/* * Copyright (C) 2009, 2010, 2012 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef LinkBuffer_h #define LinkBuffer_h #if ENABLE(ASSEMBLER) #define DUMP_LINK_STATISTICS 0 #define DUMP_CODE 0 #define GLOBAL_THUNK_ID reinterpret_cast(static_cast(-1)) #define REGEXP_CODE_ID reinterpret_cast(static_cast(-2)) #include "JITCompilationEffort.h" #include "MacroAssembler.h" #include "Options.h" #include #include namespace JSC { class JSGlobalData; template struct DefaultExecutableOffsetCalculator { template static T applyOffset(Assembler *, T src) { return src; } }; // LinkBuffer: // // This class assists in linking code generated by the macro assembler, once code generation // has been completed, and the code has been copied to is final location in memory. At this // time pointers to labels within the code may be resolved, and relative offsets to external // addresses may be fixed. // // Specifically: // * Jump objects may be linked to external targets, // * The address of Jump objects may taken, such that it can later be relinked. // * The return address of a Call may be acquired. // * The address of a Label pointing into the code may be resolved. // * The value referenced by a DataLabel may be set. // template class ExecutableOffsetCalculator> class LinkBufferBase { WTF_MAKE_NONCOPYABLE(LinkBufferBase); typedef MacroAssemblerCodeRef CodeRef; typedef MacroAssemblerCodePtr CodePtr; typedef typename MacroAssembler::Label Label; typedef typename MacroAssembler::Jump Jump; typedef typename MacroAssembler::PatchableJump PatchableJump; typedef typename MacroAssembler::JumpList JumpList; typedef typename MacroAssembler::Call Call; typedef typename MacroAssembler::DataLabelCompact DataLabelCompact; typedef typename MacroAssembler::DataLabel32 DataLabel32; typedef typename MacroAssembler::DataLabelPtr DataLabelPtr; typedef typename MacroAssembler::ConvertibleLoadLabel ConvertibleLoadLabel; public: LinkBufferBase(JSGlobalData& globalData, MacroAssembler* masm, JITCompilationEffort effort = JITCompilationMustSucceed) : m_size(0) , m_code(0) , m_assembler(masm) , m_globalData(&globalData) #ifndef NDEBUG , m_completed(false) , m_effort(effort) #endif { #ifdef NDEBUG UNUSED_PARAM(effort) #endif // Simon: Moved this to the sub-classes linkCode(ownerUID, effort); } ~LinkBufferBase() { ASSERT(m_completed || (!m_executableMemory && m_effort == JITCompilationCanFail)); } bool didFailToAllocate() const { return !m_executableMemory; } bool isValid() const { return !didFailToAllocate(); } // These methods are used to link or set values at code generation time. void link(Call call, FunctionPtr function) { ASSERT(call.isFlagSet(Call::Linkable)); call.m_label = applyOffset(call.m_label); MacroAssembler::linkCall(code(), call, function); } void link(Jump jump, CodeLocationLabel label) { jump.m_label = applyOffset(jump.m_label); MacroAssembler::linkJump(code(), jump, label); } void link(JumpList list, CodeLocationLabel label) { for (unsigned i = 0; i < list.m_jumps.size(); ++i) link(list.m_jumps[i], label); } void patch(DataLabelPtr label, void* value) { AssemblerLabel target = applyOffset(label.m_label); MacroAssembler::linkPointer(code(), target, value); } void patch(DataLabelPtr label, CodeLocationLabel value) { AssemblerLabel target = applyOffset(label.m_label); MacroAssembler::linkPointer(code(), target, value.executableAddress()); } // These methods are used to obtain handles to allow the code to be relinked / repatched later. CodeLocationCall locationOf(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(!call.isFlagSet(Call::Near)); return CodeLocationCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_label))); } CodeLocationNearCall locationOfNearCall(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(call.isFlagSet(Call::Near)); return CodeLocationNearCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_label))); } CodeLocationLabel locationOf(PatchableJump jump) { return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(jump.m_jump.m_label))); } CodeLocationLabel locationOf(Label label) { return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } CodeLocationDataLabelPtr locationOf(DataLabelPtr label) { return CodeLocationDataLabelPtr(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } CodeLocationDataLabel32 locationOf(DataLabel32 label) { return CodeLocationDataLabel32(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } CodeLocationDataLabelCompact locationOf(DataLabelCompact label) { return CodeLocationDataLabelCompact(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } CodeLocationConvertibleLoad locationOf(ConvertibleLoadLabel label) { return CodeLocationConvertibleLoad(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } // This method obtains the return