bb->statements()) {
- currentStmt = s;
- visit(s);
- }
-
- for (BasicBlock *Y : bb->out) {
- const int j = Y->in.indexOf(bb);
- Q_ASSERT(j >= 0 && j < Y->in.size());
- for (Stmt *s : Y->statements()) {
- if (Phi *phi = s->asPhi()) {
- Temp *t = phi->incoming[j]->asTemp();
- unsigned newTmp = currentNumber(*t);
-// qDebug()<<"I: replacing phi use"<<a<<"with"<<newTmp<<"in L"<<Y->index;
- t->index = newTmp;
- t->kind = Temp::VirtualRegister;
- defUses.addUse(*t, phi);
- } else {
- break;
- }
- }
- }
- }
-
- unsigned currentNumber(const Temp &t)
- {
- int nr = Absent;
- switch (t.kind) {
- case Temp::VirtualRegister:
- nr = vregMapping[t.index];
- break;
- default:
- Q_UNREACHABLE();
- nr = Absent;
- break;
- }
- if (nr == Absent) {
- // Special case: we didn't prune the Phi nodes yet, so for proper temps (virtual
- // registers) the SSA algorithm might insert superfluous Phis that have uses without
- // definition. E.g.: if a temporary got introduced in the "then" clause, it "could"
- // reach the "end-if" block, so there will be a phi node for that temp. A later pass
- // will clean this up by looking for uses-without-defines in phi nodes. So, what we do
- // is to generate a new unique number, and leave it dangling.
- nr = nextFreeTemp(t);
- }
-
- return nr;
- }
-
- unsigned nextFreeTemp(const Temp &t)
- {
- unsigned newIndex = tempCount++;
- Q_ASSERT(newIndex <= INT_MAX);
- int oldIndex = Absent;
-
- switch (t.kind) {
- case Temp::VirtualRegister:
- oldIndex = vregMapping[t.index];
- vregMapping[t.index] = newIndex;
- break;
- default:
- Q_UNREACHABLE();
- }
-
- todo.append(TodoAction(t, oldIndex));
-
- return newIndex;
- }
-
-private:
- void visit(Stmt *s)
- {
- if (auto move = s->asMove()) {
- // uses:
- visit(move->source);
-
- // defs:
- if (Temp *t = move->target->asTemp()) {
- renameTemp(t);
- } else {
- visit(move->target);
- }
- } else if (auto phi = s->asPhi()) {
- renameTemp(phi->targetTemp);
- } else {
- STMT_VISIT_ALL_KINDS(s);
- }
- }
-
- void visit(Expr *e)
- {
- if (auto temp = e->asTemp()) {
- temp->index = currentNumber(*temp);
- temp->kind = Temp::VirtualRegister;
- defUses.addUse(*temp, currentStmt);
- } else {
- EXPR_VISIT_ALL_KINDS(e);
- }
- }
-
- void renameTemp(Temp *t) { // only called for defs, not uses
- const int newIdx = nextFreeTemp(*t);
-// qDebug()<<"I: replacing def of"<<a<<"with"<<newIdx;
- t->kind = Temp::VirtualRegister;
- t->index = newIdx;
- defUses.addDef(t, currentStmt, currentBB);
- }
-};
-
-// This function converts the IR to semi-pruned SSA form. For details about SSA and the algorightm,
-// see [Appel]. For the changes needed for semi-pruned SSA form, and for its advantages, see [Briggs].
-void convertToSSA(IR::Function *function, const DominatorTree &df, DefUses &defUses)
-{
- // Collect all applicable variables:
- VariableCollector variables(function);
-
- // Prepare for phi node insertion:
- std::vector<BitVector > A_phi;
- const size_t ei = function->basicBlockCount();
- A_phi.resize(ei);
- for (size_t i = 0; i != ei; ++i)
- A_phi[i].assign(function->tempCount, false);
-
- std::vector<BasicBlock *> W;
- W.reserve(8);
-
- // Place phi functions:
- for (const Temp &a : variables.allTemps()) {
- if (a.isInvalid())
- continue;
- if (!variables.isNonLocal(a))
- continue; // for semi-pruned SSA
-
- W.clear();
- variables.collectDefSites(a, W);
- while (!W.empty()) {
- BasicBlock *n = W.back();
- W.pop_back();
- const BasicBlockSet &dominatorFrontierForN = df.dominatorFrontier(n);
- for (BasicBlockSet::const_iterator it = dominatorFrontierForN.begin(), eit = dominatorFrontierForN.end();
- it != eit; ++it) {
- BasicBlock *y = *it;
- if (!A_phi.at(y->index()).at(a.index)) {
- insertPhiNode(a, y, function);
- A_phi[y->index()].setBit(a.index);
- const std::vector<int> &varsInBlockY = variables.inBlock(y);
- if (std::find(varsInBlockY.begin(), varsInBlockY.end(), a.index) == varsInBlockY.end())
- W.push_back(y);
- }
- }
- }
- }
-
- // Rename variables:
- VariableRenamer(function, defUses).run();
-}
-
-/// Calculate if a phi node result is used only by other phi nodes, and if those uses are
-/// in turn also used by other phi nodes.
-bool hasPhiOnlyUses(Phi *phi, const DefUses &defUses, QBitArray &collectedPhis)
-{
- collectedPhis.setBit(phi->id());
-
- for (Stmt *use : defUses.uses(*phi->targetTemp)) {
- Phi *dependentPhi = use->asPhi();
- if (!dependentPhi)
- return false; // there is a use by a non-phi node
-
- if (collectedPhis.at(dependentPhi->id()))
- continue; // we already found this node
-
- if (!hasPhiOnlyUses(dependentPhi, defUses, collectedPhis))
- return false;
- }
-
- return true;
-}
-
-void cleanupPhis(DefUses &defUses)
-{
- QBitArray toRemove(defUses.statementCount());
- QBitArray collectedPhis(defUses.statementCount());
- std::vector<Phi *> allPhis;
- allPhis.reserve(32);
-
- for (const Temp *def : defUses.defs()) {
- Stmt *defStmt = defUses.defStmt(*def);
- if (!defStmt)
- continue;
-
- Phi *phi = defStmt->asPhi();
- if (!phi)
- continue;
- allPhis.push_back(phi);
- if (toRemove.at(phi->id()))
- continue;
-
- collectedPhis.fill(false);
- if (hasPhiOnlyUses(phi, defUses, collectedPhis))
- toRemove |= collectedPhis;
- }
-
- for (Phi *phi : allPhis) {
- if (!toRemove.at(phi->id()))
- continue;
-
- const Temp &targetVar = *phi->targetTemp;
- defUses.defStmtBlock(targetVar)->removeStatement(phi);
-
- for (const Temp &usedVar : defUses.usedVars(phi))
- defUses.removeUse(phi, usedVar);
- defUses.removeDef(targetVar);
- }
-
- defUses.cleanup();
-}
-
-class StatementWorklist
-{
- IR::Function *theFunction;
- std::vector<Stmt *> stmts;
- BitVector worklist;
- unsigned worklistSize;
- std::vector<int> replaced;
- BitVector removed;
-
- Q_DISABLE_COPY(StatementWorklist)
-
-public:
- StatementWorklist(IR::Function *function)
- : theFunction(function)
- , stmts(function->statementCount(), static_cast<Stmt *>(0))
- , worklist(function->statementCount(), false)
- , worklistSize(0)
- , replaced(function->statementCount(), Stmt::InvalidId)
- , removed(function->statementCount())
- {
- grow();
-
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- for (Stmt *s : bb->statements()) {
- if (!s)
- continue;
-
- stmts[s->id()] = s;
- worklist.setBit(s->id());
- ++worklistSize;
- }
- }
- }
-
- void reset()
- {
- worklist.assign(worklist.size(), false);
- worklistSize = 0;
-
- for (Stmt *s : stmts) {
- if (!s)
- continue;
-
- worklist.setBit(s->id());
- ++worklistSize;
- }
-
- replaced.assign(replaced.size(), Stmt::InvalidId);
- removed.assign(removed.size(), false);
- }
-
- void remove(Stmt *stmt)
- {
- replaced[stmt->id()] = Stmt::InvalidId;
- removed.setBit(stmt->id());
- if (worklist.at(stmt->id())) {
- worklist.clearBit(stmt->id());
- Q_ASSERT(worklistSize > 0);
- --worklistSize;
- }
- }
-
- void replace(Stmt *oldStmt, Stmt *newStmt)
- {
- Q_ASSERT(oldStmt);
- Q_ASSERT(replaced[oldStmt->id()] == Stmt::InvalidId);
- Q_ASSERT(removed.at(oldStmt->id()) == false);
-
- Q_ASSERT(newStmt);
- registerNewStatement(newStmt);
- Q_ASSERT(replaced[newStmt->id()] == Stmt::InvalidId);
- Q_ASSERT(removed.at(newStmt->id()) == false);
-
- replaced[oldStmt->id()] = newStmt->id();
- worklist.clearBit(oldStmt->id());
- }
-
- void applyToFunction()
- {
- for (BasicBlock *bb : theFunction->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- for (int i = 0; i < bb->statementCount();) {
- Stmt *stmt = bb->statements().at(i);
-
- int id = stmt->id();
- Q_ASSERT(id != Stmt::InvalidId);
- Q_ASSERT(static_cast<unsigned>(stmt->id()) < stmts.size());
-
- for (int replacementId = replaced[id]; replacementId != Stmt::InvalidId; replacementId = replaced[replacementId])
- id = replacementId;
- Q_ASSERT(id != Stmt::InvalidId);
- Q_ASSERT(static_cast<unsigned>(stmt->id()) < stmts.size());
-
- if (removed.at(id)) {
- bb->removeStatement(i);
- } else {
- if (id != stmt->id())
- bb->replaceStatement(i, stmts[id]);
-
- ++i;
- }
- }
- }
-
- replaced.assign(replaced.size(), Stmt::InvalidId);
- removed.assign(removed.size(), false);
- }
-
- StatementWorklist &operator+=(const QVector<Stmt *> &stmts)
- {
- for (Stmt *s : stmts)
- this->operator+=(s);
-
- return *this;
- }
-
- StatementWorklist &operator+=(Stmt *s)
- {
- if (!s)
- return *this;
-
- Q_ASSERT(s->id() >= 0);
- Q_ASSERT(s->id() < worklist.size());
-
- if (!worklist.at(s->id())) {
- worklist.setBit(s->id());
- ++worklistSize;
- }
-
- return *this;
- }
-
- StatementWorklist &operator-=(Stmt *s)
- {
- Q_ASSERT(s->id() >= 0);
- Q_ASSERT(s->id() < worklist.size());
-
- if (worklist.at(s->id())) {
- worklist.clearBit(s->id());
- Q_ASSERT(worklistSize > 0);
- --worklistSize;
- }
-
- return *this;
- }
-
- unsigned size() const
- {
- return worklistSize;
- }
-
- Stmt *takeNext(Stmt *last)
- {
- if (worklistSize == 0)
- return 0;
-
- const int startAt = last ? last->id() + 1 : 0;
- Q_ASSERT(startAt >= 0);
- Q_ASSERT(startAt <= worklist.size());
-
- Q_ASSERT(static_cast<size_t>(worklist.size()) == stmts.size());
-
- int pos = worklist.findNext(startAt, true, /*wrapAround = */true);
-
- worklist.clearBit(pos);
- Q_ASSERT(worklistSize > 0);
- --worklistSize;
- Stmt *s = stmts.at(pos);
- Q_ASSERT(s);
-
- if (removed.at(s->id()))
- return takeNext(s);
-
- return s;
- }
-
- IR::Function *function() const
- {
- return theFunction;
- }
-
- void registerNewStatement(Stmt *s)
- {
- Q_ASSERT(s->id() >= 0);
- if (static_cast<unsigned>(s->id()) >= stmts.size()) {
- if (static_cast<unsigned>(s->id()) >= stmts.capacity())
- grow();
-
- int newSize = s->id() + 1;
- stmts.resize(newSize, 0);
- worklist.resize(newSize);
- replaced.resize(newSize, Stmt::InvalidId);
- removed.resize(newSize);
- }
-
- stmts[s->id()] = s;
- }
-
-private:
- void grow()
- {
- Q_ASSERT(stmts.capacity() < INT_MAX / 2);
- int newCapacity = ((static_cast<int>(stmts.capacity()) + 1) * 3) / 2;
- stmts.reserve(newCapacity);
- worklist.reserve(newCapacity);
- replaced.reserve(newCapacity);
- removed.reserve(newCapacity);
- }
-};
-
-class SideEffectsChecker
-{
- bool _sideEffect;
-
-public:
- SideEffectsChecker()
- : _sideEffect(false)
- {}
-
- ~SideEffectsChecker()
- {}
-
- bool hasSideEffects(Expr *expr)
- {
- bool sideEffect = false;
- qSwap(_sideEffect, sideEffect);
- visit(expr);
- qSwap(_sideEffect, sideEffect);
- return sideEffect;
- }
-
-protected:
- void markAsSideEffect()
- {
- _sideEffect = true;
- }
-
- bool seenSideEffects() const { return _sideEffect; }
-
- void visit(Expr *e)
- {
- if (auto n = e->asName()) {
- visitName(n);
- } else if (auto t = e->asTemp()) {
- visitTemp(t);
- } else if (auto c = e->asClosure()) {
- visitClosure(c);
- } else if (auto c = e->asConvert()) {
- visitConvert(c);
- } else if (auto u = e->asUnop()) {
- visitUnop(u);
- } else if (auto b = e->asBinop()) {
- visitBinop(b);
- } else if (auto c = e->asCall()) {
- visitCall(c);
- } else if (auto n = e->asNew()) {
- visitNew(n);
- } else if (auto s = e->asSubscript()) {
- visitSubscript(s);
- } else if (auto m = e->asMember()) {
- visitMember(m);
- }
- }
-
- virtual void visitTemp(Temp *) {}
-
-private:
- void visitName(Name *e) {
- if (e->freeOfSideEffects)
- return;
- // TODO: maybe we can distinguish between built-ins of which we know that they do not have
- // a side-effect.
- if (e->builtin == Name::builtin_invalid || (e->id && *e->id != QLatin1String("this")))
- markAsSideEffect();
- }
-
- void visitClosure(Closure *) {
- markAsSideEffect();
- }
-
- void visitConvert(Convert *e) {
- visit(e->expr);
-
- switch (e->expr->type) {
- case QObjectType:
- case StringType:
- case VarType:
- markAsSideEffect();
- break;
- default:
- break;
- }
- }
-
- void visitUnop(Unop *e) {
- visit(e->expr);
-
- switch (e->op) {
- case OpUPlus:
- case OpUMinus:
- case OpNot:
- case OpPreIncrement:
- case OpPreDecrement:
- if (e->expr->type == VarType || e->expr->type == StringType || e->expr->type == QObjectType)
- markAsSideEffect();
- break;
-
- default:
- break;
- }
- }
-
- void visitBinop(Binop *e) {
- // TODO: prune parts that don't have a side-effect. For example, in:
- // function f(x) { +x+1; return 0; }
- // we can prune the binop and leave the unop/conversion.
- _sideEffect = hasSideEffects(e->left);
- _sideEffect |= hasSideEffects(e->right);
-
- if (e->left->type == VarType || e->left->type == StringType || e->left->type == QObjectType
- || e->right->type == VarType || e->right->type == StringType || e->right->type == QObjectType)
- markAsSideEffect();
- }
-
- void visitSubscript(Subscript *e) {
- visit(e->base);
- visit(e->index);
- markAsSideEffect();
- }
-
- void visitMember(Member *e) {
- visit(e->base);
- if (e->freeOfSideEffects)
- return;
- markAsSideEffect();
- }
-
- void visitCall(Call *e) {
- visit(e->base);
- for (ExprList *args = e->args; args; args = args->next)
- visit(args->expr);
- markAsSideEffect(); // TODO: there are built-in functions that have no side effect.
- }
-
- void visitNew(New *e) {
- visit(e->base);
- for (ExprList *args = e->args; args; args = args->next)
- visit(args->expr);
- markAsSideEffect(); // TODO: there are built-in types that have no side effect.
