/* * Copyright (C) 2008, 2012 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef AbstractMacroAssembler_h #define AbstractMacroAssembler_h #include "AssemblerBuffer.h" #include "CodeLocation.h" #include "MacroAssemblerCodeRef.h" #include #include #include #if ENABLE(ASSEMBLER) #if PLATFORM(QT) #define ENABLE_JIT_CONSTANT_BLINDING 0 #endif #ifndef ENABLE_JIT_CONSTANT_BLINDING #define ENABLE_JIT_CONSTANT_BLINDING 1 #endif namespace JSC { class JumpReplacementWatchpoint; class LinkBuffer; class RepatchBuffer; class Watchpoint; namespace DFG { struct OSRExit; } template class AbstractMacroAssembler { public: friend class JITWriteBarrierBase; typedef AssemblerType AssemblerType_T; typedef MacroAssemblerCodePtr CodePtr; typedef MacroAssemblerCodeRef CodeRef; class Jump; typedef typename AssemblerType::RegisterID RegisterID; // Section 1: MacroAssembler operand types // // The following types are used as operands to MacroAssembler operations, // describing immediate and memory operands to the instructions to be planted. enum Scale { TimesOne, TimesTwo, TimesFour, TimesEight, }; // Address: // // Describes a simple base-offset address. struct Address { explicit Address(RegisterID base, int32_t offset = 0) : base(base) , offset(offset) { } RegisterID base; int32_t offset; }; struct ExtendedAddress { explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) : base(base) , offset(offset) { } RegisterID base; intptr_t offset; }; // ImplicitAddress: // // This class is used for explicit 'load' and 'store' operations // (as opposed to situations in which a memory operand is provided // to a generic operation, such as an integer arithmetic instruction). // // In the case of a load (or store) operation we want to permit // addresses to be implicitly constructed, e.g. the two calls: // // load32(Address(addrReg), destReg); // load32(addrReg, destReg); // // Are equivalent, and the explicit wrapping of the Address in the former // is unnecessary. struct ImplicitAddress { ImplicitAddress(RegisterID base) : base(base) , offset(0) { } ImplicitAddress(Address address) : base(address.base) , offset(address.offset) { } RegisterID base; int32_t offset; }; // BaseIndex: // // Describes a complex addressing mode. struct BaseIndex { BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) : base(base) , index(index) , scale(scale) , offset(offset) { } RegisterID base; RegisterID index; Scale scale; int32_t offset; }; // AbsoluteAddress: // // Describes an memory operand given by a pointer. For regular load & store // operations an unwrapped void* will be used, rather than using this. struct AbsoluteAddress { explicit AbsoluteAddress(const void* ptr) : m_ptr(ptr) { } const void* m_ptr; }; // TrustedImmPtr: // // A pointer sized immediate operand to an instruction - this is wrapped // in a class requiring explicit construction in order to differentiate // from pointers used as absolute addresses to memory operations struct TrustedImmPtr { TrustedImmPtr() { } explicit TrustedImmPtr(const void* value) : m_value(value) { } // This is only here so that TrustedImmPtr(0) does not confuse the C++ // overload handling rules. explicit TrustedImmPtr(int value) : m_value(0) { ASSERT_UNUSED(value, !value); } explicit TrustedImmPtr(size_t value) : m_value(reinterpret_cast(value)) { } intptr_t asIntptr() { return reinterpret_cast(m_value); } const void* m_value; }; struct ImmPtr : #if ENABLE(JIT_CONSTANT_BLINDING) private TrustedImmPtr #else public TrustedImmPtr #endif { explicit ImmPtr(const void* value) : TrustedImmPtr(value) { } TrustedImmPtr asTrustedImmPtr() { return *this; } }; // TrustedImm32: // // A 32bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct TrustedImm32 { TrustedImm32() { } explicit TrustedImm32(int32_t value) : m_value(value) { } #if !CPU(X86_64) explicit TrustedImm32(TrustedImmPtr ptr) : m_value(ptr.asIntptr()) { } #endif int32_t m_value; }; struct Imm32 : #if ENABLE(JIT_CONSTANT_BLINDING) private TrustedImm32 #else public TrustedImm32 #endif { explicit Imm32(int32_t value) : TrustedImm32(value) { } #if !CPU(X86_64) explicit Imm32(TrustedImmPtr ptr) : TrustedImm32(ptr) { } #endif const TrustedImm32& asTrustedImm32() const { return *this; } }; // TrustedImm64: // // A 64bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct TrustedImm64 { TrustedImm64() { } explicit TrustedImm64(int64_t value) : m_value(value) { } #if CPU(X86_64) explicit TrustedImm64(TrustedImmPtr ptr) : m_value(ptr.asIntptr()) { } #endif int64_t m_value; }; struct Imm64 : #if ENABLE(JIT_CONSTANT_BLINDING) private TrustedImm64 #else public TrustedImm64 #endif { explicit Imm64(int64_t value) : TrustedImm64(value) { } #if CPU(X86_64) explicit Imm64(TrustedImmPtr ptr) : TrustedImm64(ptr) { } #endif