aboutsummaryrefslogtreecommitdiffstats
path: root/tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js
diff options
context:
space:
mode:
Diffstat (limited to 'tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js')
-rw-r--r--tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js161
1 files changed, 0 insertions, 161 deletions
diff --git a/tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js b/tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js
deleted file mode 100644
index 9558b63a96..0000000000
--- a/tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js
+++ /dev/null
@@ -1,161 +0,0 @@
-/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
-/* ***** BEGIN LICENSE BLOCK *****
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is Mozilla Communicator client code, released
- * March 31, 1998.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1998
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- * ***** END LICENSE BLOCK ***** */
-
-gTestfile = '11.5.3.js';
-
-/**
- File Name: 11.5.3.js
- ECMA Section: 11.5.3 Applying the % operator
- Description:
-
- The binary % operator is said to yield the remainder of its operands from
- an implied division; the left operand is the dividend and the right operand
- is the divisor. In C and C++, the remainder operator accepts only integral
- operands, but in ECMAScript, it also accepts floating-point operands.
-
- The result of a floating-point remainder operation as computed by the %
- operator is not the same as the "remainder" operation defined by IEEE 754.
- The IEEE 754 "remainder" operation computes the remainder from a rounding
- division, not a truncating division, and so its behavior is not analogous
- to that of the usual integer remainder operator. Instead the ECMAScript
- language defines % on floating-point operations to behave in a manner
- analogous to that of the Java integer remainder operator; this may be
- compared with the C library function fmod.
-
- The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
-
- If either operand is NaN, the result is NaN.
- The sign of the result equals the sign of the dividend.
- If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
- If the dividend is finite and the divisor is an infinity, the result equals the dividend.
- If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
- In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
- from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
- is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
- possible without exceeding the magnitude of the true mathematical quotient of n and d.
-
- Author: christine@netscape.com
- Date: 12 november 1997
-*/
-var SECTION = "11.5.3";
-var VERSION = "ECMA_1";
-var BUGNUMBER="111202";
-startTest();
-
-
-writeHeaderToLog( SECTION + " Applying the % operator");
-
-// if either operand is NaN, the result is NaN.
-
-new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
-new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
-new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
-
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
-
-// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
-// dividend is an infinity
-
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
-
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
-
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
-
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
-new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
-new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
-
-// divisor is 0
-new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
-new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
-new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
-new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
-
-new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
-new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
-new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
-new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
-
-new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
-new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
-new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
-new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
-
-// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
-
-new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
-new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
-
-new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
-new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
-
-new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
-new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
-new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
-
-// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
-
-new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
-new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
-new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
-new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
-
-// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
-// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
-// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
-// possible without exceeding the magnitude of the true mathematical quotient of n and d.
-
-test();
-