- }
-};
-
-class EliminateDeadCode: public SideEffectsChecker
-{
- DefUses &_defUses;
- StatementWorklist &_worklist;
- QVarLengthArray<Temp *, 8> _collectedTemps;
-
-public:
- EliminateDeadCode(DefUses &defUses, StatementWorklist &worklist)
- : _defUses(defUses)
- , _worklist(worklist)
- {}
-
- void run(Expr *&expr, Stmt *stmt) {
- _collectedTemps.clear();
- if (!hasSideEffects(expr)) {
- expr = 0;
- for (Temp *t : _collectedTemps) {
- _defUses.removeUse(stmt, *t);
- _worklist += _defUses.defStmt(*t);
- }
- }
- }
-
-protected:
- void visitTemp(Temp *e) Q_DECL_OVERRIDE Q_DECL_FINAL
- {
- _collectedTemps.append(e);
- }
-};
-
-class PropagateTempTypes
-{
- const DefUses &defUses;
- UntypedTemp theTemp;
- DiscoveredType newType;
-
-public:
- PropagateTempTypes(const DefUses &defUses)
- : defUses(defUses)
- {}
-
- void run(const UntypedTemp &temp, const DiscoveredType &type)
- {
- newType = type;
- theTemp = temp;
- if (Stmt *defStmt = defUses.defStmt(temp.temp))
- visit(defStmt);
- for (Stmt *use : defUses.uses(temp.temp))
- visit(use);
- }
-
-private:
- void visit(Stmt *s)
- {
- STMT_VISIT_ALL_KINDS(s);
- }
-
- void visit(Expr *e)
- {
- if (auto temp = e->asTemp()) {
- if (theTemp == UntypedTemp(*temp)) {
- temp->type = static_cast<Type>(newType.type);
- temp->memberResolver = newType.memberResolver;
- }
- } else {
- EXPR_VISIT_ALL_KINDS(e);
- }
- }
-};
-
-class TypeInference
-{
- enum { DebugTypeInference = 0 };
-
- QQmlEnginePrivate *qmlEngine;
- const DefUses &_defUses;
- typedef std::vector<DiscoveredType> TempTypes;
- TempTypes _tempTypes;
- StatementWorklist *_worklist;
- struct TypingResult {
- DiscoveredType type;
- bool fullyTyped;
-
- TypingResult(const DiscoveredType &type = DiscoveredType()) {
-#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 6
- // avoid optimization bug in gcc 4.6.3 armhf
- ((int volatile &) this->type.type) = type.type;
-#endif
- this->type = type;
- fullyTyped = type.type != UnknownType;
- }
- explicit TypingResult(MemberExpressionResolver *memberResolver)
- : type(memberResolver)
- , fullyTyped(true)
- {}
- };
- TypingResult _ty;
- Stmt *_currentStmt;
-
-public:
- TypeInference(QQmlEnginePrivate *qmlEngine, const DefUses &defUses)
- : qmlEngine(qmlEngine)
- , _defUses(defUses)
- , _tempTypes(_defUses.tempCount())
- , _worklist(0)
- , _ty(UnknownType)
- , _currentStmt(nullptr)
- {}
-
- void run(StatementWorklist &w) {
- _worklist = &w;
-
- Stmt *s = 0;
- while ((s = _worklist->takeNext(s))) {
- if (s->asJump())
- continue;
-
- if (DebugTypeInference) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout<<"Typing stmt ";
- IRPrinter(&qout).print(s);
- qout.flush();
- qDebug("%s", buf.data().constData());
-
- qDebug("%u left in the worklist", _worklist->size());
- }
-
- if (!run(s)) {
- *_worklist += s;
- if (DebugTypeInference) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout<<"Pushing back stmt: ";
- IRPrinter(&qout).print(s);
- qout.flush();
- qDebug("%s", buf.data().constData());
- }
- } else {
- if (DebugTypeInference) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout<<"Finished: ";
- IRPrinter(&qout).print(s);
- qout.flush();
- qDebug("%s", buf.data().constData());
- }
- }
- }
-
- PropagateTempTypes propagator(_defUses);
- for (size_t i = 0, ei = _tempTypes.size(); i != ei; ++i) {
- const Temp &temp = _defUses.temp(int(i));
- if (temp.kind == Temp::Invalid)
- continue;
- const DiscoveredType &tempType = _tempTypes[i];
- if (tempType.type == UnknownType)
- continue;
- propagator.run(temp, tempType);
- }
-
- _worklist = 0;
- }
-
-private:
- bool run(Stmt *s) {
- TypingResult ty;
- std::swap(_ty, ty);
- std::swap(_currentStmt, s);
- visit(_currentStmt);
- std::swap(_currentStmt, s);
- std::swap(_ty, ty);
- return ty.fullyTyped;
- }
-
- TypingResult run(Expr *e) {
- TypingResult ty;
- std::swap(_ty, ty);
- visit(e);
- std::swap(_ty, ty);
-
- if (ty.type != UnknownType)
- setType(e, ty.type);
- return ty;
- }
-
- void setType(Expr *e, DiscoveredType ty) {
- if (Temp *t = e->asTemp()) {
- if (DebugTypeInference)
- qDebug() << "Setting type for temp" << t->index
- << " to " << typeName(Type(ty.type)) << "(" << ty.type << ")"
- << endl;
-
- DiscoveredType &it = _tempTypes[t->index];
- if (it != ty) {
- it = ty;
-
- if (DebugTypeInference) {
- for (Stmt *s : _defUses.uses(*t)) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
- qout << "Pushing back dependent stmt: ";
- IRPrinter(&qout).print(s);
- qout.flush();
- qDebug("%s", buf.data().constData());
- }
- }
-
- for (Stmt *s : qAsConst(_defUses.uses(*t))) {
- if (s != _currentStmt) {
- *_worklist += s;
- }
- }
- }
- } else {
- e->type = (Type) ty.type;
- }
- }
-
-private:
- void visit(Expr *e)
- {
- if (auto c = e->asConst()) {
- visitConst(c);
- } else if (auto s = e->asString()) {
- visitString(s);
- } else if (auto r = e->asRegExp()) {
- visitRegExp(r);
- } else if (auto n = e->asName()) {
- visitName(n);
- } else if (auto t = e->asTemp()) {
- visitTemp(t);
- } else if (auto a = e->asArgLocal()) {
- visitArgLocal(a);
- } else if (auto c = e->asClosure()) {
- visitClosure(c);
- } else if (auto c = e->asConvert()) {
- visitConvert(c);
- } else if (auto u = e->asUnop()) {
- visitUnop(u);
- } else if (auto b = e->asBinop()) {
- visitBinop(b);
- } else if (auto c = e->asCall()) {
- visitCall(c);
- } else if (auto n = e->asNew()) {
- visitNew(n);
- } else if (auto s = e->asSubscript()) {
- visitSubscript(s);
- } else if (auto m = e->asMember()) {
- visitMember(m);
- } else {
- Q_UNREACHABLE();
- }
- }
-
- void visitConst(Const *c) {
- if (c->type & NumberType) {
- if (canConvertToSignedInteger(c->value))
- _ty = TypingResult(SInt32Type);
- else if (canConvertToUnsignedInteger(c->value))
- _ty = TypingResult(UInt32Type);
- else
- _ty = TypingResult(c->type);
- } else
- _ty = TypingResult(c->type);
- }
- void visitString(IR::String *) { _ty = TypingResult(StringType); }
- void visitRegExp(IR::RegExp *) { _ty = TypingResult(VarType); }
- void visitName(Name *) { _ty = TypingResult(VarType); }
- void visitTemp(Temp *e) {
- if (e->memberResolver && e->memberResolver->isValid())
- _ty = TypingResult(e->memberResolver);
- else
- _ty = TypingResult(_tempTypes[e->index]);
- setType(e, _ty.type);
- }
- void visitArgLocal(ArgLocal *e) {
- _ty = TypingResult(VarType);
- setType(e, _ty.type);
- }
-
- void visitClosure(Closure *) { _ty = TypingResult(VarType); }
- void visitConvert(Convert *e) {
- _ty = TypingResult(e->type);
- }
-
- void visitUnop(Unop *e) {
- _ty = run(e->expr);
- switch (e->op) {
- case OpUPlus: _ty.type = DoubleType; return;
- case OpUMinus: _ty.type = DoubleType; return;
- case OpCompl: _ty.type = SInt32Type; return;
- case OpNot: _ty.type = BoolType; return;
-
- case OpPreIncrement:
- case OpPreDecrement:
- Q_ASSERT(!"Inplace operators should have been removed!");
- Q_UNREACHABLE();
- default:
- Q_UNIMPLEMENTED();
- Q_UNREACHABLE();
- }
- }
-
- void visitBinop(Binop *e) {
- TypingResult leftTy = run(e->left);
- TypingResult rightTy = run(e->right);
- _ty.fullyTyped = leftTy.fullyTyped && rightTy.fullyTyped;
-
- switch (e->op) {
- case OpAdd:
- if (leftTy.type.test(VarType) || leftTy.type.test(QObjectType) || rightTy.type.test(VarType) || rightTy.type.test(QObjectType))
- _ty.type = VarType;
- else if (leftTy.type.test(StringType) || rightTy.type.test(StringType))
- _ty.type = StringType;
- else if (leftTy.type != UnknownType && rightTy.type != UnknownType)
- _ty.type = DoubleType;
- else
- _ty.type = UnknownType;
- break;
- case OpSub:
- _ty.type = DoubleType;
- break;
-
- case OpMul:
- case OpDiv:
- case OpMod:
- _ty.type = DoubleType;
- break;
-
- case OpBitAnd:
- case OpBitOr:
- case OpBitXor:
- case OpLShift:
- case OpRShift:
- _ty.type = SInt32Type;
- break;
- case OpURShift:
- _ty.type = UInt32Type;
- break;
-
- case OpGt:
- case OpLt:
- case OpGe:
- case OpLe:
- case OpEqual:
- case OpNotEqual:
- case OpStrictEqual:
- case OpStrictNotEqual:
- case OpAnd:
- case OpOr:
- case OpInstanceof:
- case OpIn:
- _ty.type = BoolType;
- break;
-
- default:
- Q_UNIMPLEMENTED();
- Q_UNREACHABLE();
- }
- }
-
- void visitCall(Call *e) {
- _ty = run(e->base);
- for (ExprList *it = e->args; it; it = it->next)
- _ty.fullyTyped &= run(it->expr).fullyTyped;
- _ty.type = VarType;
- }
- void visitNew(New *e) {
- _ty = run(e->base);
- for (ExprList *it = e->args; it; it = it->next)
- _ty.fullyTyped &= run(it->expr).fullyTyped;
- _ty.type = VarType;
- }
- void visitSubscript(Subscript *e) {
- _ty.fullyTyped = run(e->base).fullyTyped && run(e->index).fullyTyped;
- _ty.type = VarType;
- }
-
- void visitMember(Member *e) {
- _ty = run(e->base);
-
- if (_ty.fullyTyped && _ty.type.memberResolver && _ty.type.memberResolver->isValid()) {
- MemberExpressionResolver *resolver = _ty.type.memberResolver;
- _ty.type = resolver->resolveMember(qmlEngine, resolver, e);
- } else
- _ty.type = VarType;
- }
-
- void visit(Stmt *s)
- {
- if (auto e = s->asExp()) {
- visitExp(e);
- } else if (auto m = s->asMove()) {
- visitMove(m);
- } else if (auto j = s->asJump()) {
- visitJump(j);
- } else if (auto c = s->asCJump()) {
- visitCJump(c);
- } else if (auto r = s->asRet()) {
- visitRet(r);
- } else if (auto p = s->asPhi()) {
- visitPhi(p);
- } else {
- Q_UNREACHABLE();
- }
- }
-
- void visitExp(Exp *s) { _ty = run(s->expr); }
- void visitMove(Move *s) {
- if (Temp *t = s->target->asTemp()) {
- if (Name *n = s->source->asName()) {
- if (n->builtin == Name::builtin_qml_context) {
- _ty = TypingResult(t->memberResolver);
- setType(n, _ty.type);
- setType(t, _ty.type);
- return;
- }
- }
- TypingResult sourceTy = run(s->source);
- setType(t, sourceTy.type);
- _ty = sourceTy;
- return;
- }
-
- TypingResult sourceTy = run(s->source);
- _ty = run(s->target);
- _ty.fullyTyped &= sourceTy.fullyTyped;
- }
-
- void visitJump(Jump *) { _ty = TypingResult(MissingType); }
- void visitCJump(CJump *s) { _ty = run(s->cond); }
- void visitRet(Ret *s) { _ty = run(s->expr); }
- void visitPhi(Phi *s) {
- _ty = run(s->incoming[0]);
- for (int i = 1, ei = s->incoming.size(); i != ei; ++i) {
- TypingResult ty = run(s->incoming[i]);
- if (!ty.fullyTyped && _ty.fullyTyped) {
- // When one of the temps not fully typed, we already know that we cannot completely type this node.
- // So, pick the type we calculated upto this point, and wait until the unknown one will be typed.
- // At that point, this statement will be re-scheduled, and then we can fully type this node.
- _ty.fullyTyped = false;
- break;
- }
- _ty.type.type |= ty.type.type;
- _ty.fullyTyped &= ty.fullyTyped;
- if (_ty.type.test(QObjectType) && _ty.type.memberResolver)
- _ty.type.memberResolver->clear(); // ### TODO: find common ancestor meta-object
- }
-
- switch (_ty.type.type) {
- case UnknownType:
- case UndefinedType:
- case NullType:
- case BoolType:
- case SInt32Type:
- case UInt32Type:
- case DoubleType:
- case StringType:
- case QObjectType:
- case VarType:
- // The type is not a combination of two or more types, so we're done.
- break;
-
- default:
- // There are multiple types involved, so:
- if (_ty.type.isNumber())
- // The type is any combination of double/int32/uint32, but nothing else. So we can
- // type it as double.
- _ty.type = DoubleType;
- else
- // There just is no single type that can hold this combination, so:
- _ty.type = VarType;
- }
-
- setType(s->targetTemp, _ty.type);
- }
-};
-
-class ReverseInference
-{
- const DefUses &_defUses;
-
-public:
- ReverseInference(const DefUses &defUses)
- : _defUses(defUses)
- {}
-
- void run(IR::Function *f)
- {
- Q_UNUSED(f);
-
- QVector<UntypedTemp> knownOk;
- QVector<UntypedTemp> candidates = _defUses.defsUntyped();
- while (!candidates.isEmpty()) {
- UntypedTemp temp = candidates.last();
- candidates.removeLast();
-
- if (knownOk.contains(temp))
- continue;
-
- if (!isUsedAsInt32(temp, knownOk))
- continue;
-
- Stmt *s = _defUses.defStmt(temp.temp);
- Move *m = s->asMove();
- if (!m)
- continue;
- Temp *target = m->target->asTemp();
- if (!target || temp != UntypedTemp(*target) || target->type == SInt32Type)
- continue;
- if (Temp *t = m->source->asTemp()) {
- candidates.append(*t);
- } else if (m->source->asConvert()) {
- break;
- } else if (Binop *b = m->source->asBinop()) {
- bool iterateOnOperands = true;
-
- switch (b->op) {
- case OpSub:
- case OpMul:
- case OpAdd:
- if (b->left->type == SInt32Type && b->right->type == SInt32Type) {
- iterateOnOperands = false;
- break;
- } else {
- continue;
- }
- case OpBitAnd:
- case OpBitOr:
- case OpBitXor:
- case OpLShift:
- case OpRShift:
- case OpURShift:
- break;
- default:
- continue;
- }
-
- if (iterateOnOperands) {
- if (Temp *lt = b->left->asTemp())
- candidates.append(*lt);
- if (Temp *rt = b->right->asTemp())
- candidates.append(*rt);
- }
- } else if (Unop *u = m->source->asUnop()) {
- if (u->op == OpCompl || u->op == OpUPlus) {
- if (Temp *t = u->expr->asTemp())
- candidates.append(*t);
- }
- } else {
- continue;
- }
-
- knownOk.append(temp);
- }
-
- PropagateTempTypes propagator(_defUses);
- for (const UntypedTemp &t : qAsConst(knownOk)) {
- propagator.run(t, SInt32Type);
- if (Stmt *defStmt = _defUses.defStmt(t.temp)) {
- if (Move *m = defStmt->asMove()) {
- if (Convert *c = m->source->asConvert()) {
- c->type = SInt32Type;
- } else if (Unop *u = m->source->asUnop()) {
- if (u->op != OpUMinus)
- u->type = SInt32Type;
- } else if (Binop *b = m->source->asBinop()) {
- b->type = SInt32Type;
- }
- }
- }
- }
- }
-
-private:
- bool isUsedAsInt32(const UntypedTemp &t, const QVector<UntypedTemp> &knownOk) const
- {
- const QVector<Stmt *> &uses = _defUses.uses(t.temp);
- if (uses.isEmpty())
- return false;
-
- for (Stmt *use : uses) {
- if (Move *m = use->asMove()) {
- Temp *targetTemp = m->target->asTemp();
-
- if (m->source->asTemp()) {
- if (!targetTemp || !knownOk.contains(*targetTemp))
- return false;
- } else if (m->source->asConvert()) {
- continue;
- } else if (Binop *b = m->source->asBinop()) {
- switch (b->op) {
- case OpAdd:
- case OpSub:
- case OpMul:
- if (!targetTemp || !knownOk.contains(*targetTemp))
- return false;
- Q_FALLTHROUGH();
- case OpBitAnd:
- case OpBitOr:
- case OpBitXor:
- case OpRShift:
- case OpLShift:
- case OpURShift:
- continue;
- default:
- return false;
- }
- } else if (Unop *u = m->source->asUnop()) {
- if (u->op == OpUPlus) {
- if (!targetTemp || !knownOk.contains(*targetTemp))
- return false;
- } else if (u->op != OpCompl) {
- return false;
- }
- } else {
- return false;
- }
- } else
- return false;
- }
-
- return true;
- }
-};
-
-void convertConst(Const *c, Type targetType)
-{
- switch (targetType) {
- case DoubleType:
- break;
- case SInt32Type:
- c->value = QV4::Primitive::toInt32(c->value);
- break;
- case UInt32Type:
- c->value = QV4::Primitive::toUInt32(c->value);
- break;
- case BoolType:
- c->value = !(c->value == 0 || std::isnan(c->value));
- break;
- case NullType:
- case UndefinedType:
- c->value = qt_qnan();
- c->type = targetType;
- break;
- default:
- Q_UNIMPLEMENTED();
- Q_ASSERT(!"Unimplemented!");
- break;
- }
- c->type = targetType;
-}
-
-class TypePropagation
-{
- DefUses &_defUses;
- Type _ty;
- IR::Function *_f;
-
- bool run(Expr *&e, Type requestedType = UnknownType, bool insertConversion = true) {
- qSwap(_ty, requestedType);
- visit(e);
- qSwap(_ty, requestedType);
-
- if (requestedType != UnknownType) {
- if (e->type != requestedType) {
- if (requestedType & NumberType || requestedType == BoolType) {
- if (insertConversion)
- addConversion(e, requestedType);
- return true;
- }
- }
- }
-
- return false;
- }
-
- struct Conversion {
- Expr **expr;
- Type targetType;
- Stmt *stmt;
-
- Conversion(Expr **expr = 0, Type targetType = UnknownType, Stmt *stmt = 0)
- : expr(expr)
- , targetType(targetType)
- , stmt(stmt)
- {}
- };
-
- Stmt *_currStmt;
- QVector<Conversion> _conversions;
-
- void addConversion(Expr *&expr, Type targetType) {
- _conversions.append(Conversion(&expr, targetType, _currStmt));
- }
-
-public:
- TypePropagation(DefUses &defUses) : _defUses(defUses), _ty(UnknownType) {}
-
- void run(IR::Function *f, StatementWorklist &worklist) {
- _f = f;
- for (BasicBlock *bb : f->basicBlocks()) {
- if (bb->isRemoved())
- continue;
- _conversions.clear();
-
- for (Stmt *s : bb->statements()) {
- _currStmt = s;
- visit(s);
- }
-
- for (const Conversion &conversion : qAsConst(_conversions)) {
- IR::Move *move = conversion.stmt->asMove();
-
- // Note: isel only supports move into member when source is a temp, so convert
- // is not a supported source.