const TrustedImm64& asTrustedImm64() const { return *this; } }; // Section 2: MacroAssembler code buffer handles // // The following types are used to reference items in the code buffer // during JIT code generation. For example, the type Jump is used to // track the location of a jump instruction so that it may later be // linked to a label marking its destination. // Label: // // A Label records a point in the generated instruction stream, typically such that // it may be used as a destination for a jump. class Label { template friend class AbstractMacroAssembler; friend struct DFG::OSRExit; friend class Jump; friend class JumpReplacementWatchpoint; friend class MacroAssemblerCodeRef; friend class LinkBuffer; friend class Watchpoint; public: Label() { } Label(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; }; // ConvertibleLoadLabel: // // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr // so that: // // loadPtr(Address(a, i), b) // // becomes: // // addPtr(TrustedImmPtr(i), a, b) class ConvertibleLoadLabel { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: ConvertibleLoadLabel() { } ConvertibleLoadLabel(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.labelIgnoringWatchpoints()) { } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; }; // DataLabelPtr: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabelPtr { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabelPtr() { } DataLabelPtr(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; }; // DataLabel32: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabel32 { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabel32() { } DataLabel32(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } AssemblerLabel label() const { return m_label; } private: AssemblerLabel m_label; }; // DataLabelCompact: // // A DataLabelCompact is used to refer to a location in the code containing a // compact immediate to be patched after the code has been generated. class DataLabelCompact { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabelCompact() { } DataLabelCompact(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } DataLabelCompact(AssemblerLabel label) : m_label(label) { } private: AssemblerLabel m_label; }; // Call: // // A Call object is a reference to a call instruction that has been planted // into the code buffer - it is typically used to link the call, setting the // relative offset such that when executed it will call to the desired // destination. class Call { template friend class AbstractMacroAssembler; public: enum Flags { None = 0x0, Linkable = 0x1, Near = 0x2, LinkableNear = 0x3, }; Call() : m_flags(None) { } Call(AssemblerLabel jmp, Flags flags) : m_label(jmp) , m_flags(flags) { } bool isFlagSet(Flags flag) { return m_flags & flag; } static Call fromTailJump(Jump jump) { return Call(jump.m_label, Linkable); } AssemblerLabel m_label; private: Flags m_flags; }; // Jump: // // A jump object is a reference to a jump instruction that has been planted // into the code buffer - it is typically used to link the jump, setting the // relative offset such that when executed it will jump to the desired // destination. class Jump { template friend class AbstractMacroAssembler; friend class Call; friend struct DFG::OSRExit; friend class LinkBuffer; public: Jump() { } #if CPU(ARM_THUMB2) // Fixme: this information should be stored in the instruction stream, not in the Jump object. Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) : m_label(jmp) , m_type(type) , m_condition(condition) { } #elif CPU(SH4) Jump(AssemblerLabel jmp, SH4Assembler::JumpType type = SH4Assembler::JumpFar) : m_label(jmp) , m_type(type) { } #else Jump(AssemblerLabel jmp) : m_label(jmp) { } #endif Label label() const { Label result; result.m_label = m_label; return result; } void link(AbstractMacroAssembler* masm) const { #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); #endif #if CPU(ARM_THUMB2) masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); #elif CPU(SH4) masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type); #else masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); #endif } void linkTo(Label label, AbstractMacroAssembler* masm) const { #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); #endif #if CPU(ARM_THUMB2) masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); #else masm->m_assembler.linkJump(m_label, label.m_label); #endif } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; #if CPU(ARM_THUMB2) ARMv7Assembler::JumpType m_type; ARMv7Assembler::Condition m_condition; #endif #if CPU(SH4) SH4Assembler::JumpType m_type; #endif }; struct PatchableJump { PatchableJump() { } explicit PatchableJump(Jump jump) : m_jump(jump) { } operator Jump&() { return