address of the call, given as an offset from // the start of the code. unsigned returnAddressOffset(Call call) { call.m_label = applyOffset(call.m_label); return MacroAssembler::getLinkerCallReturnOffset(call); } uint32_t offsetOf(Label label) { return applyOffset(label.m_label).m_offset; } // Upon completion of all patching 'FINALIZE_CODE()' should be called once to // complete generation of the code. Alternatively, call // finalizeCodeWithoutDisassembly() directly if you have your own way of // displaying disassembly. inline CodeRef finalizeCodeWithoutDisassembly(); inline CodeRef finalizeCodeWithDisassembly(const char* format, ...) WTF_ATTRIBUTE_PRINTF(2, 3); CodePtr trampolineAt(Label label) { return CodePtr(MacroAssembler::AssemblerType_T::getRelocatedAddress(code(), applyOffset(label.m_label))); } void* debugAddress() { return m_code; } size_t debugSize() { return m_size; } private: template T applyOffset(T src) { return ExecutableOffsetCalculator::applyOffset(m_assembler, src); } protected: // Keep this private! - the underlying code should only be obtained externally via finalizeCode(). void* code() { return m_code; } inline void linkCode(void* ownerUID, JITCompilationEffort); inline void performFinalization(); #if DUMP_LINK_STATISTICS static void dumpLinkStatistics(void* code, size_t initialSize, size_t finalSize); #endif #if DUMP_CODE static void dumpCode(void* code, size_t); #endif RefPtr m_executableMemory; size_t m_size; void* m_code; MacroAssembler* m_assembler; JSGlobalData* m_globalData; protected: #ifndef NDEBUG bool m_completed; JITCompilationEffort m_effort; #endif }; #define FINALIZE_CODE_IF(condition, linkBufferReference, dataLogFArgumentsForHeading) \ (UNLIKELY((condition)) \ ? ((linkBufferReference).finalizeCodeWithDisassembly dataLogFArgumentsForHeading) \ : (linkBufferReference).finalizeCodeWithoutDisassembly()) // Use this to finalize code, like so: // // CodeRef code = FINALIZE_CODE(linkBuffer, ("my super thingy number %d", number)); // // Which, in disassembly mode, will print: // // Generated JIT code for my super thingy number 42: // Code at [0x123456, 0x234567]: // 0x123456: mov $0, 0 // 0x12345a: ret // // ... and so on. // // Note that the dataLogFArgumentsForHeading are only evaluated when showDisassembly // is true, so you can hide expensive disassembly-only computations inside there. #define FINALIZE_CODE(linkBufferReference, dataLogFArgumentsForHeading) \ FINALIZE_CODE_IF(Options::showDisassembly(), linkBufferReference, dataLogFArgumentsForHeading) #define FINALIZE_DFG_CODE(linkBufferReference, dataLogFArgumentsForHeading) \ FINALIZE_CODE_IF((Options::showDisassembly() || Options::showDFGDisassembly()), linkBufferReference, dataLogFArgumentsForHeading) template class ExecutableOffsetCalculator> inline typename LinkBufferBase::CodeRef LinkBufferBase::finalizeCodeWithoutDisassembly() { performFinalization(); return CodeRef(m_executableMemory); } template class ExecutableOffsetCalculator> inline typename LinkBufferBase::CodeRef LinkBufferBase::finalizeCodeWithDisassembly(const char* format, ...) { ASSERT(Options::showDisassembly() || Options::showDFGDisassembly()); CodeRef result = finalizeCodeWithoutDisassembly(); dataLogF("Generated JIT code for "); va_list argList; va_start(argList, format); WTF::dataLogFV(format, argList); va_end(argList); dataLogF(":\n"); dataLogF( #if OS(WINDOWS) " Code at [0x%p, 0x%p):\n", #else " Code at [%p, %p):\n", #endif result.code().executableAddress(), static_cast(result.code().executableAddress()) + result.size()); disassemble(result.code(), m_size, " ", WTF::dataFile()); return result; } template class ExecutableOffsetCalculator> inline void LinkBufferBase::linkCode(void* ownerUID, JITCompilationEffort effort) { UNUSED_PARAM(ownerUID) UNUSED_PARAM(effort) ASSERT(!m_code); m_executableMemory = m_assembler->m_assembler.executableCopy(*m_globalData, ownerUID, effort); if (!m_executableMemory) return; m_code = m_executableMemory->start(); m_size = m_assembler->m_assembler.codeSize(); ASSERT(m_code); } template class ExecutableOffsetCalculator> inline void LinkBufferBase::performFinalization() { // NOTE: This function is specialized in LinkBuffer #ifndef NDEBUG ASSERT(!m_completed); ASSERT(isValid()); m_completed = true; #endif ASSERT(m_size <= INT_MAX); ExecutableAllocator::makeExecutable(code(), static_cast(m_size)); MacroAssembler::cacheFlush(code(), m_size); } template class LinkBuffer : public LinkBufferBase { public: LinkBuffer(JSGlobalData& globalData, MacroAssembler* masm, void* ownerUID, JITCompilationEffort effort = JITCompilationMustSucceed) : LinkBufferBase(globalData, masm, effort) { this->linkCode(ownerUID, effort); } }; #if CPU(ARM_THUMB2) || CPU(ARM64) || defined(V4_BOOTSTRAP) template struct