- if (move && move->source->asTemp() && !move->target->asMember()) {
- *conversion.expr = bb->CONVERT(*conversion.expr, conversion.targetType);
- } else if (Const *c = (*conversion.expr)->asConst()) {
- convertConst(c, conversion.targetType);
- } else if (ArgLocal *al = (*conversion.expr)->asArgLocal()) {
- Temp *target = bb->TEMP(bb->newTemp(BasicBlock::NewTempForOptimizer));
- target->type = conversion.targetType;
- Expr *convert = bb->CONVERT(al, conversion.targetType);
- Move *convCall = f->NewStmt<Move>();
- worklist.registerNewStatement(convCall);
- convCall->init(target, convert);
- _defUses.addDef(target, convCall, bb);
-
- Temp *source = bb->TEMP(target->index);
- source->type = conversion.targetType;
- _defUses.addUse(*source, conversion.stmt);
-
- if (conversion.stmt->asPhi()) {
- // Only temps can be used as arguments to phi nodes, so this is a sanity check...:
- Q_UNREACHABLE();
- } else {
- bb->insertStatementBefore(conversion.stmt, convCall);
- }
-
- *conversion.expr = source;
- } else if (Temp *t = (*conversion.expr)->asTemp()) {
- Temp *target = bb->TEMP(bb->newTemp(BasicBlock::NewTempForOptimizer));
- target->type = conversion.targetType;
- Expr *convert = bb->CONVERT(t, conversion.targetType);
- Move *convCall = f->NewStmt<Move>();
- worklist.registerNewStatement(convCall);
- convCall->init(target, convert);
- _defUses.addDef(target, convCall, bb);
- _defUses.addUse(*t, convCall);
-
- Temp *source = bb->TEMP(target->index);
- source->type = conversion.targetType;
- _defUses.removeUse(conversion.stmt, *t);
- _defUses.addUse(*source, conversion.stmt);
-
- if (Phi *phi = conversion.stmt->asPhi()) {
- int idx = phi->incoming.indexOf(t);
- Q_ASSERT(idx != -1);
- bb->in[idx]->insertStatementBeforeTerminator(convCall);
- } else {
- bb->insertStatementBefore(conversion.stmt, convCall);
- }
-
- *conversion.expr = source;
- } else if (Unop *u = (*conversion.expr)->asUnop()) {
- // convert:
- // int32{%2} = double{-double{%1}};
- // to:
- // double{%3} = double{-double{%1}};
- // int32{%2} = int32{convert(double{%3})};
- Temp *tmp = bb->TEMP(bb->newTemp(BasicBlock::NewTempForOptimizer));
- tmp->type = u->type;
- Move *extraMove = f->NewStmt<Move>();
- worklist.registerNewStatement(extraMove);
- extraMove->init(tmp, u);
- _defUses.addDef(tmp, extraMove, bb);
-
- if (Temp *unopOperand = u->expr->asTemp()) {
- _defUses.addUse(*unopOperand, extraMove);
- _defUses.removeUse(move, *unopOperand);
- }
-
- bb->insertStatementBefore(conversion.stmt, extraMove);
-
- *conversion.expr = bb->CONVERT(CloneExpr::cloneTemp(tmp, f), conversion.targetType);
- _defUses.addUse(*tmp, move);
- } else {
- Q_UNREACHABLE();
- }
- }
- }
- }
-
-private:
- void visit(Expr *e)
- {
- if (auto c = e->asConst()) {
- visitConst(c);
- } else if (auto c = e->asConvert()) {
- run(c->expr, c->type);
- } else if (auto u = e->asUnop()) {
- run(u->expr, u->type);
- } else if (auto b = e->asBinop()) {
- visitBinop(b);
- } else if (auto c = e->asCall()) {
- visitCall(c);
- } else if (auto n = e->asNew()) {
- visitNew(n);
- } else if (auto s = e->asSubscript()) {
- visitSubscript(s);
- } else if (auto m = e->asMember()) {
- visitMember(m);
- }
- }
-
- void visitConst(Const *c) {
- if (_ty & NumberType && c->type & NumberType) {
- if (_ty == SInt32Type)
- c->value = QV4::Primitive::toInt32(c->value);
- else if (_ty == UInt32Type)
- c->value = QV4::Primitive::toUInt32(c->value);
- c->type = _ty;
- }
- }
-
- void visitBinop(Binop *e) {
- // FIXME: This routine needs more tuning!
- switch (e->op) {
- case OpAdd:
- case OpSub:
- case OpMul:
- case OpDiv:
- case OpMod:
- case OpBitAnd:
- case OpBitOr:
- case OpBitXor:
- run(e->left, e->type);
- run(e->right, e->type);
- break;
-
- case OpLShift:
- case OpRShift:
- case OpURShift:
- run(e->left, SInt32Type);
- run(e->right, SInt32Type);
- break;
-
- case OpGt:
- case OpLt:
- case OpGe:
- case OpLe:
- case OpEqual:
- case OpNotEqual:
- if (e->left->type == DoubleType) {
- run(e->right, DoubleType);
- } else if (e->right->type == DoubleType) {
- run(e->left, DoubleType);
- } else {
- run(e->left, e->left->type);
- run(e->right, e->right->type);
- }
- break;
-
- case OpStrictEqual:
- case OpStrictNotEqual:
- case OpInstanceof:
- case OpIn:
- run(e->left, e->left->type);
- run(e->right, e->right->type);
- break;
-
- default:
- Q_UNIMPLEMENTED();
- Q_UNREACHABLE();
- }
- }
- void visitCall(Call *e) {
- run(e->base);
- for (ExprList *it = e->args; it; it = it->next)
- run(it->expr);
- }
- void visitNew(New *e) {
- run(e->base);
- for (ExprList *it = e->args; it; it = it->next)
- run(it->expr);
- }
- void visitSubscript(Subscript *e) { run(e->base); run(e->index); }
- void visitMember(Member *e) { run(e->base); }
-
- void visit(Stmt *s)
- {
- if (auto e = s->asExp()) {
- visitExp(e);
- } else if (auto m = s->asMove()) {
- visitMove(m);
- } else if (auto c = s->asCJump()) {
- visitCJump(c);
- } else if (auto r = s->asRet()) {
- visitRet(r);
- } else if (auto p = s->asPhi()) {
- visitPhi(p);
- }
- }
-
- void visitExp(Exp *s) { run(s->expr); }
- void visitMove(Move *s) {
- if (s->source->asConvert())
- return; // this statement got inserted for a phi-node type conversion
-
- run(s->target);
-
- if (Unop *u = s->source->asUnop()) {
- if (u->op == OpUPlus) {
- if (run(u->expr, s->target->type, false)) {
- Convert *convert = _f->New<Convert>();
- convert->init(u->expr, s->target->type);
- s->source = convert;
- } else {
- s->source = u->expr;
- }
-
- return;
- }
- }
-
- const Member *targetMember = s->target->asMember();
- const bool inhibitConversion = targetMember && targetMember->inhibitTypeConversionOnWrite;
-
- run(s->source, s->target->type, !inhibitConversion);
- }
- void visitCJump(CJump *s) {
- run(s->cond, BoolType);
- }
- void visitRet(Ret *s) { run(s->expr); }
- void visitPhi(Phi *s) {
- Type ty = s->targetTemp->type;
- for (int i = 0, ei = s->incoming.size(); i != ei; ++i)
- run(s->incoming[i], ty);
- }
-};
-
-void splitCriticalEdges(IR::Function *f, DominatorTree &df, StatementWorklist &worklist, DefUses &defUses)
-{
- const QVector<BasicBlock *> copy = f->basicBlocks();
- for (BasicBlock *toBB : copy) {
- if (toBB->isRemoved())
- continue;
- if (toBB->in.size() < 2)
- continue;
-
- for (int inIdx = 0, eInIdx = toBB->in.size(); inIdx != eInIdx; ++inIdx) {
- BasicBlock *fromBB = toBB->in[inIdx];
- if (fromBB->out.size() < 2)
- continue;
-
- // We found a critical edge.
- // create the basic block:
- BasicBlock *newBB = f->newBasicBlock(toBB->catchBlock);
- Jump *s = f->NewStmt<Jump>();
- worklist.registerNewStatement(s);
- defUses.registerNewStatement(s);
- s->init(toBB);
- newBB->appendStatement(s);
-
- // rewire the old outgoing edge
- int outIdx = fromBB->out.indexOf(toBB);
- fromBB->out[outIdx] = newBB;
- newBB->in.append(fromBB);
-
- // rewire the old incoming edge
- toBB->in[inIdx] = newBB;
- newBB->out.append(toBB);
-
- // add newBB to the correct loop group
- if (toBB->isGroupStart()) {
- if (fromBB == toBB) {
- // special case: the loop header points back to itself (so it's a small loop).
- newBB->setContainingGroup(toBB);
- } else {
- BasicBlock *container;
- for (container = fromBB->containingGroup(); container; container = container->containingGroup())
- if (container == toBB)
- break;
- if (container == toBB) // if we were already inside the toBB loop
- newBB->setContainingGroup(toBB);
- else
- newBB->setContainingGroup(toBB->containingGroup());
- }
- } else {
- newBB->setContainingGroup(toBB->containingGroup());
- }
-
- // patch the terminator
- Stmt *terminator = fromBB->terminator();
- if (Jump *j = terminator->asJump()) {
- Q_ASSERT(outIdx == 0);
- j->target = newBB;
- } else if (CJump *j = terminator->asCJump()) {
- if (outIdx == 0)
- j->iftrue = newBB;
- else if (outIdx == 1)
- j->iffalse = newBB;
- else
- Q_ASSERT(!"Invalid out edge index for CJUMP!");
- } else if (terminator->asRet()) {
- Q_ASSERT(!"A block with a RET at the end cannot have outgoing edges.");
- } else {
- Q_ASSERT(!"Unknown terminator!");
- }
-
-// qDebug() << "splitting edge" << fromBB->index() << "->" << toBB->index()
-// << "by inserting block" << newBB->index();
-
- // Set the immediate dominator of the new block to inBB
- df.setImmediateDominator(newBB, fromBB);
-
- bool toNeedsNewIdom = true;
- for (BasicBlock *bb : toBB->in) {
- if (bb != newBB && bb != toBB && !df.dominates(toBB, bb)) {
- toNeedsNewIdom = false;
- break;
- }
- }
- if (toNeedsNewIdom)
- df.setImmediateDominator(toBB, newBB);
- }
- }
-}
-
-// Detect all (sub-)loops in a function.
-//
-// Doing loop detection on the CFG is better than relying on the statement information in
-// order to mark loops. Although JavaScript only has natural loops, it can still be the case
-// that something is not a loop even though a loop-like-statement is in the source. For
-// example:
-// while (true) {
-// if (i > 0)
-// break;
-// else
-// break;
-// }
-//
-// Algorithm:
-// - do a DFS on the dominator tree, where for each node:
-// - collect all back-edges
-// - if there are back-edges, the node is a loop-header for a new loop, so:
-// - walk the CFG is reverse-direction, and for every node:
-// - if the node already belongs to a loop, we've found a nested loop:
-// - get the loop-header for the (outermost) nested loop
-// - add that loop-header to the current loop
-// - continue by walking all incoming edges that do not yet belong to the current loop
-// - if the node does not belong to a loop yet, add it to the current loop, and
-// go on with all incoming edges
-//
-// Loop-header detection by checking for back-edges is very straight forward: a back-edge is
-// an incoming edge where the other node is dominated by the current node. Meaning: all
-// execution paths that reach that other node have to go through the current node, that other
-// node ends with a (conditional) jump back to the loop header.
-//
-// The exact order of the DFS on the dominator tree is not important. The only property has to
-// be that a node is only visited when all the nodes it dominates have been visited before.
-// The reason for the DFS is that for nested loops, the inner loop's loop-header is dominated
-// by the outer loop's header. So, by visiting depth-first, sub-loops are identified before
-// their containing loops, which makes nested-loop identification free. An added benefit is
-// that the nodes for those sub-loops are only processed once.
-//
-// Note: independent loops that share the same header are merged together. For example, in
-// the code snippet below, there are 2 back-edges into the loop-header, but only one single
-// loop will be detected.
-// while (a) {
-// if (b)
-// continue;
-// else
-// continue;
-// }
-class LoopDetection
-{
- enum { DebugLoopDetection = 0 };
-
- Q_DISABLE_COPY(LoopDetection)
-
-public:
- struct LoopInfo
- {
- BasicBlock *loopHeader;
- QVector<BasicBlock *> loopBody;
- QVector<LoopInfo *> nestedLoops;
- LoopInfo *parentLoop;
-
- LoopInfo(BasicBlock *loopHeader = 0)
- : loopHeader(loopHeader)
- , parentLoop(0)
- {}
-
- bool isValid() const
- { return loopHeader != 0; }
-
- void addNestedLoop(LoopInfo *nested)
- {
- Q_ASSERT(nested);
- Q_ASSERT(!nestedLoops.contains(nested));
- Q_ASSERT(nested->parentLoop == 0);
- nested->parentLoop = this;
- nestedLoops.append(nested);
- }
- };
-
-public:
- LoopDetection(const DominatorTree &dt)
- : dt(dt)
- {}
-
- ~LoopDetection()
- {
- qDeleteAll(loopInfos);
- }
-
- void run(IR::Function *function)
- {
- std::vector<BasicBlock *> backedges;
- backedges.reserve(4);
-
- const auto order = dt.calculateDFNodeIterOrder();
- for (BasicBlock *bb : order) {
- Q_ASSERT(!bb->isRemoved());
-
- backedges.clear();
-
- for (BasicBlock *in : bb->in)
- if (bb == in || dt.dominates(bb, in))
- backedges.push_back(in);
-
- if (!backedges.empty()) {
- subLoop(bb, backedges);
- }
- }
-
- createLoopInfos(function);
- dumpLoopInfo();
- }
-
- void dumpLoopInfo() const
- {
- if (!DebugLoopDetection)
- return;
-
- qDebug() << "Found" << loopInfos.size() << "loops";
- for (const LoopInfo *info : loopInfos) {
- qDebug() << "Loop header:" << info->loopHeader->index()
- << "for loop" << quint64(info);
- for (BasicBlock *bb : info->loopBody)
- qDebug() << " " << bb->index();
- for (LoopInfo *nested : info->nestedLoops)
- qDebug() << " sub loop:" << quint64(nested);
- qDebug() << " parent loop:" << quint64(info->parentLoop);
- }
- }
-
- QVector<LoopInfo *> allLoops() const
- { return loopInfos; }
-
- // returns all loop headers for loops that have no nested loops.