m_jump; } Jump m_jump; }; // JumpList: // // A JumpList is a set of Jump objects. // All jumps in the set will be linked to the same destination. class JumpList { friend class LinkBuffer; public: typedef Vector JumpVector; JumpList() { } JumpList(Jump jump) { append(jump); } void link(AbstractMacroAssembler* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].link(masm); m_jumps.clear(); } void linkTo(Label label, AbstractMacroAssembler* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].linkTo(label, masm); m_jumps.clear(); } void append(Jump jump) { m_jumps.append(jump); } void append(const JumpList& other) { m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); } bool empty() { return !m_jumps.size(); } void clear() { m_jumps.clear(); } const JumpVector& jumps() const { return m_jumps; } private: JumpVector m_jumps; }; // Section 3: Misc admin methods #if ENABLE(DFG_JIT) Label labelIgnoringWatchpoints() { Label result; result.m_label = m_assembler.labelIgnoringWatchpoints(); return result; } #else Label labelIgnoringWatchpoints() { return label(); } #endif Label label() { return Label(this); } void padBeforePatch() { // Rely on the fact that asking for a label already does the padding. (void)label(); } Label watchpointLabel() { Label result; result.m_label = m_assembler.labelForWatchpoint(); return result; } Label align() { m_assembler.align(16); return Label(this); } #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) class RegisterAllocationOffset { public: RegisterAllocationOffset(unsigned offset) : m_offset(offset) { } void check(unsigned low, unsigned high) { RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u", m_offset, low, high); } private: unsigned m_offset; }; void addRegisterAllocationAtOffset(unsigned offset) { m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); } void clearRegisterAllocationOffsets() { m_registerAllocationForOffsets.clear(); } void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) { if (offset1 > offset2) std::swap(offset1, offset2); size_t size = m_registerAllocationForOffsets.size(); for (size_t i = 0; i < size; ++i) m_registerAllocationForOffsets[i].check(offset1, offset2); } #endif template static ptrdiff_t differenceBetween(T from, U to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b) { return reinterpret_cast(b.executableAddress()) - reinterpret_cast(a.executableAddress()); } unsigned debugOffset() { return m_assembler.debugOffset(); } ALWAYS_INLINE static void cacheFlush(void* code, size_t size) { AssemblerType::cacheFlush(code, size); } protected: AbstractMacroAssembler() : m_randomSource(cryptographicallyRandomNumber()) { } AssemblerType m_assembler; uint32_t random() { return m_randomSource.getUint32(); } WeakRandom m_randomSource; #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) Vector m_registerAllocationForOffsets; #endif #if ENABLE(JIT_CONSTANT_BLINDING) static bool scratchRegisterForBlinding() { return false; } static bool shouldBlindForSpecificArch(uint32_t) { return true; } static bool shouldBlindForSpecificArch(uint64_t) { return true; } #endif friend class LinkBuffer; friend class RepatchBuffer; static void linkJump(void* code, Jump jump, CodeLocationLabel target) { AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); } static void linkPointer(void* code, AssemblerLabel label, void* value) { AssemblerType::linkPointer(code, label, value); } static void* getLinkerAddress(void* code, AssemblerLabel label) { return AssemblerType::getRelocatedAddress(code, label); } static unsigned getLinkerCallReturnOffset(Call call) { return AssemblerType::getCallReturnOffset(call.m_label); } static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) { AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); } static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) { AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); } static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value) { AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value); } static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) { AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); } static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) { AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); } static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr) { return AssemblerType::readPointer(dataLabelPtr.dataLocation()); } static void replaceWithLoad(CodeLocationConvertibleLoad label) { AssemblerType::replaceWithLoad(label.dataLocation()); } static void replaceWithAddressComputation(CodeLocationConvertibleLoad label) { AssemblerType::replaceWithAddressComputation(label.dataLocation()); } }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // AbstractMacroAssembler_h