/* * Copyright (C) 2008 Apple Inc. * Copyright (C) 2009, 2010 University of Szeged * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerARM_h #define MacroAssemblerARM_h #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) #include "ARMAssembler.h" #include "AbstractMacroAssembler.h" namespace JSC { class MacroAssemblerARM : public AbstractMacroAssembler { static const int DoubleConditionMask = 0x0f; static const int DoubleConditionBitSpecial = 0x10; COMPILE_ASSERT(!(DoubleConditionBitSpecial & DoubleConditionMask), DoubleConditionBitSpecial_should_not_interfere_with_ARMAssembler_Condition_codes); public: typedef ARMRegisters::FPRegisterID FPRegisterID; enum RelationalCondition { Equal = ARMAssembler::EQ, NotEqual = ARMAssembler::NE, Above = ARMAssembler::HI, AboveOrEqual = ARMAssembler::CS, Below = ARMAssembler::CC, BelowOrEqual = ARMAssembler::LS, GreaterThan = ARMAssembler::GT, GreaterThanOrEqual = ARMAssembler::GE, LessThan = ARMAssembler::LT, LessThanOrEqual = ARMAssembler::LE }; enum ResultCondition { Overflow = ARMAssembler::VS, Signed = ARMAssembler::MI, Zero = ARMAssembler::EQ, NonZero = ARMAssembler::NE }; enum DoubleCondition { // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN. DoubleEqual = ARMAssembler::EQ, DoubleNotEqual = ARMAssembler::NE | DoubleConditionBitSpecial, DoubleGreaterThan = ARMAssembler::GT, DoubleGreaterThanOrEqual = ARMAssembler::GE, DoubleLessThan = ARMAssembler::CC, DoubleLessThanOrEqual = ARMAssembler::LS, // If either operand is NaN, these conditions always evaluate to true. DoubleEqualOrUnordered = ARMAssembler::EQ | DoubleConditionBitSpecial, DoubleNotEqualOrUnordered = ARMAssembler::NE, DoubleGreaterThanOrUnordered = ARMAssembler::HI, DoubleGreaterThanOrEqualOrUnordered = ARMAssembler::CS, DoubleLessThanOrUnordered = ARMAssembler::LT, DoubleLessThanOrEqualOrUnordered = ARMAssembler::LE, }; static const RegisterID stackPointerRegister = ARMRegisters::sp; static const RegisterID linkRegister = ARMRegisters::lr; static const Scale ScalePtr = TimesFour; void add32(RegisterID src, RegisterID dest) { m_assembler.adds(dest, dest, src); } void add32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.adds(dest, op1, op2); } void add32(TrustedImm32 imm, Address address) { load32(address, ARMRegisters::S1); add32(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address); } void add32(TrustedImm32 imm, RegisterID dest) { m_assembler.adds(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void add32(AbsoluteAddress src, RegisterID dest) { move(TrustedImmPtr(src.m_ptr), ARMRegisters::S1); m_assembler.dtrUp(ARMAssembler::LoadUint32, ARMRegisters::S1, ARMRegisters::S1, 0); add32(ARMRegisters::S1, dest); } void add32(Address src, RegisterID dest) { load32(src, ARMRegisters::S1); add32(ARMRegisters::S1, dest); } void add32(RegisterID src, TrustedImm32 imm, RegisterID dest) { m_assembler.adds(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void and32(RegisterID src, RegisterID dest) { m_assembler.bitAnds(dest, dest, src); } void and32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.bitAnds(dest, op1, op2); } void and32(TrustedImm32 imm, RegisterID dest) { ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true); if (w & ARMAssembler::Op2InvertedImmediate) m_assembler.bics(dest, dest, w & ~ARMAssembler::Op2InvertedImmediate); else m_assembler.bitAnds(dest, dest, w); } void and32(TrustedImm32 imm, RegisterID src, RegisterID dest) { ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true); if (w & ARMAssembler::Op2InvertedImmediate) m_assembler.bics(dest, src, w & ~ARMAssembler::Op2InvertedImmediate); else m_assembler.bitAnds(dest, src, w); } void and32(Address src, RegisterID dest) { load32(src, ARMRegisters::S1); and32(ARMRegisters::S1, dest); } void lshift32(RegisterID shiftAmount, RegisterID dest) { lshift32(dest, shiftAmount, dest); } void lshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest) { ARMWord w = ARMAssembler::getOp2Byte(0x1f); m_assembler.bitAnd(ARMRegisters::S0, shiftAmount, w); m_assembler.movs(dest, m_assembler.lslRegister(src, ARMRegisters::S0)); } void