- QVector<LoopInfo *> innermostLoops() const
- {
- QVector<LoopInfo *> inner(loopInfos);
-
- for (int i = 0; i < inner.size(); ) {
- if (inner.at(i)->nestedLoops.isEmpty())
- ++i;
- else
- inner.remove(i);
- }
-
- return inner;
- }
-
-private:
- void subLoop(BasicBlock *loopHead, const std::vector<BasicBlock *> &backedges)
- {
- loopHead->markAsGroupStart();
- LoopInfo *info = new LoopInfo;
- info->loopHeader = loopHead;
- loopInfos.append(info);
-
- std::vector<BasicBlock *> worklist;
- worklist.reserve(backedges.size() + 8);
- worklist.insert(worklist.end(), backedges.begin(), backedges.end());
- while (!worklist.empty()) {
- BasicBlock *predIt = worklist.back();
- worklist.pop_back();
-
- BasicBlock *subloop = predIt->containingGroup();
- if (subloop) {
- // This is a discovered block. Find its outermost discovered loop.
- while (BasicBlock *parentLoop = subloop->containingGroup())
- subloop = parentLoop;
-
- // If it is already discovered to be a subloop of this loop, continue.
- if (subloop == loopHead)
- continue;
-
- // Yay, it's a subloop of this loop.
- subloop->setContainingGroup(loopHead);
- predIt = subloop;
-
- // Add all predecessors of the subloop header to the worklist, as long as
- // those predecessors are not in the current subloop. It might be the case
- // that they are in other loops, which we will then add as a subloop to the
- // current loop.
- for (BasicBlock *predIn : predIt->in)
- if (predIn->containingGroup() != subloop)
- worklist.push_back(predIn);
- } else {
- if (predIt == loopHead)
- continue;
-
- // This is an undiscovered block. Map it to the current loop.
- predIt->setContainingGroup(loopHead);
-
- // Add all incoming edges to the worklist.
- for (BasicBlock *bb : predIt->in)
- worklist.push_back(bb);
- }
- }
- }
-
-private:
- const DominatorTree &dt;
- QVector<LoopInfo *> loopInfos;
-
- void createLoopInfos(IR::Function *function)
- {
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
- if (BasicBlock *loopHeader = bb->containingGroup())
- findLoop(loopHeader)->loopBody.append(bb);
- }
-
- for (int i = 0, size = loopInfos.size(); i < size; ++i) {
- if (BasicBlock *containingLoopHeader = loopInfos.at(i)->loopHeader->containingGroup())
- findLoop(containingLoopHeader)->addNestedLoop(loopInfos.at(i));
- }
- }
-
- LoopInfo *findLoop(BasicBlock *loopHeader)
- {
- for (LoopInfo *info : qAsConst(loopInfos)) {
- if (info->loopHeader == loopHeader)
- return info;
- }
-
- Q_UNREACHABLE();
- return nullptr;
- }
-};
-
-// High-level algorithm:
-// 0. start with the first node (the start node) of a function
-// 1. emit the node
-// 2. add all outgoing edges that are not yet emitted to the postponed stack
-// 3. When the postponed stack is empty, pop a stack from the loop stack. If that is empty too,
-// we're done.
-// 4. pop a node from the postponed stack, and check if it can be scheduled:
-// a. if all incoming edges are scheduled, go to 4.
-// b. if an incoming edge is unscheduled, but it's a back-edge (an edge in a loop that jumps
-// back to the start of the loop), ignore it
-// c. if there is any unscheduled edge that is not a back-edge, ignore this node, and go to 4.
-// 5. if this node is the start of a loop, push the postponed stack on the loop stack.
-// 6. go back to 1.
-//
-// The postponing action in step 2 will put the node into its containing group. The case where this
-// is important is when a (labeled) continue or a (labeled) break statement occur in a loop: the
-// outgoing edge points to a node that is not part of the current loop (and possibly not of the
-// parent loop).
-//
-// Linear scan register allocation benefits greatly from short life-time intervals with few holes
-// (see for example section 4 (Lifetime Analysis) of [Wimmer1]). This algorithm makes sure that the
-// blocks of a group are scheduled together, with no non-loop blocks in between. This applies
-// recursively for nested loops. It also schedules groups of if-then-else-endif blocks together for
-// the same reason.
-class BlockScheduler
-{
- enum { DebugBlockScheduler = 0 };
-
- IR::Function *function;
- const DominatorTree &dominatorTree;
-
- struct WorkForGroup
- {
- BasicBlock *group;
- QStack<BasicBlock *> postponed;
-
- WorkForGroup(BasicBlock *group = 0): group(group) {}
- };
- WorkForGroup currentGroup;
- QStack<WorkForGroup> postponedGroups;
- QVector<BasicBlock *> sequence;
- ProcessedBlocks emitted;
- QHash<BasicBlock *, BasicBlock *> loopsStartEnd;
-
- bool checkCandidate(BasicBlock *candidate)
- {
- Q_ASSERT(candidate->containingGroup() == currentGroup.group);
-
- for (BasicBlock *in : candidate->in) {
- if (emitted.alreadyProcessed(in))
- continue;
-
- if (dominatorTree.dominates(candidate, in))
- // this is a loop, where there in -> candidate edge is the jump back to the top of the loop.
- continue;
-
- if (in == candidate)
- // this is a very tight loop, e.g.:
- // L1: ...
- // goto L1
- // This can happen when, for example, the basic-block merging gets rid of the empty
- // body block. In this case, we can safely schedule this block (if all other
- // incoming edges are either loop-back edges, or have been scheduled already).
- continue;
-
- return false; // an incoming edge that is not yet emitted, and is not a back-edge
- }
-
- if (candidate->isGroupStart()) {
- // postpone everything, and schedule the loop first.
- postponedGroups.push(currentGroup);
- currentGroup = WorkForGroup(candidate);
- }
-
- return true;
- }
-
- BasicBlock *pickNext()
- {
- while (true) {
- while (currentGroup.postponed.isEmpty()) {
- if (postponedGroups.isEmpty())
- return 0;
- if (currentGroup.group) // record the first and the last node of a group
- loopsStartEnd.insert(currentGroup.group, sequence.last());
- currentGroup = postponedGroups.pop();
- }
-
- BasicBlock *next = currentGroup.postponed.pop();
- if (checkCandidate(next))
- return next;
- }
-
- Q_UNREACHABLE();
- return 0;
- }
-
- void emitBlock(BasicBlock *bb)
- {
- Q_ASSERT(!bb->isRemoved());
- if (emitted.alreadyProcessed(bb))
- return;
-
- sequence.append(bb);
- emitted.markAsProcessed(bb);
- }
-
- void schedule(BasicBlock *functionEntryPoint)
- {
- BasicBlock *next = functionEntryPoint;
-
- while (next) {
- emitBlock(next);
- for (int i = next->out.size(); i != 0; ) {
- // postpone all outgoing edges, if they were not already processed
- --i;
- BasicBlock *out = next->out[i];
- if (!emitted.alreadyProcessed(out))
- postpone(out);
- }
- next = pickNext();
- }
- }
-
- void postpone(BasicBlock *bb)
- {
- if (currentGroup.group == bb->containingGroup()) {
- currentGroup.postponed.append(bb);
- return;
- }
-
- for (int i = postponedGroups.size(); i != 0; ) {
- --i;
- WorkForGroup &g = postponedGroups[i];
- if (g.group == bb->containingGroup()) {
- g.postponed.append(bb);
- return;
- }
- }
-
- Q_UNREACHABLE();
- }
-
- void dumpLoopStartsEnds() const
- {
- qDebug() << "Found" << loopsStartEnd.size() << "loops:";
- for (auto key : loopsStartEnd.keys())
- qDebug("Loop starting at L%d ends at L%d.", key->index(),
- loopsStartEnd.value(key)->index());
- }
-
-public:
- BlockScheduler(IR::Function *function, const DominatorTree &dominatorTree)
- : function(function)
- , dominatorTree(dominatorTree)
- , sequence(0)
- , emitted(function)
- {}
-
- QHash<BasicBlock *, BasicBlock *> go()
- {
- showMeTheCode(function, "Before block scheduling");
- if (DebugBlockScheduler)
- dominatorTree.dumpImmediateDominators();
-
- schedule(function->basicBlock(0));
-
- Q_ASSERT(function->liveBasicBlocksCount() == sequence.size());
- function->setScheduledBlocks(sequence);
- if (DebugBlockScheduler)
- dumpLoopStartsEnds();
- return loopsStartEnd;
- }
-};
-
-#ifndef QT_NO_DEBUG
-void checkCriticalEdges(const QVector<BasicBlock *> &basicBlocks) {
- for (BasicBlock *bb : basicBlocks) {
- if (bb && bb->out.size() > 1) {
- for (BasicBlock *bb2 : bb->out) {
- if (bb2 && bb2->in.size() > 1) {
- qDebug() << "found critical edge between block"
- << bb->index() << "and block" << bb2->index();
- Q_ASSERT(false);
- }
- }
- }
- }
-}
-#endif
-
-static void cleanupBasicBlocks(IR::Function *function)
-{
- showMeTheCode(function, "Before basic block cleanup");
-
- // Algorithm: this is the iterative version of a depth-first search for all blocks that are
- // reachable through outgoing edges, starting with the start block and all exception handler
- // blocks.
- QBitArray reachableBlocks(function->basicBlockCount());
- QVarLengthArray<BasicBlock *, 16> postponed;
- for (int i = 0, ei = function->basicBlockCount(); i != ei; ++i) {
- BasicBlock *bb = function->basicBlock(i);
- if (i == 0 || bb->isExceptionHandler())
- postponed.append(bb);
- }
-
- while (!postponed.isEmpty()) {
- BasicBlock *bb = postponed.back();
- postponed.pop_back();
- if (bb->isRemoved()) // this block was removed before, we don't need to clean it up.
- continue;
-
- reachableBlocks.setBit(bb->index());
-
- for (BasicBlock *outBB : bb->out) {
- if (!reachableBlocks.at(outBB->index()))
- postponed.append(outBB);
- }
- }
-
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved()) // the block has already been removed, so ignore it
- continue;
- if (reachableBlocks.at(bb->index())) // the block is reachable, so ignore it
- continue;
-
- for (BasicBlock *outBB : bb->out) {
- if (outBB->isRemoved() || !reachableBlocks.at(outBB->index()))
- continue; // We do not need to unlink from blocks that are scheduled to be removed.
-
- int idx = outBB->in.indexOf(bb);
- if (idx != -1) {
- outBB->in.remove(idx);
- for (Stmt *s : outBB->statements()) {
- if (Phi *phi = s->asPhi())
- phi->incoming.remove(idx);
- else
- break;
- }
- }
- }
-
- function->removeBasicBlock(bb);
- }
-
- showMeTheCode(function, "After basic block cleanup");
-}
-
-inline Const *isConstPhi(Phi *phi)
-{
- if (Const *c = phi->incoming[0]->asConst()) {
- for (int i = 1, ei = phi->incoming.size(); i != ei; ++i) {
- if (Const *cc = phi->incoming[i]->asConst()) {
- if (c->value != cc->value)
- return 0;
- if (!(c->type == cc->type || (c->type & NumberType && cc->type & NumberType)))
- return 0;
- if (int(c->value) == 0 && int(cc->value) == 0)
- if (isNegative(c->value) != isNegative(cc->value))
- return 0;
- } else {
- return 0;
- }
- }
- return c;
- }
- return 0;
-}
-
-static Expr *clone(Expr *e, IR::Function *function) {
- if (Temp *t = e->asTemp()) {
- return CloneExpr::cloneTemp(t, function);
- } else if (Const *c = e->asConst()) {
- return CloneExpr::cloneConst(c, function);
- } else if (Name *n = e->asName()) {
- return CloneExpr::cloneName(n, function);
- } else {
- Q_UNREACHABLE();
- return e;
- }
-}
-
-class ExprReplacer
-{
- DefUses &_defUses;
- IR::Function* _function;
- Temp *_toReplace;
- Expr *_replacement;
-
-public:
- ExprReplacer(DefUses &defUses, IR::Function *function)
- : _defUses(defUses)
- , _function(function)
- , _toReplace(0)
- , _replacement(0)
- {}
-
- bool operator()(Temp *toReplace, Expr *replacement, StatementWorklist &W, QVector<Stmt *> *newUses = 0)
- {
- Q_ASSERT(replacement->asTemp() || replacement->asConst() || replacement->asName());
-
- qSwap(_toReplace, toReplace);
- qSwap(_replacement, replacement);
-
- const QVector<Stmt *> &uses = _defUses.uses(*_toReplace);
-
- // Prevent the following:
- // L3:
- // %1 = phi L1: %2, L2: %3
- // %4 = phi L1: %5, L2: %6
- // %6 = %1
- // From turning into:
- // L3:
- // %1 = phi L1: %2, L2: %3
- // %4 = phi L1: %5, L2: %1
- //
- // Because both phi nodes are "executed in parallel", we cannot replace %6 by %1 in the
- // second phi node. So, if the defining statement for a temp is a phi node, and one of the
- // uses of the to-be-replaced statement is a phi node in the same block as the defining
- // statement, bail out.
- if (Temp *r = _replacement->asTemp()) {
- if (_defUses.defStmt(*r)->asPhi()) {
- BasicBlock *replacementDefBlock = _defUses.defStmtBlock(*r);
- for (Stmt *use : uses) {
- if (Phi *usePhi = use->asPhi()) {
- if (_defUses.defStmtBlock(*usePhi->targetTemp) == replacementDefBlock)
- return false;
- }
- }
- }
- }
-
-// qout << "Replacing ";toReplace->dump(qout);qout<<" by ";replacement->dump(qout);qout<<endl;
-
- if (newUses)
- newUses->reserve(uses.size());
-
-// qout << " " << uses.size() << " uses:"<<endl;
- for (Stmt *use : uses) {
-// qout<<" ";use->dump(qout);qout<<"\n";
- visit(use);
-// qout<<" -> ";use->dump(qout);qout<<"\n";
- W += use;
- if (newUses)
- newUses->push_back(use);
- }
-
- qSwap(_replacement, replacement);
- qSwap(_toReplace, toReplace);
- return true;
- }
-
-private:
- void visit(Expr *e)
- {
- if (auto c = e->asConst()) {
- visitConst(c);
- } else if (auto s = e->asString()) {
- visitString(s);
- } else if (auto r = e->asRegExp()) {
- visitRegExp(r);
- } else if (auto n = e->asName()) {
- visitName(n);
- } else if (auto t = e->asTemp()) {
- visitTemp(t);
- } else if (auto a = e->asArgLocal()) {
- visitArgLocal(a);
- } else if (auto c = e->asClosure()) {
- visitClosure(c);
- } else if (auto c = e->asConvert()) {
- visitConvert(c);
- } else if (auto u = e->asUnop()) {
- visitUnop(u);
- } else if (auto b = e->asBinop()) {
- visitBinop(b);
- } else if (auto c = e->asCall()) {
- visitCall(c);
- } else if (auto n = e->asNew()) {
- visitNew(n);
- } else if (auto s = e->asSubscript()) {
- visitSubscript(s);
- } else if (auto m = e->asMember()) {
- visitMember(m);
- } else {
- Q_UNREACHABLE();
- }
- }
-
- void visitConst(Const *) {}
- void visitString(IR::String *) {}
- void visitRegExp(IR::RegExp *) {}
- void visitName(Name *) {}
- void visitTemp(Temp *) {}
- void visitArgLocal(ArgLocal *) {}
- void visitClosure(Closure *) {}
- void visitConvert(Convert *e) { check(e->expr); }
- void visitUnop(Unop *e) { check(e->expr); }
- void visitBinop(Binop *e) { check(e->left); check(e->right); }
- void visitCall(Call *e) {
- check(e->base);
- for (ExprList *it = e->args; it; it = it->next)
- check(it->expr);
- }
- void visitNew(New *e) {
- check(e->base);
- for (ExprList *it = e->args; it; it = it->next)
- check(it->expr);
- }
- void visitSubscript(Subscript *e) { check(e->base); check(e->index); }
- void visitMember(Member *e) { check(e->base); }
-
- void visit(Stmt *s)
- {
- if (auto e = s->asExp()) {
- visitExp(e);
- } else if (auto m = s->asMove()) {
- visitMove(m);
- } else if (auto j = s->asJump()) {
- visitJump(j);
- } else if (auto c = s->asCJump()) {
- visitCJump(c);
- } else if (auto r = s->asRet()) {
- visitRet(r);
- } else if (auto p = s->asPhi()) {
- visitPhi(p);
- } else {
- Q_UNREACHABLE();
- }
- }
-
- void visitExp(Exp *s) { check(s->expr); }
- void visitMove(Move *s) { check(s->target); check(s->source); }
- void visitJump(Jump *) {}
- void visitCJump(CJump *s) { check(s->cond); }
- void visitRet(Ret *s) { check(s->expr); }
- void visitPhi(Phi *s) {
- for (int i = 0, ei = s->incoming.size(); i != ei; ++i)
- check(s->incoming[i]);
- }
-
-private:
- void check(Expr *&e) {
- if (equals(e, _toReplace)) {
- e = clone(_replacement, _function);
- } else {
- visit(e);
- }
- }
-
- // This only calculates equality for everything needed by constant propagation
- bool equals(Expr *e1, Expr *e2) const {
- if (e1 == e2)
- return true;
-
- if (Const *c1 = e1->asConst()) {
- if (Const *c2 = e2->asConst())
- return c1->value == c2->value && (c1->type == c2->type || (c1->type & NumberType && c2->type & NumberType));
- } else if (Temp *t1 = e1->asTemp()) {
- if (Temp *t2 = e2->asTemp())
- return *t1 == *t2;
- } else if (Name *n1 = e1->asName()) {
- if (Name *n2 = e2->asName()) {
- if (n1->id) {
- if (n2->id)
- return *n1->id == *n2->id;
- } else {
- return n1->builtin == n2->builtin;
- }
- }
- }
-
- if (e1->type == IR::NullType && e2->type == IR::NullType)
- return true;
- if (e1->type == IR::UndefinedType && e2->type == IR::UndefinedType)
- return true;
-
- return false;
- }
-};
-
-namespace {
-/// This function removes the basic-block from the function's list, unlinks any uses and/or defs,
-/// and removes unreachable staements from the worklist, so that optimiseSSA won't consider them
-/// anymore.
