/* * Copyright (C) 2012 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "LinkBuffer.h" #if ENABLE(ASSEMBLER) #include "Options.h" namespace JSC { LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithoutDisassembly() { performFinalization(); return CodeRef(m_executableMemory); } LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithDisassembly(const char* format, ...) { ASSERT(Options::showDisassembly() || Options::showDFGDisassembly()); CodeRef result = finalizeCodeWithoutDisassembly(); dataLogF("Generated JIT code for "); va_list argList; va_start(argList, format); WTF::dataLogFV(format, argList); va_end(argList); dataLogF(":\n"); dataLogF( #if OS(WINDOWS) " Code at [0x%p, 0x%p):\n", #else " Code at [%p, %p):\n", #endif result.code().executableAddress(), static_cast(result.code().executableAddress()) + result.size()); disassemble(result.code(), m_size, " ", WTF::dataFile()); return result; } void LinkBuffer::linkCode(void* ownerUID, JITCompilationEffort effort) { ASSERT(!m_code); #if !ENABLE(BRANCH_COMPACTION) m_executableMemory = m_assembler->m_assembler.executableCopy(*m_globalData, ownerUID, effort); if (!m_executableMemory) return; m_code = m_executableMemory->start(); m_size = m_assembler->m_assembler.codeSize(); ASSERT(m_code); #else m_initialSize = m_assembler->m_assembler.codeSize(); m_executableMemory = m_globalData->executableAllocator.allocate(*m_globalData, m_initialSize, ownerUID, effort); if (!m_executableMemory) return; m_code = (uint8_t*)m_executableMemory->start(); ASSERT(m_code); ExecutableAllocator::makeWritable(m_code, m_initialSize); uint8_t* inData = (uint8_t*)m_assembler->unlinkedCode(); uint8_t* outData = reinterpret_cast(m_code); int readPtr = 0; int writePtr = 0; Vector& jumpsToLink = m_assembler->jumpsToLink(); unsigned jumpCount = jumpsToLink.size(); for (unsigned i = 0; i < jumpCount; ++i) { int offset = readPtr - writePtr; ASSERT(!(offset & 1)); // Copy the instructions from the last jump to the current one. size_t regionSize = jumpsToLink[i].from() - readPtr; uint16_t* copySource = reinterpret_cast_ptr(inData + readPtr); uint16_t* copyEnd = reinterpret_cast_ptr(inData + readPtr + regionSize); uint16_t* copyDst = reinterpret_cast_ptr(outData + writePtr); ASSERT(!(regionSize % 2)); ASSERT(!(readPtr % 2)); ASSERT(!(writePtr % 2)); while (copySource != copyEnd) *copyDst++ = *copySource++; m_assembler->recordLinkOffsets(readPtr, jumpsToLink[i].from(), offset); readPtr += regionSize; writePtr += regionSize; // Calculate absolute address of the jump target, in the case of backwards // branches we need to be precise, forward branches we are pessimistic const uint8_t* target; if (jumpsToLink[i].to() >= jumpsToLink[i].from()) target = outData + jumpsToLink[i].to() - offset; // Compensate for what we have collapsed so far else target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to()); JumpLinkType jumpLinkType = m_assembler->computeJumpType(jumpsToLink[i], outData + writePtr, target); // Compact branch if we can... if (m_assembler->canCompact(jumpsToLink[i].type())) { // Step back in the write stream int32_t delta = m_assembler->jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType); if (delta) { writePtr -= delta; m_assembler->recordLinkOffsets(jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr); } } jumpsToLink[i].setFrom(writePtr); } // Copy everything after the last jump memcpy(outData + writePtr, inData + readPtr, m_initialSize - readPtr); m_assembler->recordLinkOffsets(readPtr, m_initialSize, readPtr - writePtr); for (unsigned i = 0; i < jumpCount; ++i) { uint8_t* location = outData + jumpsToLink[i].from(); uint8_t* target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to()); m_assembler->link(jumpsToLink[i], location, target); } jumpsToLink.clear(); m_size = writePtr + m_initialSize - readPtr; m_executableMemory->shrink(m_size); #if DUMP_LINK_STATISTICS dumpLinkStatistics(m_code, m_initialSize, m_size); #endif #if DUMP_CODE dumpCode(m_code, m_size); #endif #endif } void LinkBuffer::performFinalization() { #ifndef NDEBUG ASSERT(!m_completed); ASSERT(isValid()); m_completed = true; #endif #if ENABLE(BRANCH_COMPACTION) ExecutableAllocator::makeExecutable(code(), m_initialSize); #else ASSERT(m_size <= INT_MAX); ExecutableAllocator::makeExecutable(code(), static_cast(m_size)); #endif MacroAssembler::cacheFlush(code(), m_size); } #if DUMP_LINK_STATISTICS void LinkBuffer::dumpLinkStatistics(void* code, size_t initializeSize, size_t finalSize) { static unsigned linkCount = 0; static unsigned totalInitialSize = 0; static unsigned totalFinalSize = 0; linkCount++; totalInitialSize += initialSize; totalFinalSize += finalSize; dataLogF("link %p: orig %u, compact %u (delta %u, %.2f%%)\n", code, static_cast(initialSize), static_cast(finalSize), static_cast(initialSize - finalSize), 100.0 * (initialSize - finalSize) / initialSize); dataLogF("\ttotal %u: orig %u, compact %u (delta %u, %.2f%%)\n", linkCount, totalInitialSize, totalFinalSize, totalInitialSize - totalFinalSize, 100.0 * (totalInitialSize - totalFinalSize) / totalInitialSize); } #endif #if DUMP_CODE void LinkBuffer::dumpCode(void* code, size_t size) { #if CPU(ARM_THUMB2) // Dump the generated code in an asm file format that can be assembled and then disassembled // for debugging purposes. For example, save this output as jit.s: // gcc -arch armv7 -c jit.s // otool -tv jit.o static unsigned codeCount = 0; unsigned short* tcode = static_cast(code); size_t tsize = size / sizeof(short); char nameBuf[128]; snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++); dataLogF("\t.syntax unified\n" "\t.section\t__TEXT,__text,regular,pure_instructions\n" "\t.globl\t%s\n" "\t.align 2\n" "\t.code 16\n" "\t.thumb_func\t%s\n" "# %p\n" "%s:\n", nameBuf, nameBuf, code, nameBuf); for (unsigned i = 0; i < tsize; i++) dataLogF("\t.short\t0x%x\n", tcode[i]); #elif CPU(ARM_TRADITIONAL) // gcc -c jit.s // objdump -D jit.o static unsigned codeCount = 0; unsigned int* tcode = static_cast(code); size_t tsize = size / sizeof(unsigned int); char nameBuf[128]; snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++); dataLogF("\t.globl\t%s\n" "\t.align 4\n" "\t.code 32\n" "\t.text\n" "# %p\n" "%s:\n", nameBuf, code, nameBuf); for (unsigned i = 0; i < tsize; i++) dataLogF("\t.long\t0x%x\n", tcode[i]); #endif } #endif } // namespace JSC #endif // ENABLE(ASSEMBLER)