lshift32(TrustedImm32 imm, RegisterID dest) { m_assembler.movs(dest, m_assembler.lsl(dest, imm.m_value & 0x1f)); } void lshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { m_assembler.movs(dest, m_assembler.lsl(src, imm.m_value & 0x1f)); } void mul32(RegisterID op1, RegisterID op2, RegisterID dest) { if (op2 == dest) { if (op1 == dest) { move(op2, ARMRegisters::S0); op2 = ARMRegisters::S0; } else { // Swap the operands. RegisterID tmp = op1; op1 = op2; op2 = tmp; } } m_assembler.muls(dest, op1, op2); } void mul32(RegisterID src, RegisterID dest) { mul32(src, dest, dest); } void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) { move(imm, ARMRegisters::S0); m_assembler.muls(dest, src, ARMRegisters::S0); } void neg32(RegisterID srcDest) { m_assembler.rsbs(srcDest, srcDest, ARMAssembler::getOp2Byte(0)); } void or32(RegisterID src, RegisterID dest) { m_assembler.orrs(dest, dest, src); } void or32(RegisterID src, AbsoluteAddress dest) { move(TrustedImmPtr(dest.m_ptr), ARMRegisters::S0); load32(Address(ARMRegisters::S0), ARMRegisters::S1); or32(src, ARMRegisters::S1); store32(ARMRegisters::S1, ARMRegisters::S0); } void or32(TrustedImm32 imm, RegisterID dest) { m_assembler.orrs(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void or32(TrustedImm32 imm, RegisterID src, RegisterID dest) { m_assembler.orrs(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void or32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.orrs(dest, op1, op2); } void rshift32(RegisterID shiftAmount, RegisterID dest) { rshift32(dest, shiftAmount, dest); } void rshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest) { ARMWord w = ARMAssembler::getOp2Byte(0x1f); m_assembler.bitAnd(ARMRegisters::S0, shiftAmount, w); m_assembler.movs(dest, m_assembler.asrRegister(src, ARMRegisters::S0)); } void rshift32(TrustedImm32 imm, RegisterID dest) { rshift32(dest, imm, dest); } void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { m_assembler.movs(dest, m_assembler.asr(src, imm.m_value & 0x1f)); } void urshift32(RegisterID shiftAmount, RegisterID dest) { urshift32(dest, shiftAmount, dest); } void urshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest) { ARMWord w = ARMAssembler::getOp2Byte(0x1f); m_assembler.bitAnd(ARMRegisters::S0, shiftAmount, w); m_assembler.movs(dest, m_assembler.lsrRegister(src, ARMRegisters::S0)); } void urshift32(TrustedImm32 imm, RegisterID dest) { m_assembler.movs(dest, m_assembler.lsr(dest, imm.m_value & 0x1f)); } void urshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { m_assembler.movs(dest, m_assembler.lsr(src, imm.m_value & 0x1f)); } void sub32(RegisterID src, RegisterID dest) { m_assembler.subs(dest, dest, src); } void sub32(TrustedImm32 imm, RegisterID dest) { m_assembler.subs(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void sub32(TrustedImm32 imm, Address address) { load32(address, ARMRegisters::S1); sub32(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address); } void sub32(Address src, RegisterID dest) { load32(src, ARMRegisters::S1); sub32(ARMRegisters::S1, dest); } void sub32(RegisterID src, TrustedImm32 imm, RegisterID dest) { m_assembler.subs(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void xor32(RegisterID src, RegisterID dest) { m_assembler.eors(dest, dest, src); } void xor32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.eors(dest, op1, op2); } void xor32(TrustedImm32 imm, RegisterID dest) { if (imm.m_value == -1) m_assembler.mvns(dest, dest); else m_assembler.eors(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest) { if (imm.m_value == -1) m_assembler.mvns(dest, src); else m_assembler.eors(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void countLeadingZeros32(RegisterID src, RegisterID dest) { #if WTF_ARM_ARCH_AT_LEAST(5) m_assembler.clz(dest, src); #else UNUSED_PARAM(src); UNUSED_PARAM(dest); RELEASE_ASSERT_NOT_REACHED(); #endif } void load8(ImplicitAddress address, RegisterID dest) { m_assembler.dataTransfer32(ARMAssembler::LoadUint8, dest, address.base, address.offset); } void