-void unlink(BasicBlock *from, BasicBlock *to, IR::Function *func, DefUses &defUses,
- StatementWorklist &W, DominatorTree &dt)
-{
- enum { DebugUnlinking = 0 };
-
- struct Util {
- static void removeIncomingEdge(BasicBlock *from, BasicBlock *to, DefUses &defUses, StatementWorklist &W)
- {
- int idx = to->in.indexOf(from);
- if (idx == -1)
- return;
-
- to->in.remove(idx);
- for (Stmt *outStmt : to->statements()) {
- if (!outStmt)
- continue;
- if (Phi *phi = outStmt->asPhi()) {
- if (Temp *t = phi->incoming[idx]->asTemp()) {
- defUses.removeUse(phi, *t);
- W += defUses.defStmt(*t);
- }
- phi->incoming.remove(idx);
- W += phi;
- } else {
- break;
- }
- }
- }
-
- static bool isReachable(BasicBlock *bb, const DominatorTree &dt)
- {
- for (BasicBlock *in : bb->in) {
- if (in->isRemoved())
- continue;
- if (dt.dominates(bb, in)) // a back-edge, not interesting
- continue;
- return true;
- }
-
- return false;
- }
- };
-
- Q_ASSERT(!from->isRemoved());
- Q_ASSERT(!to->isRemoved());
-
- // don't purge blocks that are entry points for catch statements. They might not be directly
- // connected, but are required anyway
- if (to->isExceptionHandler())
- return;
-
- if (DebugUnlinking)
- qDebug("Unlinking L%d -> L%d...", from->index(), to->index());
-
- // First, unlink the edge
- from->out.removeOne(to);
- Util::removeIncomingEdge(from, to, defUses, W);
-
- BasicBlockSet siblings;
- siblings.init(func);
-
- // Check if the target is still reachable...
- if (Util::isReachable(to, dt)) { // yes, recalculate the immediate dominator, and we're done.
- if (DebugUnlinking)
- qDebug(".. L%d is still reachable, recalulate idom.", to->index());
- dt.collectSiblings(to, siblings);
- } else {
- if (DebugUnlinking)
- qDebug(".. L%d is unreachable, purging it:", to->index());
- // The target is unreachable, so purge it:
- QVector<BasicBlock *> toPurge;
- toPurge.reserve(8);
- toPurge.append(to);
- while (!toPurge.isEmpty()) {
- BasicBlock *bb = toPurge.first();
- toPurge.removeFirst();
- if (DebugUnlinking)
- qDebug("... purging L%d", bb->index());
-
- if (bb->isRemoved())
- continue;
-
- // unlink all incoming edges
- for (BasicBlock *in : bb->in) {
- int idx = in->out.indexOf(bb);
- if (idx != -1)
- in->out.remove(idx);
- }
-
- // unlink all outgoing edges, including "arguments" to phi statements
- for (BasicBlock *out : bb->out) {
- if (out->isRemoved())
- continue;
-
- Util::removeIncomingEdge(bb, out, defUses, W);
-
- if (Util::isReachable(out, dt)) {
- dt.collectSiblings(out, siblings);
- } else {
- // if a successor has no incoming edges after unlinking the current basic block,
- // then it is unreachable, and can be purged too
- toPurge.append(out);
- }
- }
-
- // unlink all defs/uses from the statements in the basic block
- for (Stmt *s : bb->statements()) {
- if (!s)
- continue;
-
- W += defUses.removeDefUses(s);
- W -= s;
- }
-
- siblings.remove(bb);
- dt.setImmediateDominator(bb, 0);
- func->removeBasicBlock(bb);
- }
- }
-
- dt.recalculateIDoms(siblings);
- if (DebugUnlinking)
- qDebug("Unlinking done.");
-}
-
-bool tryOptimizingComparison(Expr *&expr)
-{
- Binop *b = expr->asBinop();
- if (!b)
- return false;
- Const *leftConst = b->left->asConst();
- if (!leftConst || leftConst->type == StringType || leftConst->type == VarType || leftConst->type == QObjectType)
- return false;
- Const *rightConst = b->right->asConst();
- if (!rightConst || rightConst->type == StringType || rightConst->type == VarType || rightConst->type == QObjectType)
- return false;
-
- QV4::Primitive l = convertToValue(leftConst);
- QV4::Primitive r = convertToValue(rightConst);
-
- switch (b->op) {
- case OpGt:
- leftConst->value = Runtime::method_compareGreaterThan(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpLt:
- leftConst->value = Runtime::method_compareLessThan(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpGe:
- leftConst->value = Runtime::method_compareGreaterEqual(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpLe:
- leftConst->value = Runtime::method_compareLessEqual(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpStrictEqual:
- leftConst->value = Runtime::method_compareStrictEqual(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpEqual:
- leftConst->value = Runtime::method_compareEqual(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpStrictNotEqual:
- leftConst->value = Runtime::method_compareStrictNotEqual(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- case OpNotEqual:
- leftConst->value = Runtime::method_compareNotEqual(l, r);
- leftConst->type = BoolType;
- expr = leftConst;
- return true;
- default:
- break;
- }
-
- return false;
-}
-
-void cfg2dot(IR::Function *f, const QVector<LoopDetection::LoopInfo *> &loops = QVector<LoopDetection::LoopInfo *>())
-{
- static const bool showCode = qEnvironmentVariableIsSet("QV4_SHOW_IR");
- if (!showCode)
- return;
-
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
-
- struct Util {
- QTextStream &qout;
- Util(QTextStream &qout): qout(qout) {}
- void genLoop(const LoopDetection::LoopInfo *loop)
- {
- qout << " subgraph \"cluster" << quint64(loop) << "\" {\n";
- qout << " L" << loop->loopHeader->index() << ";\n";
- for (BasicBlock *bb : loop->loopBody)
- qout << " L" << bb->index() << ";\n";
- for (LoopDetection::LoopInfo *nested : loop->nestedLoops)
- genLoop(nested);
- qout << " }\n";
- }
- };
-
- QString name;
- if (f->name) name = *f->name;
- else name = QStringLiteral("%1").arg((unsigned long long)f);
- qout << "digraph \"" << name << "\" { ordering=out;\n";
-
- for (LoopDetection::LoopInfo *l : loops) {
- if (l->parentLoop == 0)
- Util(qout).genLoop(l);
- }
-
- for (BasicBlock *bb : f->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- int idx = bb->index();
- qout << " L" << idx << " [label=\"L" << idx << "\"";
- if (idx == 0 || bb->terminator()->asRet())
- qout << ", shape=doublecircle";
- else
- qout << ", shape=circle";
- qout << "];\n";
- for (BasicBlock *out : bb->out)
- qout << " L" << idx << " -> L" << out->index() << "\n";
- }
-
- qout << "}\n";
- buf.close();
- qDebug("%s", buf.data().constData());
-}
-
-} // anonymous namespace
-
-void optimizeSSA(StatementWorklist &W, DefUses &defUses, DominatorTree &df)
-{
- IR::Function *function = W.function();
- ExprReplacer replaceUses(defUses, function);
-
- Stmt *s = 0;
- while ((s = W.takeNext(s))) {
-
- if (Phi *phi = s->asPhi()) {
- // dead code elimination:
- if (defUses.useCount(*phi->targetTemp) == 0) {
- W += defUses.removeDefUses(phi);
- W.remove(s);
- continue;
- }
-
- // constant propagation:
- if (Const *c = isConstPhi(phi)) {
- replaceUses(phi->targetTemp, c, W);
- defUses.removeDef(*phi->targetTemp);
- W.remove(s);
- continue;
- }
-
- // copy propagation:
- if (phi->incoming.size() == 1) {
- Temp *t = phi->targetTemp;
- Expr *e = phi->incoming.first();
-
- QVector<Stmt *> newT2Uses;
- replaceUses(t, e, W, &newT2Uses);
- if (Temp *t2 = e->asTemp()) {
- defUses.removeUse(s, *t2);
- defUses.addUses(*t2, newT2Uses);
- W += defUses.defStmt(*t2);
- }
- defUses.removeDef(*t);
- W.remove(s);
- continue;
- }
- } else if (Move *m = s->asMove()) {
- if (Convert *convert = m->source->asConvert()) {
- if (Const *sourceConst = convert->expr->asConst()) {
- convertConst(sourceConst, convert->type);
- m->source = sourceConst;
- W += m;
- continue;
- } else if (Temp *sourceTemp = convert->expr->asTemp()) {
- if (sourceTemp->type == convert->type) {
- m->source = sourceTemp;
- W += m;
- continue;
- }
- }
- }
-
- if (Temp *targetTemp = m->target->asTemp()) {
- // dead code elimination:
- if (defUses.useCount(*targetTemp) == 0) {
- EliminateDeadCode(defUses, W).run(m->source, s);
- if (!m->source)
- W.remove(s);
- continue;
- }
-
- // constant propagation:
- if (Const *sourceConst = m->source->asConst()) {
- Q_ASSERT(sourceConst->type != UnknownType);
- replaceUses(targetTemp, sourceConst, W);
- defUses.removeDef(*targetTemp);
- W.remove(s);
- continue;
- }
- if (Member *member = m->source->asMember()) {
- if (member->kind == Member::MemberOfEnum) {
- Const *c = function->New<Const>();
- const int enumValue = member->enumValue;
- c->init(SInt32Type, enumValue);
- replaceUses(targetTemp, c, W);
- defUses.removeDef(*targetTemp);
- W.remove(s);
- defUses.removeUse(s, *member->base->asTemp());
- continue;
- } else if (member->kind != IR::Member::MemberOfIdObjectsArray && member->attachedPropertiesId != 0 && member->property && member->base->asTemp()) {
- // Attached properties have no dependency on their base. Isel doesn't
- // need it and we can eliminate the temp used to initialize it.
- defUses.removeUse(s, *member->base->asTemp());
- Const *c = function->New<Const>();
- c->init(SInt32Type, 0);
- member->base = c;
- continue;
- }
- }
-
- // copy propagation:
- if (Temp *sourceTemp = m->source->asTemp()) {
- QVector<Stmt *> newT2Uses;
- if (replaceUses(targetTemp, sourceTemp, W, &newT2Uses)) {
- defUses.removeUse(s, *sourceTemp);
- defUses.addUses(*sourceTemp, newT2Uses);
- defUses.removeDef(*targetTemp);
- W.remove(s);
- }
- continue;
- }
-
- if (Unop *unop = m->source->asUnop()) {
- // Constant unary expression evaluation:
- if (Const *constOperand = unop->expr->asConst()) {
- if (constOperand->type & NumberType || constOperand->type == BoolType) {
- // TODO: implement unop propagation for other constant types
- bool doneSomething = false;
- switch (unop->op) {
- case OpNot:
- constOperand->value = !constOperand->value;
- constOperand->type = BoolType;
- doneSomething = true;
- break;
- case OpUMinus:
- if (int(constOperand->value) == 0 && int(constOperand->value) == constOperand->value) {
- if (isNegative(constOperand->value))
- constOperand->value = 0;
- else
- constOperand->value = -1 / Q_INFINITY;
- constOperand->type = DoubleType;
- doneSomething = true;
- break;
- }
-
- constOperand->value = -constOperand->value;
- doneSomething = true;
- break;
- case OpUPlus:
- if (unop->type != UnknownType)
- constOperand->type = unop->type;
- doneSomething = true;
- break;
- case OpCompl:
- constOperand->value = ~QV4::Primitive::toInt32(constOperand->value);
- constOperand->type = SInt32Type;
- doneSomething = true;
- break;
- case OpPreIncrement:
- constOperand->value = constOperand->value + 1;
- doneSomething = true;
- break;
- case OpPreDecrement:
- constOperand->value = constOperand->value - 1;
- doneSomething = true;
- break;
- default:
- break;
- };
-
- if (doneSomething) {
- m->source = constOperand;
- W += m;
- }
- }
- }
- // TODO: if the result of a unary not operation is only used in a cjump,
- // then inline it.
-
- continue;
- }
-
- if (Binop *binop = m->source->asBinop()) {
- Const *leftConst = binop->left->asConst();
- Const *rightConst = binop->right->asConst();
-
- { // Typical casts to int32:
- Expr *casted = 0;
- switch (binop->op) {
- case OpBitAnd:
- if (leftConst && !rightConst && QV4::Primitive::toUInt32(leftConst->value) == 0xffffffff)
- casted = binop->right;
- else if (!leftConst && rightConst && QV4::Primitive::toUInt32(rightConst->value) == 0xffffffff)
- casted = binop->left;
- break;
- case OpBitOr:
- if (leftConst && !rightConst && QV4::Primitive::toInt32(leftConst->value) == 0)
- casted = binop->right;
- else if (!leftConst && rightConst && QV4::Primitive::toUInt32(rightConst->value) == 0)
- casted = binop->left;
- break;
- default:
- break;
- }
- if (casted && casted->type == SInt32Type) {
- m->source = casted;
- W += m;
- continue;
- }
- }
- if (rightConst) {
- switch (binop->op) {
- case OpLShift:
- case OpRShift:
- if (double v = QV4::Primitive::toInt32(rightConst->value) & 0x1f) {
- // mask right hand side of shift operations
- rightConst->value = v;
- rightConst->type = SInt32Type;
- } else {
- // shifting a value over 0 bits is a move:
- if (rightConst->value == 0) {
- m->source = binop->left;
- W += m;
- }
- }
-
- break;
- default:
- break;
- }
- }
-
- // TODO: More constant binary expression evaluation
- // TODO: If the result of the move is only used in one single cjump, then
- // inline the binop into the cjump.