BranchCompactingExecutableOffsetCalculator { template static T applyOffset(Assembler *as, T src) { src.m_offset -= as->executableOffsetFor(src.m_offset); return src; } }; template class BranchCompactingLinkBuffer : public LinkBufferBase { public: BranchCompactingLinkBuffer(JSGlobalData& globalData, MacroAssembler* masm, void* ownerUID, JITCompilationEffort effort = JITCompilationMustSucceed) : LinkBufferBase(globalData, masm, effort) { linkCode(ownerUID, effort); } inline void performFinalization(); inline void linkCode(void* ownerUID, JITCompilationEffort); private: using Base = LinkBufferBase; #ifndef NDEBUG using Base::m_completed; #endif using Base::isValid; using Base::code; using Base::m_code; using Base::m_size; using Base::m_assembler; using Base::m_executableMemory; using Base::m_globalData; using LinkRecord = typename MacroAssembler::LinkRecord; using JumpLinkType = typename MacroAssembler::JumpLinkType; size_t m_initialSize = 0; }; template inline void BranchCompactingLinkBuffer::performFinalization() { #ifndef NDEBUG ASSERT(!m_completed); ASSERT(isValid()); this->m_completed = true; #endif ExecutableAllocator::makeExecutable(code(), m_initialSize); MacroAssembler::cacheFlush(code(), m_size); } template inline void BranchCompactingLinkBuffer::linkCode(void* ownerUID, JITCompilationEffort effort) { UNUSED_PARAM(ownerUID) UNUSED_PARAM(effort) ASSERT(!m_code); m_initialSize = m_assembler->m_assembler.codeSize(); m_executableMemory = m_globalData->executableAllocator.allocate(*m_globalData, m_initialSize, ownerUID, effort); if (!m_executableMemory) return; m_code = (uint8_t*)m_executableMemory->start(); ASSERT(m_code); ExecutableAllocator::makeWritable(m_code, m_initialSize); uint8_t* inData = (uint8_t*)m_assembler->unlinkedCode(); uint8_t* outData = reinterpret_cast(m_code); int readPtr = 0; int writePtr = 0; Vector& jumpsToLink = m_assembler->jumpsToLink(); unsigned jumpCount = unsigned(jumpsToLink.size()); for (unsigned i = 0; i < jumpCount; ++i) { int offset = readPtr - writePtr; ASSERT(!(offset & 1)); // Copy the instructions from the last jump to the current one. unsigned regionSize = unsigned(jumpsToLink[i].from() - readPtr); uint16_t* copySource = reinterpret_cast_ptr(inData + readPtr); uint16_t* copyEnd = reinterpret_cast_ptr(inData + readPtr + regionSize); uint16_t* copyDst = reinterpret_cast_ptr(outData + writePtr); ASSERT(!(regionSize % 2)); ASSERT(!(readPtr % 2)); ASSERT(!(writePtr % 2)); while (copySource != copyEnd) *copyDst++ = *copySource++; m_assembler->recordLinkOffsets(readPtr, jumpsToLink[i].from(), offset); readPtr += regionSize; writePtr += regionSize; // Calculate absolute address of the jump target, in the case of backwards // branches we need to be precise, forward branches we are pessimistic const uint8_t* target; if (jumpsToLink[i].to() >= jumpsToLink[i].from()) target = outData + jumpsToLink[i].to() - offset; // Compensate for what we have collapsed so far else target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to()); JumpLinkType jumpLinkType = m_assembler->computeJumpType(jumpsToLink[i], outData + writePtr, target); // Compact branch if we can... if (m_assembler->canCompact(jumpsToLink[i].type())) { // Step back in the write stream int32_t delta = m_assembler->jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType); if (delta) { writePtr -= delta; m_assembler->recordLinkOffsets(jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr); } } jumpsToLink[i].setFrom(writePtr); } // Copy everything after the last jump memcpy(outData + writePtr, inData + readPtr, m_initialSize - readPtr); m_assembler->recordLinkOffsets(readPtr, unsigned(m_initialSize), readPtr - writePtr); for (unsigned i = 0; i < jumpCount; ++i) { uint8_t* location = outData + jumpsToLink[i].from(); uint8_t* target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to()); m_assembler->link(jumpsToLink[i], location, target); } jumpsToLink.clear(); m_size = writePtr + m_initialSize - readPtr; m_executableMemory->shrink(m_size); } #if CPU(ARM_THUMB2) || defined(V4_BOOTSTRAP) template <> class LinkBuffer> : public BranchCompactingLinkBuffer> { public: LinkBuffer(JSGlobalData& globalData, JSC::MacroAssembler* masm, void* ownerUID, JITCompilationEffort effort = JITCompilationMustSucceed) : BranchCompactingLinkBuffer>(globalData, masm, ownerUID, effort) {} }; #endif #if CPU(ARM64) || defined(V4_BOOTSTRAP) template <> class LinkBuffer> : public BranchCompactingLinkBuffer> { public: LinkBuffer(JSGlobalData& globalData, JSC::MacroAssembler* masm, void* ownerUID, JITCompilationEffort effort = JITCompilationMustSucceed) : BranchCompactingLinkBuffer>(globalData, masm, ownerUID, effort) {} }; #endif #endif } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // LinkBuffer_h