load8(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer32(ARMAssembler::LoadUint8, dest, address.base, address.index, static_cast(address.scale), address.offset); } void load8Signed(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer16(ARMAssembler::LoadInt8, dest, address.base, address.index, static_cast(address.scale), address.offset); } void load16(ImplicitAddress address, RegisterID dest) { m_assembler.dataTransfer16(ARMAssembler::LoadUint16, dest, address.base, address.offset); } void load16(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer16(ARMAssembler::LoadUint16, dest, address.base, address.index, static_cast(address.scale), address.offset); } void load16Signed(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer16(ARMAssembler::LoadInt16, dest, address.base, address.index, static_cast(address.scale), address.offset); } void load32(ImplicitAddress address, RegisterID dest) { m_assembler.dataTransfer32(ARMAssembler::LoadUint32, dest, address.base, address.offset); } void load32(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer32(ARMAssembler::LoadUint32, dest, address.base, address.index, static_cast(address.scale), address.offset); } #if CPU(ARMV5_OR_LOWER) void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest); #else void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { load32(address, dest); } #endif void load16Unaligned(BaseIndex address, RegisterID dest) { load16(address, dest); } ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest) { ConvertibleLoadLabel result(this); ASSERT(address.offset >= 0 && address.offset <= 255); m_assembler.dtrUp(ARMAssembler::LoadUint32, dest, address.base, address.offset); return result; } DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest) { DataLabel32 dataLabel(this); m_assembler.ldrUniqueImmediate(ARMRegisters::S0, 0); m_assembler.dtrUpRegister(ARMAssembler::LoadUint32, dest, address.base, ARMRegisters::S0); return dataLabel; } static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value) { return value >= -4095 && value <= 4095; } DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest) { DataLabelCompact dataLabel(this); ASSERT(isCompactPtrAlignedAddressOffset(address.offset)); if (address.offset >= 0) m_assembler.dtrUp(ARMAssembler::LoadUint32, dest, address.base, address.offset); else m_assembler.dtrDown(ARMAssembler::LoadUint32, dest, address.base, address.offset); return dataLabel; } DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address) { DataLabel32 dataLabel(this); m_assembler.ldrUniqueImmediate(ARMRegisters::S0, 0); m_assembler.dtrUpRegister(ARMAssembler::StoreUint32, src, address.base, ARMRegisters::S0); return dataLabel; } void store8(RegisterID src, BaseIndex address) { m_assembler.baseIndexTransfer32(ARMAssembler::StoreUint8, src, address.base, address.index, static_cast(address.scale), address.offset); } void store8(TrustedImm32 imm, const void* address) { move(TrustedImm32(reinterpret_cast(address)), ARMRegisters::S0); move(imm, ARMRegisters::S1); m_assembler.dtrUp(ARMAssembler::StoreUint8, ARMRegisters::S1, ARMRegisters::S0, 0); } void store16(RegisterID src, BaseIndex address) { m_assembler.baseIndexTransfer16(ARMAssembler::StoreUint16, src, address.base, address.index, static_cast(address.scale), address.offset); } void store32(RegisterID src, ImplicitAddress address) { m_assembler.dataTransfer32(ARMAssembler::StoreUint32, src, address.base, address.offset); } void store32(RegisterID src, BaseIndex address) { m_assembler.baseIndexTransfer32(ARMAssembler::StoreUint32, src, address.base, address.index, static_cast(address.scale), address.offset); } void store32(TrustedImm32 imm, ImplicitAddress address) { move(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address); } void store32(TrustedImm32 imm, BaseIndex address) { move(imm, ARMRegisters::S1); m_assembler.baseIndexTransfer32(ARMAssembler::StoreUint32, ARMRegisters::S1, address.base, address.index, static_cast(address.scale), address.offset); } void store32(RegisterID src, const