- if (!leftConst || leftConst->type == StringType || leftConst->type == VarType || leftConst->type == QObjectType)
- continue;
- if (!rightConst || rightConst->type == StringType || rightConst->type == VarType || rightConst->type == QObjectType)
- continue;
-
- QV4::Primitive lc = convertToValue(leftConst);
- QV4::Primitive rc = convertToValue(rightConst);
- double l = lc.toNumber();
- double r = rc.toNumber();
-
- switch (binop->op) {
- case OpMul:
- leftConst->value = l * r;
- leftConst->type = DoubleType;
- m->source = leftConst;
- W += m;
- break;
- case OpAdd:
- leftConst->value = l + r;
- leftConst->type = DoubleType;
- m->source = leftConst;
- W += m;
- break;
- case OpSub:
- leftConst->value = l - r;
- leftConst->type = DoubleType;
- m->source = leftConst;
- W += m;
- break;
- case OpDiv:
- leftConst->value = l / r;
- leftConst->type = DoubleType;
- m->source = leftConst;
- W += m;
- break;
- case OpMod:
- leftConst->value = std::fmod(l, r);
- leftConst->type = DoubleType;
- m->source = leftConst;
- W += m;
- break;
- default:
- if (tryOptimizingComparison(m->source))
- W += m;
- break;
- }
-
- continue;
- }
- } // TODO: var{#0} = double{%10} where %10 is defined once and used once. E.g.: function(t){t = t % 2; return t; }
-
- } else if (CJump *cjump = s->asCJump()) {
- if (Const *constantCondition = cjump->cond->asConst()) {
- // Note: this assumes that there are no critical edges! Meaning, we can safely purge
- // any basic blocks that are found to be unreachable.
- Jump *jump = function->NewStmt<Jump>();
- W.registerNewStatement(jump);
- if (convertToValue(constantCondition).toBoolean()) {
- jump->target = cjump->iftrue;
- unlink(cjump->parent, cjump->iffalse, function, defUses, W, df);
- } else {
- jump->target = cjump->iffalse;
- unlink(cjump->parent, cjump->iftrue, function, defUses, W, df);
- }
- W.replace(s, jump);
-
- continue;
- } else if (cjump->cond->asBinop()) {
- if (tryOptimizingComparison(cjump->cond))
- W += cjump;
- continue;
- }
- // TODO: Constant unary expression evaluation
- // TODO: if the expression is an unary not operation, lift the expression, and switch
- // the then/else blocks.
- }
- }
-
- W.applyToFunction();
-}
-
-//### TODO: use DefUses from the optimizer, because it already has all this information
-class InputOutputCollector
-{
- void setOutput(Temp *out)
- {
- Q_ASSERT(!output);
- output = out;
- }
-
-public:
- std::vector<Temp *> inputs;
- Temp *output;
-
- InputOutputCollector()
- { inputs.reserve(4); }
-
- void collect(Stmt *s) {
- inputs.resize(0);
- output = 0;
- visit(s);
- }
-
-private:
- void visit(Expr *e)
- {
- if (auto t = e->asTemp()) {
- inputs.push_back(t);
- } else {
- EXPR_VISIT_ALL_KINDS(e);
- }
- }
-
- void visit(Stmt *s)
- {
- if (auto m = s->asMove()) {
- visit(m->source);
- if (Temp *t = m->target->asTemp()) {
- setOutput(t);
- } else {
- visit(m->target);
- }
- } else if (s->asPhi()) {
- // Handled separately
- } else {
- STMT_VISIT_ALL_KINDS(s);
- }
- }
-};
-
-/*
- * The algorithm is described in:
- *
- * Linear Scan Register Allocation on SSA Form
- * Christian Wimmer & Michael Franz, CGO'10, April 24-28, 2010
- *
- * See LifeTimeIntervals::renumber for details on the numbering.
- */
-class LifeRanges {
- class LiveRegs
- {
- typedef std::vector<int> Storage;
- Storage regs;
-
- public:
- void insert(int r)
- {
- if (find(r) == end())
- regs.push_back(r);
- }
-
- void unite(const LiveRegs &other)
- {
- if (other.empty())
- return;
- if (empty()) {
- regs = other.regs;
- return;
- }
- for (int r : other.regs)
- insert(r);
- }
-
- typedef Storage::iterator iterator;
- iterator find(int r)
- { return std::find(regs.begin(), regs.end(), r); }
-
- iterator begin()
- { return regs.begin(); }
-
- iterator end()
- { return regs.end(); }
-
- void erase(iterator it)
- { regs.erase(it); }
-
- void remove(int r)
- {
- iterator it = find(r);
- if (it != end())
- erase(it);
- }
-
- bool empty() const
- { return regs.empty(); }
-
- int size() const
- { return int(regs.size()); }
-
- int at(int idx) const
- { return regs.at(idx); }
- };
-
- std::vector<LiveRegs> _liveIn;
- std::vector<LifeTimeInterval *> _intervals;
- LifeTimeIntervals::Ptr _sortedIntervals;
-
- LifeTimeInterval &interval(const Temp *temp)
- {
- LifeTimeInterval *lti = _intervals[temp->index];
- Q_ASSERT(lti);
- return *lti;
- }
-
- void ensureInterval(const IR::Temp &temp)
- {
- Q_ASSERT(!temp.isInvalid());
- LifeTimeInterval *&lti = _intervals[temp.index];
- if (lti)
- return;
- lti = new LifeTimeInterval;
- lti->setTemp(temp);
- }
-
- int defPosition(IR::Stmt *s) const
- {
- return usePosition(s) + 1;
- }
-
- int usePosition(IR::Stmt *s) const
- {
- return _sortedIntervals->positionForStatement(s);
- }
-
- int start(IR::BasicBlock *bb) const
- {
- return _sortedIntervals->startPosition(bb);
- }
-
- int end(IR::BasicBlock *bb) const
- {
- return _sortedIntervals->endPosition(bb);
- }
-
-public:
- LifeRanges(IR::Function *function, const QHash<BasicBlock *, BasicBlock *> &startEndLoops)
- : _intervals(function->tempCount)
- {
- _sortedIntervals = LifeTimeIntervals::create(function);
- _liveIn.resize(function->basicBlockCount());
-
- for (int i = function->basicBlockCount() - 1; i >= 0; --i) {
- BasicBlock *bb = function->basicBlock(i);
- buildIntervals(bb, startEndLoops.value(bb, 0));
- }
-
- _intervals.clear();
- }
-
- LifeTimeIntervals::Ptr intervals() const { return _sortedIntervals; }
-
- void dump() const
- {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream qout(&buf);
-
- qout << "Life ranges:" << endl;
- qout << "Intervals:" << endl;
- const auto intervals = _sortedIntervals->intervals();
- for (const LifeTimeInterval *range : intervals) {
- range->dump(qout);
- qout << endl;
- }
-
- IRPrinter printer(&qout);
- for (size_t i = 0, ei = _liveIn.size(); i != ei; ++i) {
- qout << "L" << i <<" live-in: ";
- auto live = _liveIn.at(i);
- if (live.empty())
- qout << "(none)";
- std::sort(live.begin(), live.end());
- for (int i = 0; i < live.size(); ++i) {
- if (i > 0) qout << ", ";
- qout << '%' << live.at(i);
- }
- qout << endl;
- }
- buf.close();
- qDebug("%s", buf.data().constData());
- }
-
-private:
- void buildIntervals(BasicBlock *bb, BasicBlock *loopEnd)
- {
- LiveRegs live;
- for (BasicBlock *successor : bb->out) {
- live.unite(_liveIn[successor->index()]);
- const int bbIndex = successor->in.indexOf(bb);
- Q_ASSERT(bbIndex >= 0);
-
- for (Stmt *s : successor->statements()) {
- if (Phi *phi = s->asPhi()) {
- if (Temp *t = phi->incoming.at(bbIndex)->asTemp()) {
- ensureInterval(*t);
- live.insert(t->index);
- }
- } else {
- break;
- }
- }
- }
-
- const QVector<Stmt *> &statements = bb->statements();
-
- for (int reg : live)
- _intervals[reg]->addRange(start(bb), end(bb));
-
- InputOutputCollector collector;
- for (int i = statements.size() - 1; i >= 0; --i) {
- Stmt *s = statements.at(i);
- if (Phi *phi = s->asPhi()) {
- ensureInterval(*phi->targetTemp);
- LiveRegs::iterator it = live.find(phi->targetTemp->index);
- if (it == live.end()) {
- // a phi node target that is only defined, but never used
- interval(phi->targetTemp).setFrom(start(bb));
- } else {
- live.erase(it);
- }
- _sortedIntervals->add(&interval(phi->targetTemp));
- continue;
- }
- collector.collect(s);
- //### TODO: use DefUses from the optimizer, because it already has all this information
- if (Temp *opd = collector.output) {
- ensureInterval(*opd);
- LifeTimeInterval &lti = interval(opd);
- lti.setFrom(defPosition(s));
- live.remove(lti.temp().index);
- _sortedIntervals->add(&lti);
- }
- //### TODO: use DefUses from the optimizer, because it already has all this information
- for (size_t i = 0, ei = collector.inputs.size(); i != ei; ++i) {
- Temp *opd = collector.inputs[i];
- ensureInterval(*opd);
- interval(opd).addRange(start(bb), usePosition(s));
- live.insert(opd->index);
- }
- }
-
- if (loopEnd) { // Meaning: bb is a loop header, because loopEnd is set to non-null.
- for (int reg : live)
- _intervals[reg]->addRange(start(bb), usePosition(loopEnd->terminator()));
- }
-
- _liveIn[bb->index()] = std::move(live);
- }
-};
-
-void removeUnreachleBlocks(IR::Function *function)
-{
- QVector<BasicBlock *> newSchedule;
- newSchedule.reserve(function->basicBlockCount());
- for (BasicBlock *bb : function->basicBlocks())
- if (!bb->isRemoved())
- newSchedule.append(bb);
- function->setScheduledBlocks(newSchedule);
-}
-
-class ConvertArgLocals
-{
-public:
- ConvertArgLocals(IR::Function *function)
- : function(function)
- , convertArgs(!function->usesArgumentsObject)
- {
- tempForFormal.resize(function->formals.size(), -1);
- tempForLocal.resize(function->locals.size(), -1);
- }
-
- void toTemps()
- {
- if (function->variablesCanEscape())
- return;
-
- QVector<Stmt *> extraMoves;
- if (convertArgs) {
- const int formalCount = function->formals.size();
- extraMoves.reserve(formalCount + function->basicBlock(0)->statementCount());
- extraMoves.resize(formalCount);
-
- for (int i = 0; i != formalCount; ++i) {
- const int newTemp = function->tempCount++;
- tempForFormal[i] = newTemp;
-
- ArgLocal *source = function->New<ArgLocal>();
- source->init(ArgLocal::Formal, i, 0);
-
- Temp *target = function->New<Temp>();
- target->init(Temp::VirtualRegister, newTemp);
-
- Move *m = function->NewStmt<Move>();
- m->init(target, source);
- extraMoves[i] = m;
- }
- }
-
- for (BasicBlock *bb : function->basicBlocks()) {
- if (!bb->isRemoved()) {
- for (Stmt *s : bb->statements()) {
- visit(s);
- }
- }
- }
-
- if (convertArgs && function->formals.size() > 0)
- function->basicBlock(0)->prependStatements(extraMoves);
-
- function->locals.clear();
- }
-
-private:
- void visit(Stmt *s)
- {
- if (auto e = s->asExp()) {
- check(e->expr);
- } else if (auto m = s->asMove()) {
- check(m->target); check(m->source);
- } else if (auto c = s->asCJump()) {
- check(c->cond);
- } else if (auto r = s->asRet()) {
- check(r->expr);
- }
- }
-
- void visit(Expr *e)
- {
- if (auto c = e->asConvert()) {
- check(c->expr);
- } else if (auto u = e->asUnop()) {
- check(u->expr);
- } else if (auto b = e->asBinop()) {
- check(b->left); check(b->right);
- } else if (auto c = e->asCall()) {
- check(c->base);
- for (ExprList *it = c->args; it; it = it->next) {
- check(it->expr);
- }
- } else if (auto n = e->asNew()) {
- check(n->base);
- for (ExprList *it = n->args; it; it = it->next) {
- check(it->expr);
- }
- } else if (auto s = e->asSubscript()) {
- check(s->base); check(s->index);
- } else if (auto m = e->asMember()) {
- check(m->base);
- }
- }
-
- void check(Expr *&e) {
- if (ArgLocal *al = e->asArgLocal()) {
- if (al->kind == ArgLocal::Local) {
- Temp *t = function->New<Temp>();
- t->init(Temp::VirtualRegister, fetchTempForLocal(al->index));
- e = t;
- } else if (convertArgs && al->kind == ArgLocal::Formal) {
- Temp *t = function->New<Temp>();
- t->init(Temp::VirtualRegister, fetchTempForFormal(al->index));
- e = t;
- }
- } else {
- visit(e);
- }
- }
-
- int fetchTempForLocal(int local)
- {
- int &ref = tempForLocal[local];
- if (ref == -1)
- ref = function->tempCount++;
- return ref;
- }
-
- int fetchTempForFormal(int formal)
- {
- return tempForFormal[formal];
- }
-
- IR::Function *function;
- bool convertArgs;
- std::vector<int> tempForFormal;
- std::vector<int> tempForLocal;
-};
-
-class CloneBasicBlock: protected CloneExpr
-{
-public:
- BasicBlock *operator()(IR::BasicBlock *originalBlock)
- {
- block = new BasicBlock(originalBlock->function, 0);
-
- for (Stmt *s : originalBlock->statements()) {
- visit(s);
- clonedStmt->location = s->location;
- }
-
- return block;
- }
-
-private:
- void visit(Stmt *s)
- {
- if (auto e = s->asExp()) {
- clonedStmt = block->EXP(clone(e->expr));
- } else if (auto m = s->asMove()) {
- clonedStmt = block->MOVE(clone(m->target), clone(m->source));
- } else if (auto j = s->asJump()) {
- clonedStmt = block->JUMP(j->target);
- } else if (auto c = s->asCJump()) {
- clonedStmt = block->CJUMP(clone(c->cond), c->iftrue, c->iffalse);
- } else if (auto r = s->asRet()) {
- clonedStmt = block->RET(clone(r->expr));
- } else if (auto p = s->asPhi()) {
- Phi *phi = block->function->NewStmt<Phi>();
- clonedStmt = phi;
-
- phi->targetTemp = clone(p->targetTemp);
- for (Expr *in : p->incoming)
- phi->incoming.append(clone(in));
- block->appendStatement(phi);
- } else {
- Q_UNREACHABLE();
- }
- }
-
-private:
- IR::Stmt *clonedStmt;
-};
-
-static void verifyCFG(IR::Function *function)
-{
- if (!DoVerification)
- return;
-
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved()) {
- Q_ASSERT(bb->in.isEmpty());
- Q_ASSERT(bb->out.isEmpty());
- continue;
- }
-
- Q_ASSERT(function->basicBlock(bb->index()) == bb);
-
- // Check the terminators:
- Stmt *terminator = bb->terminator();
- if (terminator == nullptr) {
- Stmt *last = bb->statements().last();
- Call *call = last->asExp()->expr->asCall();
- Name *baseName = call->base->asName();
- Q_ASSERT(baseName->builtin == Name::builtin_rethrow);
- Q_UNUSED(baseName);
- } else if (Jump *jump = terminator->asJump()) {
- Q_UNUSED(jump);
- Q_ASSERT(jump->target);
- Q_ASSERT(!jump->target->isRemoved());
- Q_ASSERT(bb->out.size() == 1);
- Q_ASSERT(bb->out.first() == jump->target);
- } else if (CJump *cjump = terminator->asCJump()) {
- Q_UNUSED(cjump);
- Q_ASSERT(bb->out.size() == 2);
- Q_ASSERT(cjump->iftrue);
- Q_ASSERT(!cjump->iftrue->isRemoved());
- Q_ASSERT(cjump->iftrue == bb->out[0]);
- Q_ASSERT(cjump->iffalse);
- Q_ASSERT(!cjump->iffalse->isRemoved());
- Q_ASSERT(cjump->iffalse == bb->out[1]);
- } else if (terminator->asRet()) {
- Q_ASSERT(bb->out.size() == 0);
- } else {
- Q_UNREACHABLE();
- }
-
- // Check the outgoing edges:
- for (BasicBlock *out : bb->out) {
- Q_UNUSED(out);
- Q_ASSERT(!out->isRemoved());
- Q_ASSERT(out->in.contains(bb));
- }
-
- // Check the incoming edges:
- for (BasicBlock *in : bb->in) {
- Q_UNUSED(in);
- Q_ASSERT(!in->isRemoved());
- Q_ASSERT(in->out.contains(bb));
- }
- }
-}
-
-static void verifyImmediateDominators(const DominatorTree &dt, IR::Function *function)
-{
- if (!DoVerification)
- return;
-
- cfg2dot(function);
- dt.dumpImmediateDominators();
- DominatorTree referenceTree(function);
-
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- BasicBlock *idom = dt.immediateDominator(bb);
- BasicBlock *referenceIdom = referenceTree.immediateDominator(bb);
- Q_UNUSED(idom);
- Q_UNUSED(referenceIdom);
- Q_ASSERT(idom == referenceIdom);
- }
-}
-
-static void verifyNoPointerSharing(IR::Function *function)
-{
- if (!DoVerification)
- return;
-
- class {
- public:
- void operator()(IR::Function *f)
- {
- for (BasicBlock *bb : f->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- for (Stmt *s : bb->statements()) {
- visit(s);
- }
- }
- }
-
- private:
- void visit(Stmt *s)
- {
- check(s);
- STMT_VISIT_ALL_KINDS(s);
- }
-
- void visit(Expr *e)
- {
- check(e);
- EXPR_VISIT_ALL_KINDS(e);
- }
-
- private:
- void check(Stmt *s)
- {
- Q_ASSERT(!stmts.contains(s));
- stmts.insert(s);
- }
-
- void check(Expr *e)
- {
- Q_ASSERT(!exprs.contains(e));
- exprs.insert(e);
- }
-
- QSet<Stmt *> stmts;
- QSet<Expr *> exprs;
- } V;
- V(function);
-}
-
-// Loop-peeling is done by unfolding the loop once. The "original" loop basic blocks stay where they
-// are, and a copy of the loop is placed after it. Special care is taken while copying the loop body:
-// by having the copies of the basic-blocks point to the same nodes as the "original" basic blocks,
-// updating the immediate dominators is easy: if the edge of a copied basic-block B points to a
-// block C that has also been copied, set the immediate dominator of B to the corresponding
-// immediate dominator of C. Finally, for any node outside the loop that gets a new edge attached,
-// the immediate dominator has to be re-calculated.
-class LoopPeeling
-{
- DominatorTree &dt;
-
-public:
- LoopPeeling(DominatorTree &dt)
- : dt(dt)
- {}
-
- void run(const QVector<LoopDetection::LoopInfo *> &loops)
- {
- for (LoopDetection::LoopInfo *loopInfo : loops)
- peelLoop(loopInfo);
- }
-
-private:
- // All copies have their outgoing edges pointing to the same successor block as the originals.
- // For each copied block, check where the outgoing edges point to. If it's a block inside the
- // (original) loop, rewire it to the corresponding copy. Otherwise, which is when it points
- // out of the loop, leave it alone.
- // As an extra, collect all edges that point out of the copied loop, because the targets need
- // to have their immediate dominator rechecked.
- void rewire(BasicBlock *newLoopBlock, const QVector<BasicBlock *> &from, const QVector<BasicBlock *> &to, QVector<BasicBlock *> &loopExits)
- {
- for (int i = 0, ei = newLoopBlock->out.size(); i != ei; ++i) {
- BasicBlock *&out = newLoopBlock->out[i];
- const int idx = from.indexOf(out);
- if (idx == -1) {
- if (!loopExits.contains(out))
- loopExits.append(out);
- } else {
- out->in.removeOne(newLoopBlock);
- BasicBlock *newTo = to.at(idx);
- newTo->in.append(newLoopBlock);
- out = newTo;
-
- Stmt *terminator = newLoopBlock->terminator();
- if (Jump *jump = terminator->asJump()) {
- Q_ASSERT(i == 0);
- jump->target = newTo;
- } else if (CJump *cjump = terminator->asCJump()) {
- Q_ASSERT(i == 0 || i == 1);
- if (i == 0)
- cjump->iftrue = newTo;
- else
- cjump->iffalse = newTo;
- }
- }
- }
- }
-
- void peelLoop(LoopDetection::LoopInfo *loop)
- {
- IR::Function *f = loop->loopHeader->function;
- CloneBasicBlock clone;
-
- LoopDetection::LoopInfo unpeeled(*loop);
- unpeeled.loopHeader = clone(unpeeled.loopHeader);
- unpeeled.loopHeader->setContainingGroup(loop->loopHeader->containingGroup());
- unpeeled.loopHeader->markAsGroupStart(true);
- f->addBasicBlock(unpeeled.loopHeader);
- for (int i = 0, ei = unpeeled.loopBody.size(); i != ei; ++i) {
- BasicBlock *&bodyBlock = unpeeled.loopBody[i];
- bodyBlock = clone(bodyBlock);
- bodyBlock->setContainingGroup(unpeeled.loopHeader);
- Q_ASSERT(bodyBlock->statementCount() == loop->loopBody[i]->statementCount());
- }
-
- // The cloned blocks will have no incoming edges, but they do have outgoing ones (copying
- // the terminators will automatically insert that edge). The blocks where the originals
- // pointed to will have an extra incoming edge from the copied blocks.
-
- BasicBlock::IncomingEdges inCopy = loop->loopHeader->in;
- for (BasicBlock *in : inCopy) {
- if (loop->loopHeader != in // this can happen for really tight loops (where there are no body blocks). This is a back-edge in that case.
- && unpeeled.loopHeader != in && !unpeeled.loopBody.contains(in) // if the edge is not coming from within the copied set, leave it alone
- && !dt.dominates(loop->loopHeader, in)) // an edge coming from within the loop (so a back-edge): this is handled when rewiring all outgoing edges
- continue;
-
- unpeeled.loopHeader->in.append(in);
- loop->loopHeader->in.removeOne(in);
-
- Stmt *terminator = in->terminator();
- if (Jump *jump = terminator->asJump()) {
- jump->target = unpeeled.loopHeader;
- in->out[0] = unpeeled.loopHeader;
- } else if (CJump *cjump = terminator->asCJump()) {
- if (cjump->iftrue == loop->loopHeader) {
- cjump->iftrue = unpeeled.loopHeader;
- Q_ASSERT(in->out[0] == loop->loopHeader);
- in->out[0] = unpeeled.loopHeader;
- } else if (cjump->iffalse == loop->loopHeader) {
- cjump->iffalse = unpeeled.loopHeader;
- Q_ASSERT(in->out[1] == loop->loopHeader);
- in->out[1] = unpeeled.loopHeader;
- } else {
- Q_UNREACHABLE();
- }
- }
- }
-
- QVector<BasicBlock *> loopExits;
- loopExits.reserve(8);
- loopExits.append(unpeeled.loopHeader);
-
- rewire(unpeeled.loopHeader, loop->loopBody, unpeeled.loopBody, loopExits);
- for (int i = 0, ei = unpeeled.loopBody.size(); i != ei; ++i) {
- BasicBlock *bodyBlock = unpeeled.loopBody.at(i);
- rewire(bodyBlock, loop->loopBody, unpeeled.loopBody, loopExits);
- f->addBasicBlock(bodyBlock);
- }
-
- // The original loop is now peeled off, and won't jump back to the loop header. Meaning, it
- // is not a loop anymore, so unmark it.
- loop->loopHeader->markAsGroupStart(false);
- for (BasicBlock *bb : qAsConst(loop->loopBody))
- bb->setContainingGroup(loop->loopHeader->containingGroup());
-
- // Set the immediate dominator of the new loop header to the old one. The real immediate
- // dominator will be calculated later.
- dt.setImmediateDominator(unpeeled.loopHeader, loop->loopHeader);
- // calculate the idoms in a separate loop, because addBasicBlock in the previous loop will
- // set the block index, which in turn is used by the dominator tree.
- for (int i = 0, ei = unpeeled.loopBody.size(); i != ei; ++i) {
- BasicBlock *bodyBlock = unpeeled.loopBody.at(i);
- BasicBlock *idom = dt.immediateDominator(loop->loopBody.at(i));
- const int idx = loop->loopBody.indexOf(idom);
- if (idom == loop->loopHeader)
- idom = unpeeled.loopHeader;
- else if (idx != -1)
- idom = unpeeled.loopBody.at(idx);
- Q_ASSERT(idom);
- dt.setImmediateDominator(bodyBlock, idom);
- }
-
- BasicBlockSet siblings(f);
- for (BasicBlock *bb : qAsConst(loopExits))
- dt.collectSiblings(bb, siblings);
-
- siblings.insert(unpeeled.loopHeader);
- dt.recalculateIDoms(siblings, loop->loopHeader);
- dt.dumpImmediateDominators();
- verifyImmediateDominators(dt, f);
- }
-};
-
-class RemoveLineNumbers: private SideEffectsChecker
-{
-public:
- static void run(IR::Function *function)
- {
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- for (Stmt *s : bb->statements()) {
- if (!hasSideEffects(s)) {
- s->location = QQmlJS::AST::SourceLocation();
- }
- }
- }
- }
-
-private:
- ~RemoveLineNumbers() {}
-
- static bool hasSideEffects(Stmt *stmt)
- {
- RemoveLineNumbers checker;
- if (auto e = stmt->asExp()) {
- checker.visit(e->expr);
- } else if (auto m = stmt->asMove()) {
- checker.visit(m->source);
- if (!checker.seenSideEffects()) {
- checker.visit(m->target);
- }
- } else if (auto c = stmt->asCJump()) {
- checker.visit(c->cond);
- } else if (auto r = stmt->asRet()) {
- checker.visit(r->expr);
- }
- return checker.seenSideEffects();
- }
-
- void visitTemp(Temp *) Q_DECL_OVERRIDE Q_DECL_FINAL {}
-};
-
-void mergeBasicBlocks(IR::Function *function, DefUses *du, DominatorTree *dt)
-{
- enum { DebugBlockMerging = 0 };
-
- if (function->hasTry)
- return;
-
- showMeTheCode(function, "Before basic block merging");
-
- // Now merge a basic block with its successor when there is one outgoing edge, and the
- // successor has one incoming edge.
- for (int i = 0, ei = function->basicBlockCount(); i != ei; ++i) {
- BasicBlock *bb = function->basicBlock(i);
-
- bb->nextLocation = QQmlJS::AST::SourceLocation(); // make sure appendStatement doesn't mess with the line info
-
- if (bb->isRemoved()) continue; // the block has been removed, so ignore it
- if (bb->out.size() != 1) continue; // more than one outgoing edge
- BasicBlock *successor = bb->out.first();
- if (successor->in.size() != 1) continue; // more than one incoming edge
-
- // Loop header? No efficient way to update the other blocks that refer to this as containing group,
- // so don't do merging yet.
- if (successor->isGroupStart()) continue;
-
- // Ok, we can merge the two basic blocks.
- if (DebugBlockMerging) {
- qDebug("Merging L%d into L%d", successor->index(), bb->index());
- }
- Q_ASSERT(bb->terminator()->asJump());
- bb->removeStatement(bb->statementCount() - 1); // remove the terminator, and replace it with:
- for (Stmt *s : successor->statements()) {
- bb->appendStatement(s); // add all statements from the successor to the current basic block
- if (auto cjump = s->asCJump())
- cjump->parent = bb;
- }
- bb->out = successor->out; // set the outgoing edges to the successor's so they're now in sync with our new terminator
- for (auto newSuccessor : bb->out) {
- for (auto &backlink : newSuccessor->in) {
- if (backlink == successor) {
- backlink = bb; // for all successors of our successor: set the incoming edges to come from bb, because we'll now jump there.
- }
- }
- }
- if (du) {
- // all statements in successor have moved to bb, so make sure that the containing blocks
- // stored in DefUses get updated (meaning: point to bb)
- du->replaceBasicBlock(successor, bb);
- }
- if (dt) {
- // update the immediate dominators to: any block that was dominated by the successor
- // will now need to point to bb's immediate dominator. The reason is that bb itself
- // won't be anyones immediate dominator, because it had just one outgoing edge.
- dt->mergeIntoPredecessor(successor);
- }
- function->removeBasicBlock(successor);
- --i; // re-run on the current basic-block, so any chain gets collapsed.
- }
-
- showMeTheCode(function, "After basic block merging");
- verifyCFG(function);
-}
-
-} // anonymous namespace
-
-void LifeTimeInterval::setFrom(int from) {
- Q_ASSERT(from > 0);
-
- if (_ranges.isEmpty()) { // this is the case where there is no use, only a define
- _ranges.prepend(LifeTimeIntervalRange(from, from));
- if (_end == InvalidPosition)
- _end = from;
- } else {
- _ranges.first().start = from;
- }
-}
-
-void LifeTimeInterval::addRange(int from, int to) {
- Q_ASSERT(from > 0);
- Q_ASSERT(to > 0);
- Q_ASSERT(to >= from);
-
- if (_ranges.isEmpty()) {
- _ranges.prepend(LifeTimeIntervalRange(from, to));
- _end = to;
- return;
- }
-
- LifeTimeIntervalRange *p = &_ranges.first();
- if (to + 1 >= p->start && p->end + 1 >= from) {
- p->start = qMin(p->start, from);
- p->end = qMax(p->end, to);
- while (_ranges.count() > 1) {
- LifeTimeIntervalRange *p1 = p + 1;
- if (p->end + 1 < p1->start || p1->end + 1 < p->start)
- break;
- p1->start = qMin(p->start, p1->start);
- p1->end = qMax(p->end, p1->end);
- _ranges.remove(0);
- p = &_ranges.first();
- }
- } else {
- if (to < p->start) {
- _ranges.prepend(LifeTimeIntervalRange(from, to));
- } else {
- Q_ASSERT(from > _ranges.last().end);
- _ranges.push_back(LifeTimeIntervalRange(from, to));
- }
- }
-
- _end = _ranges.last().end;
-}
-
-LifeTimeInterval LifeTimeInterval::split(int atPosition, int newStart)
-{
- Q_ASSERT(atPosition < newStart || newStart == InvalidPosition);
- Q_ASSERT(atPosition <= _end);
- Q_ASSERT(newStart <= _end || newStart == InvalidPosition);
-
- if (_ranges.isEmpty() || atPosition < _ranges.first().start)
- return LifeTimeInterval();
-
- LifeTimeInterval newInterval = *this;
- newInterval.setSplitFromInterval(true);
-
- // search where to split the interval
- for (int i = 0, ei = _ranges.size(); i < ei; ++i) {
- if (_ranges.at(i).start <= atPosition) {
- if (_ranges.at(i).end >= atPosition) {
- // split happens in the middle of a range. Keep this range in both the old and the
- // new interval, and correct the end/start later
- _ranges.resize(i + 1);
- newInterval._ranges.remove(0, i);
- break;
- }
- } else {
- // split happens between two ranges.
- _ranges.resize(i);
- newInterval._ranges.remove(0, i);
- break;
- }
- }
-
- if (newInterval._ranges.first().end == atPosition)
- newInterval._ranges.remove(0);
-
- if (newStart == InvalidPosition) {
- // the temp stays inactive for the rest of its lifetime
- newInterval = LifeTimeInterval();
- } else {
- // find the first range where the temp will get active again:
- while (!newInterval._ranges.isEmpty()) {
- const LifeTimeIntervalRange &range = newInterval._ranges.first();
- if (range.start > newStart) {
- // The split position is before the start of the range. Either we managed to skip
- // over the correct range, or we got an invalid split request. Either way, this
- // Should Never Happen <TM>.
- Q_ASSERT(range.start > newStart);
- return LifeTimeInterval();
- } else if (range.start <= newStart && range.end >= newStart) {
- // yay, we found the range that should be the new first range in the new interval!
- break;
- } else {
- // the temp stays inactive for this interval, so remove it.
- newInterval._ranges.remove(0);
- }
- }
- Q_ASSERT(!newInterval._ranges.isEmpty());
- newInterval._ranges.first().start = newStart;
- _end = newStart;
- }
-
- // if we're in the middle of a range, set the end to the split position
- if (_ranges.last().end > atPosition)
- _ranges.last().end = atPosition;
-
- validate();
- newInterval.validate();
-
- return newInterval;
-}
-
-void LifeTimeInterval::dump(QTextStream &out) const {
- IRPrinter(&out).print(const_cast<Temp *>(&_temp));
- out << ": ends at " << _end << " with ranges ";
- if (_ranges.isEmpty())
- out << "(none)";
- for (int i = 0; i < _ranges.size(); ++i) {
- if (i > 0) out << ", ";
- out << _ranges[i].start << " - " << _ranges[i].end;
- }
- if (_reg != InvalidRegister)
- out << " (register " << _reg << ")";
-}
-
-
-bool LifeTimeInterval::lessThanForTemp(const LifeTimeInterval *r1, const LifeTimeInterval *r2)
-{
- return r1->temp() < r2->temp();
-}
-
-LifeTimeIntervals::LifeTimeIntervals(IR::Function *function)
- : _basicBlockPosition(function->basicBlockCount())
- , _positionForStatement(function->statementCount(), IR::Stmt::InvalidId)
- , _lastPosition(0)
-{
- _intervals.reserve(function->tempCount + 32); // we reserve a bit more space for intervals, because the register allocator will add intervals with fixed ranges for each register.