void* address) { m_assembler.ldrUniqueImmediate(ARMRegisters::S0, reinterpret_cast(address)); m_assembler.dtrUp(ARMAssembler::StoreUint32, src, ARMRegisters::S0, 0); } void store32(TrustedImm32 imm, const void* address) { m_assembler.ldrUniqueImmediate(ARMRegisters::S0, reinterpret_cast(address)); m_assembler.moveImm(imm.m_value, ARMRegisters::S1); m_assembler.dtrUp(ARMAssembler::StoreUint32, ARMRegisters::S1, ARMRegisters::S0, 0); } void pop(RegisterID dest) { m_assembler.pop(dest); } void push(RegisterID src) { m_assembler.push(src); } void push(Address address) { load32(address, ARMRegisters::S1); push(ARMRegisters::S1); } void push(TrustedImm32 imm) { move(imm, ARMRegisters::S0); push(ARMRegisters::S0); } void move(TrustedImm32 imm, RegisterID dest) { m_assembler.moveImm(imm.m_value, dest); } void move(RegisterID src, RegisterID dest) { if (src != dest) m_assembler.mov(dest, src); } void move(TrustedImmPtr imm, RegisterID dest) { move(TrustedImm32(imm), dest); } void swap(RegisterID reg1, RegisterID reg2) { move(reg1, ARMRegisters::S0); move(reg2, reg1); move(ARMRegisters::S0, reg2); } void signExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } void zeroExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right) { load8(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { ASSERT(!(right.m_value & 0xFFFFFF00)); load8(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right, int useConstantPool = 0) { m_assembler.cmp(left, right); return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool)); } Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right, int useConstantPool = 0) { internalCompare32(left, right); return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool)); } Jump branch32(RelationalCondition cond, RegisterID left, Address right) { load32(right, ARMRegisters::S1); return branch32(cond, left, ARMRegisters::S1); } Jump branch32(RelationalCondition cond, Address left, RegisterID right) { load32(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right) { load32(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { load32(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { load32WithUnalignedHalfWords(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { load8(address, ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { move(TrustedImmPtr(address.m_ptr), ARMRegisters::S1); load8(Address(ARMRegisters::S1), ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask) { ASSERT((cond == Zero) || (cond == NonZero)); m_assembler.tst(reg, mask); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { ASSERT((cond == Zero) || (cond == NonZero)); ARMWord w = m_assembler.getImm(mask.m_value, ARMRegisters::S0, true); if (w & ARMAssembler::Op2InvertedImmediate) m_assembler.bics(ARMRegisters::S0, reg, w & ~ARMAssembler::Op2InvertedImmediate); else m_assembler.tst(reg, w); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { load32(address, ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { load32(address, ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump jump() { return Jump(m_assembler.jmp()); } void jump(RegisterID target) { m_assembler.bx(target); } void jump(Address address) { load32(address, ARMRegisters::pc); } void jump(AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), ARMRegisters::S0); load32(Address(ARMRegisters::S0, 0), ARMRegisters::pc); } void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2) { m_assembler.vmov(dest1, dest2, src); } void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID) { m_assembler.vmov(dest, src1, src2); } Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchAdd32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(op1, op2, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchAdd32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(src, imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } void mull32(RegisterID op1, RegisterID op2, RegisterID dest) { if (op2 == dest) { if (op1 == dest) { move(op2, ARMRegisters::S0); op2 = ARMRegisters::S0; } else { // Swap the operands. RegisterID tmp = op1; op1 = op2; op2 = tmp; } } m_assembler.mull(ARMRegisters::S1, dest, op1, op2); m_assembler.cmp(ARMRegisters::S1, m_assembler.asr(dest, 31)); } Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { mull32(src1, src2, dest); cond = NonZero; } else mul32(src1, src2, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest) { return branchMul32(cond, src, dest, dest); } Jump branchMul32(ResultCondition cond, TrustedImm32 imm, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { move(imm, ARMRegisters::S0); mull32(ARMRegisters::S0, src, dest); cond = NonZero; } else mul32(imm, src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(src, imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); m_assembler.subs(dest, op1, op2); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchNeg32(ResultCondition cond, RegisterID srcDest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); neg32(srcDest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero)); or32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) { internalCompare32(reg, imm); Jump jump(m_assembler.loadBranchTarget(ARMRegisters::S1, ARMCondition(cond), true)); m_assembler.bx(ARMRegisters::S1, ARMCondition(cond)); return PatchableJump(jump); } void breakpoint() { m_assembler.bkpt(0); } Call nearCall() { m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true); return Call(m_assembler.blx(ARMRegisters::S1), Call::LinkableNear); } Call call(RegisterID target) { return Call(m_assembler.blx(target), Call::None); } void call(Address address) { call32(address.base, address.offset); } void ret() { m_assembler.bx(linkRegister); } void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmp(left, right); m_assembler.mov(dest, ARMAssembler::getOp2Byte(0)); m_assembler.mov(dest, ARMAssembler::getOp2Byte(1), ARMCondition(cond)); } void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { m_assembler.cmp(left, m_assembler.getImm(right.m_value, ARMRegisters::S0)); m_assembler.mov(dest, ARMAssembler::getOp2Byte(0)); m_assembler.mov(dest, ARMAssembler::getOp2Byte(1), ARMCondition(cond)); } void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest) { load8(left, ARMRegisters::S1); compare32(cond, ARMRegisters::S1, right, dest); } void test32(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) { if (mask.m_value == -1) m_assembler.cmp(0, reg); else m_assembler.tst(reg, m_assembler.getImm(mask.m_value, ARMRegisters::S0)); m_assembler.mov(dest, ARMAssembler::getOp2Byte(0)); m_assembler.mov(dest, ARMAssembler::getOp2Byte(1), ARMCondition(cond)); } void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest) { load32(address, ARMRegisters::S1); test32(cond, ARMRegisters::S1, mask, dest); } void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest) { load8(address, ARMRegisters::S1); test32(cond, ARMRegisters::S1, mask, dest); } void add32(TrustedImm32 imm, RegisterID src, RegisterID dest) { m_assembler.add(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void add32(TrustedImm32 imm, AbsoluteAddress address) { load32(address.m_ptr, ARMRegisters::S1); add32(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address.m_ptr); } void add64(TrustedImm32 imm, AbsoluteAddress address) { ARMWord tmp; move(TrustedImmPtr(address.m_ptr), ARMRegisters::S1); m_assembler.dtrUp(ARMAssembler::LoadUint32, ARMRegisters::S0, ARMRegisters::S1, 0); if ((tmp = ARMAssembler::getOp2(imm.m_value)) != ARMAssembler::InvalidImmediate) m_assembler.adds(ARMRegisters::S0, ARMRegisters::S0, tmp); else if ((tmp = ARMAssembler::getOp2(-imm.m_value)) != ARMAssembler::InvalidImmediate) m_assembler.subs(ARMRegisters::S0, ARMRegisters::S0, tmp); else { m_assembler.adds(ARMRegisters::S0, ARMRegisters::S0, m_assembler.getImm(imm.m_value, ARMRegisters::S1)); move(TrustedImmPtr(address.m_ptr), ARMRegisters::S1); } m_assembler.dtrUp(ARMAssembler::StoreUint32, ARMRegisters::S0, ARMRegisters::S1, 0); m_assembler.dtrUp(ARMAssembler::LoadUint32, ARMRegisters::S0, ARMRegisters::S1, sizeof(ARMWord)); if (imm.m_value >= 0) m_assembler.adc(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Byte(0)); else m_assembler.sbc(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Byte(0)); m_assembler.dtrUp(ARMAssembler::StoreUint32, ARMRegisters::S0, ARMRegisters::S1, sizeof(ARMWord)); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { load32(address.m_ptr, ARMRegisters::S1); sub32(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address.m_ptr); } void load32(const void* address, RegisterID dest) { m_assembler.ldrUniqueImmediate(ARMRegisters::S0, reinterpret_cast(address)); m_assembler.dtrUp(ARMAssembler::LoadUint32, dest, ARMRegisters::S0, 0); } Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right) { load32(left.m_ptr, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right) { load32(left.m_ptr, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } void relativeTableJump(RegisterID index, int scale) { ASSERT(scale >= 0 && scale <= 31); m_assembler.add(ARMRegisters::pc, ARMRegisters::pc, m_assembler.lsl(index, scale)); // NOP the default prefetching m_assembler.mov(ARMRegisters::r0, ARMRegisters::r0); } Call call() { ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true); return Call(m_assembler.blx(ARMRegisters::S1), Call::Linkable); } Call tailRecursiveCall() { return Call::fromTailJump(jump()); } Call makeTailRecursiveCall(Jump oldJump) { return Call::fromTailJump(oldJump); } DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) { DataLabelPtr dataLabel(this); m_assembler.ldrUniqueImmediate(dest, reinterpret_cast(initialValue.m_value)); return dataLabel; } Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { ensureSpace(3 * sizeof(ARMWord), 2 * sizeof(ARMWord)); dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S1); Jump jump = branch32(cond, left, ARMRegisters::S1, true); return jump; } Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { load32(left, ARMRegisters::S1); ensureSpace(3 * sizeof(ARMWord), 2 * sizeof(ARMWord)); dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S0); Jump jump = branch32(cond, ARMRegisters::S0, ARMRegisters::S1, true); return jump; } DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { DataLabelPtr dataLabel = moveWithPatch(initialValue, ARMRegisters::S1); store32(ARMRegisters::S1, address); return dataLabel; } DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(TrustedImmPtr(0), address); } // Floating point operators static bool supportsFloatingPoint() { return s_isVFPPresent; } static bool supportsFloatingPointTruncate() { return false; } static bool supportsFloatingPointSqrt() { return s_isVFPPresent; } static bool supportsFloatingPointAbs() { return false; } void loadFloat(BaseIndex address, FPRegisterID dest) { m_assembler.baseIndexTransferFloat(ARMAssembler::LoadFloat, dest, address.base, address.index, static_cast(address.scale), address.offset); } void loadDouble(ImplicitAddress address, FPRegisterID dest) { m_assembler.dataTransferFloat(ARMAssembler::LoadDouble, dest, address.base, address.offset); } void loadDouble(BaseIndex address, FPRegisterID dest) { m_assembler.baseIndexTransferFloat(ARMAssembler::LoadDouble, dest, address.base, address.index, static_cast(address.scale), address.offset); } void loadDouble(const void* address, FPRegisterID dest) { move(TrustedImm32(reinterpret_cast(address)), ARMRegisters::S0); m_assembler.doubleDtrUp(ARMAssembler::LoadDouble, dest, ARMRegisters::S0, 0); } void storeFloat(FPRegisterID src, BaseIndex address) { m_assembler.baseIndexTransferFloat(ARMAssembler::StoreFloat, src, address.base, address.index, static_cast(address.scale), address.offset); } void storeDouble(FPRegisterID src, ImplicitAddress address) { m_assembler.dataTransferFloat(ARMAssembler::StoreDouble, src, address.base, address.offset); } void storeDouble(FPRegisterID src, BaseIndex address) { m_assembler.baseIndexTransferFloat(ARMAssembler::StoreDouble, src, address.base, address.index, static_cast(address.scale), address.offset); } void storeDouble(FPRegisterID src, const void* address) { move(TrustedImm32(reinterpret_cast(address)), ARMRegisters::S0); m_assembler.dataTransferFloat(ARMAssembler::StoreDouble, src, ARMRegisters::S0, 0); } void