- renumber(function);
-}
-
-// Renumbering works as follows:
-// - phi statements are not numbered
-// - statement numbers start at 0 (zero) and increment get an even number (lastPosition + 2)
-// - basic blocks start at firstStatementNumber - 1, or rephrased: lastPosition + 1
-// - basic blocks end at the number of the last statement
-// And during life-time calculation the next rule is used:
-// - any temporary starts its life-time at definingStatementPosition + 1
-//
-// This numbering simulates half-open intervals. For example:
-// 0: %1 = 1
-// 2: %2 = 2
-// 4: %3 = %1 + %2
-// 6: print(%3)
-// Here the half-open life-time intervals would be:
-// %1: (0-4]
-// %2: (2-4]
-// %3: (4-6]
-// Instead, we use the even statement positions for uses of temporaries, and the odd positions for
-// their definitions:
-// %1: [1-4]
-// %2: [3-4]
-// %3: [5-6]
-// This has the nice advantage that placing %3 (for example) is really easy: the start will
-// never overlap with the end of the uses of the operands used in the defining statement.
-//
-// The reason to start a basic-block at firstStatementPosition - 1 is to have correct start
-// positions for target temporaries of phi-nodes. Those temporaries will now start before the
-// first statement. This also means that any moves that get generated when transforming out of SSA
-// form, will not interfere with (read: overlap) any defining statements in the preceding
-// basic-block.
-void LifeTimeIntervals::renumber(IR::Function *function)
-{
- for (BasicBlock *bb : function->basicBlocks()) {
- if (bb->isRemoved())
- continue;
-
- _basicBlockPosition[bb->index()].start = _lastPosition + 1;
-
- for (Stmt *s : bb->statements()) {
- if (s->asPhi())
- continue;
-
- _lastPosition += 2;
- _positionForStatement[s->id()] = _lastPosition;
- }
-
- _basicBlockPosition[bb->index()].end = _lastPosition;
- }
-}
-
-LifeTimeIntervals::~LifeTimeIntervals()
-{
- qDeleteAll(_intervals);
-}
-
-Optimizer::Optimizer(IR::Function *function)
- : function(function)
- , inSSA(false)
-{}
-
-void Optimizer::run(QQmlEnginePrivate *qmlEngine, bool doTypeInference, bool peelLoops)
-{
- showMeTheCode(function, "Before running the optimizer");
-
- cleanupBasicBlocks(function);
-
- function->removeSharedExpressions();
- int statementCount = 0;
- for (BasicBlock *bb : function->basicBlocks())
- if (!bb->isRemoved())
- statementCount += bb->statementCount();
-// showMeTheCode(function);
-
- static bool doSSA = qEnvironmentVariableIsEmpty("QV4_NO_SSA");
-
- if (!function->hasTry && !function->hasWith && !function->module->debugMode && doSSA && statementCount <= 300) {
-// qout << "SSA for " << (function->name ? qPrintable(*function->name) : "<anonymous>") << endl;
-
- mergeBasicBlocks(function, nullptr, nullptr);
-
- ConvertArgLocals(function).toTemps();
- showMeTheCode(function, "After converting arguments to locals");
-
- // Calculate the dominator tree:
- DominatorTree df(function);
-
- {
- // This is in a separate scope, because loop-peeling doesn't (yet) update the LoopInfo
- // calculated by the LoopDetection. So by putting it in a separate scope, it is not
- // available after peeling.
-
- LoopDetection loopDetection(df);
- loopDetection.run(function);
- showMeTheCode(function, "After loop detection");
-// cfg2dot(function, loopDetection.allLoops());
-
- // ### disable loop peeling for now. It doesn't give any measurable performance
- // improvements at this time, but significantly increases the size of the
- // JIT generated code
- Q_UNUSED(peelLoops);
- if (0 && peelLoops) {
- QVector<LoopDetection::LoopInfo *> innerLoops = loopDetection.innermostLoops();
- LoopPeeling(df).run(innerLoops);
-
-// cfg2dot(function, loopDetection.allLoops());
- showMeTheCode(function, "After loop peeling");
- if (!innerLoops.isEmpty())
- verifyImmediateDominators(df, function);
- }
- }
-
- verifyCFG(function);
- verifyNoPointerSharing(function);
-
- df.computeDF();
-
- verifyCFG(function);
- verifyImmediateDominators(df, function);
-
- DefUses defUses(function);
-
-// qout << "Converting to SSA..." << endl;
- convertToSSA(function, df, defUses);
-// showMeTheCode(function);
-// defUses.dump();
-
-// qout << "Cleaning up phi nodes..." << endl;
- cleanupPhis(defUses);
- showMeTheCode(function, "After cleaning up phi-nodes");
-
- StatementWorklist worklist(function);
-
- if (doTypeInference) {
-// qout << "Running type inference..." << endl;
- TypeInference(qmlEngine, defUses).run(worklist);
- showMeTheCode(function, "After type inference");
-
-// qout << "Doing reverse inference..." << endl;
- ReverseInference(defUses).run(function);
-// showMeTheCode(function);
-
-// qout << "Doing type propagation..." << endl;
- TypePropagation(defUses).run(function, worklist);
-// showMeTheCode(function);
- verifyNoPointerSharing(function);
- }
-
- static const bool doOpt = qEnvironmentVariableIsEmpty("QV4_NO_OPT");
- if (doOpt) {
-// qout << "Running SSA optimization..." << endl;
- worklist.reset();
- optimizeSSA(worklist, defUses, df);
- showMeTheCode(function, "After optimization");
-
- verifyImmediateDominators(df, function);
- verifyCFG(function);
- }
-
- verifyNoPointerSharing(function);
- mergeBasicBlocks(function, &defUses, &df);
-
- verifyImmediateDominators(df, function);
- verifyCFG(function);
-
- // Basic-block cycles that are unreachable (i.e. for loops in a then-part where the
- // condition is calculated to be always false) are not yet removed. This will choke the
- // block scheduling, so remove those now.
-// qout << "Cleaning up unreachable basic blocks..." << endl;
- cleanupBasicBlocks(function);
-// showMeTheCode(function);
-
- verifyImmediateDominators(df, function);
- verifyCFG(function);
-
- // Transform the CFG into edge-split SSA.
- showMeTheCode(function, "Before edge splitting");
- splitCriticalEdges(function, df, worklist, defUses);
- showMeTheCode(function, "After edge splitting");
-
- verifyImmediateDominators(df, function);
- verifyCFG(function);
-
-// qout << "Doing block scheduling..." << endl;
-// df.dumpImmediateDominators();
- startEndLoops = BlockScheduler(function, df).go();
- showMeTheCode(function, "After basic block scheduling");
-// cfg2dot(function);
-
-#ifndef QT_NO_DEBUG
- checkCriticalEdges(function->basicBlocks());
-#endif
-
- if (!function->module->debugMode) {
- RemoveLineNumbers::run(function);
- showMeTheCode(function, "After line number removal");
- }
-
-// qout << "Finished SSA." << endl;
- inSSA = true;
- } else {
- removeUnreachleBlocks(function);
- inSSA = false;
- }
-}
-
-void Optimizer::convertOutOfSSA() {
- if (!inSSA)
- return;
-
- // There should be no critical edges at this point.
-
- for (BasicBlock *bb : function->basicBlocks()) {
- MoveMapping moves;
-
- for (BasicBlock *successor : bb->out) {
- const int inIdx = successor->in.indexOf(bb);
- Q_ASSERT(inIdx >= 0);
- for (Stmt *s : successor->statements()) {
- if (Phi *phi = s->asPhi()) {
- moves.add(clone(phi->incoming[inIdx], function),
- clone(phi->targetTemp, function)->asTemp());
- } else {
- break;
- }
- }
- }
-
- if (DebugMoveMapping) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream os(&buf);
- os << "Move mapping for function ";
- if (function->name)
- os << *function->name;
- else
- os << (void *) function;
- os << " on basic-block L" << bb->index() << ":" << endl;
- moves.dump();
- buf.close();
- qDebug("%s", buf.data().constData());
- }
-
- moves.order();
-
- moves.insertMoves(bb, function, true);
- }
-
- for (BasicBlock *bb : function->basicBlocks()) {
- while (!bb->isEmpty()) {
- if (bb->statements().first()->asPhi()) {
- bb->removeStatement(0);
- } else {
- break;
- }
- }
- }
-}
-
-LifeTimeIntervals::Ptr Optimizer::lifeTimeIntervals() const
-{
- Q_ASSERT(isInSSA());
-
- LifeRanges lifeRanges(function, startEndLoops);
-// lifeRanges.dump();
-// showMeTheCode(function);
- return lifeRanges.intervals();
-}
-
-static int countPhis(BasicBlock *bb)
-{
- int count = 0;
- for (Stmt *s : bb->statements()) {
- if (s->isa<Phi>())
- ++count;
- else
- break;
- }
-
- return count;
-}
-
-// Basic blocks can have only 1 terminator. This function returns a bit vector, where a 1 on a
-// certain index indicates that the terminator (jump) at the end of the basic block with that index
-// can be omitted.
-BitVector Optimizer::calculateOptionalJumps()
-{
- const int maxSize = function->basicBlockCount();
- BitVector optional(maxSize, false);
- if (maxSize < 2)
- return optional;
-
- BitVector reachableWithoutJump(maxSize, false);
-
- for (int i = maxSize - 1; i >= 0; --i) {
- BasicBlock *bb = function->basicBlock(i);
- if (bb->isRemoved())
- continue;
-
- if (Jump *jump = bb->statements().last()->asJump()) {
- if (reachableWithoutJump.at(jump->target->index())) {
- if (bb->statements().size() - countPhis(bb)> 1)
- reachableWithoutJump.clear();
- optional.setBit(bb->index());
- reachableWithoutJump.setBit(bb->index());
- continue;
- }
- }
-
- reachableWithoutJump.clear();
- reachableWithoutJump.setBit(bb->index());
- }
-
- return optional;
-}
-
-void Optimizer::showMeTheCode(IR::Function *function, const char *marker)
-{
- ::showMeTheCode(function, marker);
-}
-
-static inline bool overlappingStorage(const Temp &t1, const Temp &t2)
-{
- // This is the same as the operator==, but for one detail: memory locations are not sensitive
- // to types, and neither are general-purpose registers.
-
- if (t1.index != t2.index)
- return false; // different position, where-ever that may (physically) be.
- if (t1.kind != t2.kind)
- return false; // formal/local/(physical-)register/stack do never overlap
- if (t1.kind != Temp::PhysicalRegister) // Other than registers, ...
- return t1.kind == t2.kind; // ... everything else overlaps: any memory location can hold everything.
-
- // So now the index is the same, and we know that both stored in a register. If both are
- // floating-point registers, they are the same. Or, if both are non-floating-point registers,
- // generally called general-purpose registers, they are also the same.
- return (t1.type == DoubleType && t2.type == DoubleType)
- || (t1.type != DoubleType && t2.type != DoubleType);
-}
-
-MoveMapping::Moves MoveMapping::sourceUsages(Expr *e, const Moves &moves)
-{
- Moves usages;
-
- if (Temp *t = e->asTemp()) {
- for (int i = 0, ei = moves.size(); i != ei; ++i) {
- const Move &move = moves[i];
- if (Temp *from = move.from->asTemp())
- if (overlappingStorage(*from, *t))
- usages.append(move);
- }
- }
-
- return usages;
-}
-
-void MoveMapping::add(Expr *from, Temp *to) {
- if (Temp *t = from->asTemp()) {
- if (overlappingStorage(*t, *to)) {
- // assignments like fp1 = fp1 or var{&1} = double{&1} can safely be skipped.
- if (DebugMoveMapping) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream os(&buf);
- IRPrinter printer(&os);
- os << "Skipping ";
- printer.print(to);
- os << " <- ";
- printer.print(from);
- buf.close();
- qDebug("%s", buf.data().constData());
- }
- return;
- }
- }
-
- Move m(from, to);
- if (_moves.contains(m))
- return;
- _moves.append(m);
-}
-
-// Order the moves that are generated when resolving edges during register allocation (see [Wimmer1]
-// section 6 for details). Now these moves form one or more graphs, so we have to output them in
-// such an order that values don't get overwritten:
-// r1 <- r0
-// r2 <- r1
-// That input has to be ordered as follows in order to prevent the value in r1 from being lost:
-// r2 <- r1
-// r1 <- r0
-//
-// So, the algorithm is to output the leaves first, and take them out of the input. This will result
-// in some moves to become leaves (in the above example: when leaf r2 <- r1 is generated and taken
-// away, the r1 <- r0 is now a leaf), so we can output those and take those out, and repeat until
-// there are no more leafs.
-//
-// The tricky part is that there might be cycles:
-// r4 <- r5
-// r5 <- r4
-// These have to be turned into a "register swap":
-// r4 <=> r5
-//
-// So after running the above algorithm where we progressively remove the leaves, we are left with
-// zero or more cycles. To resolve those, we break one of the edges of the cycle, and for all other
-// edges we generate swaps. Note that the swaps will always occur as the last couple of moves,
-// because otherwise they might clobber sources for moves:
-// r4 <=> r5
-// r6 <- r5
-// Here, the value of r5 is already overwritten with the one in r4, so the correct order is:
-// r6 <- r5
-// r4 <=> r5
-void MoveMapping::order()
-{
- QList<Move> output;
- output.reserve(_moves.size());
-
- while (!_moves.isEmpty()) {
- // Take out all leaf edges, because we can output them without any problems.
- int nextLeaf = findLeaf();
- if (nextLeaf == -1)
- break; // No more leafs left, we're done here.
- output.append(_moves.takeAt(nextLeaf));
- // Now there might be new leaf edges: any move that had the input of the previously found
- // leaf as an output, so loop around.
- }
-
- while (!_moves.isEmpty()) {
- // We're now left with one or more cycles.
- // Step one: break the/a cycle.
- _moves.removeFirst();
- // Step two: find the other edges of the cycle, starting with the one of that is now a leaf.
- while (!_moves.isEmpty()) {
- int nextLeaf = findLeaf();
- if (nextLeaf == -1)
- break; // We're done with this cycle.
- Move m = _moves.takeAt(nextLeaf);
- // Step three: get the edges from the cycle and turn it into a swap
- m.needsSwap = true;
- output.append(m);
- // Because we took out a leaf, find the next one.
- }
- // We're done with the cycle, let's see if there are more.
- }
-
- _moves = output;
-}
-
-int MoveMapping::findLeaf() const
-{
- for (int i = 0, e = _moves.size(); i != e; ++i) {
- // Take an edge from the list...
- const Temp *target = _moves.at(i).to;
- // ... and see if its target is used as a source...
- bool targetUsedAsSource = false;
- for (int j = 0; j != e; ++j) {
- if (i == j)
- continue;
-
- Expr *source = _moves.at(j).from;
- if (const Temp *sourceTemp = source->asTemp()) {
- if (overlappingStorage(*target, *sourceTemp)) {
- targetUsedAsSource = true;
- break;
- }
- }
- }
- // ... if not, we have a leaf edge ...
- if (!targetUsedAsSource)
- return i;
- // .. otherwise we try the next one.
- }
-
- return -1; // No leaf found
-}
-
-QList<IR::Move *> MoveMapping::insertMoves(BasicBlock *bb, IR::Function *function, bool atEnd) const
-{
- QList<IR::Move *> newMoves;
- newMoves.reserve(_moves.size());
-
- int insertionPoint = atEnd ? bb->statements().size() - 1 : 0;
- for (const Move &m : _moves) {
- IR::Move *move = function->NewStmt<IR::Move>();
- move->init(clone(m.to, function), clone(m.from, function));
- move->swap = m.needsSwap;
- bb->insertStatementBefore(insertionPoint++, move);
- newMoves.append(move);
- }
-
- return newMoves;
-}
-
-void MoveMapping::dump() const
-{
- if (DebugMoveMapping) {
- QBuffer buf;
- buf.open(QIODevice::WriteOnly);
- QTextStream os(&buf);
- IRPrinter printer(&os);
- os << "Move mapping has " << _moves.size() << " moves..." << endl;
- for (const Move &m : _moves) {
- os << "\t";
- printer.print(m.to);
- if (m.needsSwap)
- os << " <-> ";
- else
- os << " <-- ";
- printer.print(m.from);
- os << endl;
- }
- qDebug("%s", buf.data().constData());
- }
-}
-
-// References:
-// [Wimmer1] C. Wimmer and M. Franz. Linear Scan Register Allocation on SSA Form. In Proceedings of
-// CGO'10, ACM Press, 2010
-// [Wimmer2] C. Wimmer and H. Mossenbock. Optimized Interval Splitting in a Linear Scan Register
-// Allocator. In Proceedings of the ACM/USENIX International Conference on Virtual
-// Execution Environments, pages 132-141. ACM Press, 2005.
-// [Briggs] P. Briggs, K.D. Cooper, T.J. Harvey, and L.T. Simpson. Practical Improvements to the
-// Construction and Destruction of Static Single Assignment Form.
-// [Appel] A.W. Appel. Modern Compiler Implementation in Java. Second edition, Cambridge
-// University Press.
-// [Ramalingam] G. Ramalingam and T. Reps. An Incremental Algorithm for Maintaining the Dominator
-// Tree of a Reducible Flowgraph.