moveDouble(FPRegisterID src, FPRegisterID dest) { if (src != dest) m_assembler.vmov_f64(dest, src); } void addDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vadd_f64(dest, dest, src); } void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vadd_f64(dest, op1, op2); } void addDouble(Address src, FPRegisterID dest) { loadDouble(src, ARMRegisters::SD0); addDouble(ARMRegisters::SD0, dest); } void addDouble(AbsoluteAddress address, FPRegisterID dest) { loadDouble(address.m_ptr, ARMRegisters::SD0); addDouble(ARMRegisters::SD0, dest); } void divDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vdiv_f64(dest, dest, src); } void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vdiv_f64(dest, op1, op2); } void divDouble(Address src, FPRegisterID dest) { RELEASE_ASSERT_NOT_REACHED(); // Untested loadDouble(src, ARMRegisters::SD0); divDouble(ARMRegisters::SD0, dest); } void subDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vsub_f64(dest, dest, src); } void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vsub_f64(dest, op1, op2); } void subDouble(Address src, FPRegisterID dest) { loadDouble(src, ARMRegisters::SD0); subDouble(ARMRegisters::SD0, dest); } void mulDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vmul_f64(dest, dest, src); } void mulDouble(Address src, FPRegisterID dest) { loadDouble(src, ARMRegisters::SD0); mulDouble(ARMRegisters::SD0, dest); } void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vmul_f64(dest, op1, op2); } void sqrtDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vsqrt_f64(dest, src); } void absDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vabs_f64(dest, src); } void negateDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vneg_f64(dest, src); } void convertInt32ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.vmov_vfp32(dest << 1, src); m_assembler.vcvt_f64_s32(dest, dest << 1); } void convertInt32ToDouble(Address src, FPRegisterID dest) { load32(src, ARMRegisters::S1); convertInt32ToDouble(ARMRegisters::S1, dest); } void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest) { move(TrustedImmPtr(src.m_ptr), ARMRegisters::S1); load32(Address(ARMRegisters::S1), ARMRegisters::S1); convertInt32ToDouble(ARMRegisters::S1, dest); } void convertFloatToDouble(FPRegisterID src, FPRegisterID dst) { m_assembler.vcvt_f64_f32(dst, src); } void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst) { m_assembler.vcvt_f32_f64(dst, src); } Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right) { m_assembler.vcmp_f64(left, right); m_assembler.vmrs_apsr(); if (cond & DoubleConditionBitSpecial) m_assembler.cmp(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::VS); return Jump(m_assembler.jmp(static_cast(cond & ~DoubleConditionMask))); } // Truncates 'src' to an integer, and places the resulting 'dest'. // If the result is not representable as a 32 bit value, branch. // May also branch for some values that are representable in 32 bits // (specifically, in this case, INT_MIN). enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful }; Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed) { truncateDoubleToInt32(src, dest); m_assembler.add(ARMRegisters::S0, dest, ARMAssembler::getOp2Byte(1)); m_assembler.bic(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Byte(1)); ARMWord w = ARMAssembler::getOp2(0x80000000); ASSERT(w != ARMAssembler::InvalidImmediate); m_assembler.cmp(ARMRegisters::S0, w); return Jump(m_assembler.jmp(branchType == BranchIfTruncateFailed ? ARMAssembler::EQ : ARMAssembler::NE)); } Jump branchTruncateDoubleToUint32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed) { truncateDoubleToUint32(src, dest); m_assembler.add(ARMRegisters::S0, dest, ARMAssembler::getOp2Byte(1)); m_assembler.bic(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Byte(1)); m_assembler.cmp(ARMRegisters::S0, ARMAssembler::getOp2Byte(0)); return Jump(m_assembler.jmp(branchType == BranchIfTruncateFailed ? ARMAssembler::EQ : ARMAssembler::NE)); } // Result is undefined if the value is outside of the integer range. void truncateDoubleToInt32(FPRegisterID src, RegisterID dest) { m_assembler.vcvt_s32_f64(ARMRegisters::SD0 << 1, src); m_assembler.vmov_arm32(dest, ARMRegisters::SD0 << 1); } void truncateDoubleToUint32(FPRegisterID src, RegisterID dest) { m_assembler.vcvt_u32_f64(ARMRegisters::SD0 << 1, src); m_assembler.vmov_arm32(dest, ARMRegisters::SD0 << 1); } // Convert 'src' to an integer, and places the resulting 'dest'. // If the result is not representable as a 32 bit value, branch. // May also branch for some values that are representable in 32 bits // (specifically, in this case, 0). void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID) { m_assembler.vcvt_s32_f64(ARMRegisters::SD0 << 1, src); m_assembler.vmov_arm32(dest, ARMRegisters::SD0 << 1); // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump. m_assembler.vcvt_f64_s32(ARMRegisters::SD0, ARMRegisters::SD0 << 1); failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, ARMRegisters::SD0)); // If the result is zero, it might have been -0.0, and 0.0 equals to -0.0 failureCases.append(branchTest32(Zero, dest)); } Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch) { m_assembler.mov(ARMRegisters::S0, ARMAssembler::getOp2Byte(0)); convertInt32ToDouble(ARMRegisters::S0, scratch); return branchDouble(DoubleNotEqual, reg, scratch); } Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch) { m_assembler.mov(ARMRegisters::S0, ARMAssembler::getOp2Byte(0)); convertInt32ToDouble(ARMRegisters::S0, scratch); return branchDouble(DoubleEqualOrUnordered, reg, scratch); } // Invert a relational condition, e.g. == becomes !=, < becomes >=, etc. static RelationalCondition invert(RelationalCondition cond) { ASSERT((static_cast(cond & 0x0fffffff)) == 0 && static_cast(cond) < static_cast(ARMAssembler::AL)); return static_cast(cond ^ 0x10000000); } void nop() { m_assembler.nop(); } static FunctionPtr readCallTarget(CodeLocationCall call) { return FunctionPtr(reinterpret_cast(ARMAssembler::readCallTarget(call.dataLocation()))); } static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination) { ARMAssembler::replaceWithJump(instructionStart.dataLocation(), destination.dataLocation()); } static ptrdiff_t maxJumpReplacementSize() { ARMAssembler::maxJumpReplacementSize(); return 0; } static bool canJumpReplacePatchableBranchPtrWithPatch() { return false; } static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr) { UNREACHABLE_FOR_PLATFORM(); return CodeLocationLabel(); } static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label) { return label.labelAtOffset(0); } static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID reg, void* initialValue) { ARMAssembler::revertBranchPtrWithPatch(instructionStart.dataLocation(), reg, reinterpret_cast(initialValue) & 0xffff); } static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel, Address, void*) { UNREACHABLE_FOR_PLATFORM(); } protected: ARMAssembler::Condition ARMCondition(RelationalCondition cond) { return static_cast(cond); } ARMAssembler::Condition ARMCondition(ResultCondition cond) { return static_cast(cond); } void ensureSpace(int insnSpace, int constSpace) { m_assembler.ensureSpace(insnSpace, constSpace); } int sizeOfConstantPool() { return m_assembler.sizeOfConstantPool(); } void call32(RegisterID base, int32_t offset) { load32(Address(base, offset), ARMRegisters::S1); m_assembler.blx(ARMRegisters::S1); } private: friend class LinkBuffer; friend class RepatchBuffer; void internalCompare32(RegisterID left, TrustedImm32 right) { ARMWord tmp = (static_cast(right.m_value) == 0x80000000) ? ARMAssembler::InvalidImmediate : m_assembler.getOp2(-right.m_value); if (tmp != ARMAssembler::InvalidImmediate) m_assembler.cmn(left, tmp); else m_assembler.cmp(left, m_assembler.getImm(right.m_value, ARMRegisters::S0)); } static void linkCall(void* code, Call call, FunctionPtr function) { ARMAssembler::linkCall(code, call.m_label, function.value()); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); } static const bool s_isVFPPresent; }; } #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) #endif // MacroAssemblerARM_h