/* * Copyright (C) 2009-2011 STMicroelectronics. All rights reserved. * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerSH4_h #define MacroAssemblerSH4_h #if ENABLE(ASSEMBLER) && CPU(SH4) #include "SH4Assembler.h" #include "AbstractMacroAssembler.h" #include namespace JSC { class MacroAssemblerSH4 : public AbstractMacroAssembler { public: typedef SH4Assembler::FPRegisterID FPRegisterID; static const Scale ScalePtr = TimesFour; static const FPRegisterID fscratch = SH4Registers::fr10; static const RegisterID stackPointerRegister = SH4Registers::sp; static const RegisterID linkRegister = SH4Registers::pr; static const RegisterID scratchReg3 = SH4Registers::r13; static const int MaximumCompactPtrAlignedAddressOffset = 60; static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value) { return (value >= 0) && (value <= MaximumCompactPtrAlignedAddressOffset); } enum RelationalCondition { Equal = SH4Assembler::EQ, NotEqual = SH4Assembler::NE, Above = SH4Assembler::HI, AboveOrEqual = SH4Assembler::HS, Below = SH4Assembler::LI, BelowOrEqual = SH4Assembler::LS, GreaterThan = SH4Assembler::GT, GreaterThanOrEqual = SH4Assembler::GE, LessThan = SH4Assembler::LT, LessThanOrEqual = SH4Assembler::LE }; enum ResultCondition { Overflow = SH4Assembler::OF, Signed = SH4Assembler::SI, Zero = SH4Assembler::EQ, NonZero = SH4Assembler::NE }; enum DoubleCondition { // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN. DoubleEqual = SH4Assembler::EQ, DoubleNotEqual = SH4Assembler::NE, DoubleGreaterThan = SH4Assembler::GT, DoubleGreaterThanOrEqual = SH4Assembler::GE, DoubleLessThan = SH4Assembler::LT, DoubleLessThanOrEqual = SH4Assembler::LE, // If either operand is NaN, these conditions always evaluate to true. DoubleEqualOrUnordered = SH4Assembler::EQU, DoubleNotEqualOrUnordered = SH4Assembler::NEU, DoubleGreaterThanOrUnordered = SH4Assembler::GTU, DoubleGreaterThanOrEqualOrUnordered = SH4Assembler::GEU, DoubleLessThanOrUnordered = SH4Assembler::LTU, DoubleLessThanOrEqualOrUnordered = SH4Assembler::LEU, }; RegisterID claimScratch() { return m_assembler.claimScratch(); } void releaseScratch(RegisterID reg) { m_assembler.releaseScratch(reg); } // Integer arithmetic operations void add32(RegisterID src, RegisterID dest) { m_assembler.addlRegReg(src, dest); } void add32(TrustedImm32 imm, RegisterID dest) { if (m_assembler.isImmediate(imm.m_value)) { m_assembler.addlImm8r(imm.m_value, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant(imm.m_value, scr); m_assembler.addlRegReg(scr, dest); releaseScratch(scr); } void add32(TrustedImm32 imm, RegisterID src, RegisterID dest) { if (src != dest) m_assembler.movlRegReg(src, dest); add32(imm, dest); } void add32(TrustedImm32 imm, Address address) { RegisterID scr = claimScratch(); load32(address, scr); add32(imm, scr); store32(scr, address); releaseScratch(scr); } void add32(Address src, RegisterID dest) { RegisterID scr = claimScratch(); load32(src, scr); m_assembler.addlRegReg(scr, dest); releaseScratch(scr); } void add32(AbsoluteAddress src, RegisterID dest) { RegisterID scr = claimScratch(); load32(src.m_ptr, scr); m_assembler.addlRegReg(scr, dest); releaseScratch(scr); } void and32(RegisterID src, RegisterID dest) { m_assembler.andlRegReg(src, dest); } void and32(TrustedImm32 imm, RegisterID dest) { if ((imm.m_value <= 255) && (imm.m_value >= 0) && (dest == SH4Registers::r0)) { m_assembler.andlImm8r(imm.m_value, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant((imm.m_value), scr); m_assembler.andlRegReg(scr, dest); releaseScratch(scr); } void and32(TrustedImm32 imm, RegisterID src, RegisterID dest) { if (src != dest) { move(imm, dest); and32(src, dest); return; } and32(imm, dest); } void lshift32(RegisterID shiftamount, RegisterID dest) { if (shiftamount == SH4Registers::r0) m_assembler.andlImm8r(0x1f, shiftamount); else { RegisterID scr = claimScratch(); m_assembler.loadConstant(0x1f, scr); m_assembler.andlRegReg(scr, shiftamount); releaseScratch(scr); } m_assembler.shllRegReg(dest, shiftamount); } void rshift32(int imm, RegisterID dest) { RegisterID scr = claimScratch(); m_assembler.loadConstant(-imm, scr); m_assembler.shaRegReg(dest, scr); releaseScratch(scr); } void lshift32(TrustedImm32 imm, RegisterID dest) { if (!imm.m_value) return; if ((imm.m_value == 1) || (imm.m_value == 2) || (imm.m_value == 8) || (imm.m_value == 16)) { m_assembler.shllImm8r(imm.m_value, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant((imm.m_value & 0x1f) , scr); m_assembler.shllRegReg(dest, scr); releaseScratch(scr); } void lshift32(RegisterID src, TrustedImm32 shiftamount, RegisterID dest) { if (src != dest) move(src, dest); lshift32(shiftamount, dest); } void mul32(RegisterID src, RegisterID dest) { m_assembler.imullRegReg(src, dest); m_assembler.stsmacl(dest); } void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) { RegisterID scr = claimScratch(); move(imm, scr); if (src != dest) move(src, dest); mul32(scr, dest); releaseScratch(scr); } void or32(RegisterID src, RegisterID dest) { m_assembler.orlRegReg(src, dest); } void or32(TrustedImm32 imm, RegisterID dest) { if ((imm.m_value <= 255) && (imm.m_value >= 0) && (dest == SH4Registers::r0)) { m_assembler.orlImm8r(imm.m_value, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant(imm.m_value, scr); m_assembler.orlRegReg(scr, dest); releaseScratch(scr); } void or32(RegisterID op1, RegisterID op2, RegisterID dest) { if (op1 == op2) move(op1, dest); else if (op1 == dest) or32(op2, dest); else { move(op2, dest); or32(op1, dest); } } void or32(TrustedImm32 imm, RegisterID src, RegisterID dest) { if (src != dest) { move(imm, dest); or32(src, dest); return; } or32(imm, dest); } void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest) { if (src != dest) { move(imm, dest); xor32(src, dest); return; } xor32(imm, dest); } void rshift32(RegisterID shiftamount, RegisterID dest) { if (shiftamount == SH4Registers::r0) m_assembler.andlImm8r(0x1f, shiftamount); else { RegisterID scr = claimScratch(); m_assembler.loadConstant(0x1f, scr); m_assembler.andlRegReg(scr, shiftamount); releaseScratch(scr); } m_assembler.neg(shiftamount, shiftamount); m_assembler.shaRegReg(dest, shiftamount); } void rshift32(TrustedImm32 imm, RegisterID dest) { if (imm.m_value & 0x1f) rshift32(imm.m_value & 0x1f, dest); } void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { if (src != dest) move(src, dest); rshift32(imm, dest); } void sub32(RegisterID src, RegisterID dest) { m_assembler.sublRegReg(src, dest); } void sub32(TrustedImm32 imm, AbsoluteAddress address, RegisterID scratchReg) { RegisterID result = claimScratch(); m_assembler.loadConstant(reinterpret_cast(address.m_ptr), scratchReg); m_assembler.movlMemReg(scratchReg, result); if (m_assembler.isImmediate(-imm.m_value)) m_assembler.addlImm8r(-imm.m_value, result); else { m_assembler.loadConstant(imm.m_value, scratchReg3); m_assembler.sublRegReg(scratchReg3, result); } store32(result, scratchReg); releaseScratch(result); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { RegisterID result = claimScratch(); RegisterID scratchReg = claimScratch(); m_assembler.loadConstant(reinterpret_cast(address.m_ptr), scratchReg); m_assembler.movlMemReg(scratchReg, result); if (m_assembler.isImmediate(-imm.m_value)) m_assembler.addlImm8r(-imm.m_value, result); else { m_assembler.loadConstant(imm.m_value, scratchReg3); m_assembler.sublRegReg(scratchReg3, result); } store32(result, scratchReg); releaseScratch(result); releaseScratch(scratchReg); } void add32(TrustedImm32 imm, AbsoluteAddress address, RegisterID scratchReg) { RegisterID result = claimScratch(); m_assembler.loadConstant(reinterpret_cast(address.m_ptr), scratchReg); m_assembler.movlMemReg(scratchReg, result); if (m_assembler.isImmediate(imm.m_value)) m_assembler.addlImm8r(imm.m_value, result); else { m_assembler.loadConstant(imm.m_value, scratchReg3); m_assembler.addlRegReg(scratchReg3, result); } store32(result, scratchReg); releaseScratch(result); } void add32(TrustedImm32 imm, AbsoluteAddress address) { RegisterID result = claimScratch(); RegisterID scratchReg = claimScratch(); m_assembler.loadConstant(reinterpret_cast(address.m_ptr), scratchReg); m_assembler.movlMemReg(scratchReg, result); if (m_assembler.isImmediate(imm.m_value)) m_assembler.addlImm8r(imm.m_value, result); else { m_assembler.loadConstant(imm.m_value, scratchReg3); m_assembler.addlRegReg(scratchReg3, result); } store32(result, scratchReg); releaseScratch(result); releaseScratch(scratchReg); } void add64(TrustedImm32 imm, AbsoluteAddress address) { RegisterID scr1 = claimScratch(); RegisterID scr2 = claimScratch(); // Add 32-bit LSB first. m_assembler.loadConstant(reinterpret_cast(address.m_ptr), scr1); m_assembler.movlMemReg(scr1, scr1); // scr1 = 32-bit LSB of int64 @ address m_assembler.loadConstant(imm.m_value, scr2); m_assembler.clrt(); m_assembler.addclRegReg(scr1, scr2); m_assembler.loadConstant(reinterpret_cast(address.m_ptr), scr1); m_assembler.movlRegMem(scr2, scr1); // Update address with 32-bit LSB result. // Then add 32-bit MSB. m_assembler.addlImm8r(4, scr1); m_assembler.movlMemReg(scr1, scr1); // scr1 = 32-bit MSB of int64 @ address m_assembler.movt(scr2); if (imm.m_value < 0) m_assembler.addlImm8r(-1, scr2); // Sign extend imm value if needed. m_assembler.addvlRegReg(scr2, scr1); m_assembler.loadConstant(reinterpret_cast(address.m_ptr) + 4, scr2); m_assembler.movlRegMem(scr1, scr2); // Update (address + 4) with 32-bit MSB result. releaseScratch(scr2); releaseScratch(scr1); } void sub32(TrustedImm32 imm, RegisterID dest) { if (m_assembler.isImmediate(-imm.m_value)) { m_assembler.addlImm8r(-imm.m_value, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant(imm.m_value, scr); m_assembler.sublRegReg(scr, dest); releaseScratch(scr); } void sub32(Address src, RegisterID dest) { RegisterID scr = claimScratch(); load32(src, scr); m_assembler.sublRegReg(scr, dest); releaseScratch(scr); } void xor32(RegisterID src, RegisterID dest) { m_assembler.xorlRegReg(src, dest); } void xor32(TrustedImm32 imm, RegisterID srcDest) { if (imm.m_value == -1) { m_assembler.notlReg(srcDest, srcDest); return; } if ((srcDest != SH4Registers::r0) || (imm.m_value > 255) || (imm.m_value < 0)) { RegisterID scr = claimScratch(); m_assembler.loadConstant((imm.m_value), scr); m_assembler.xorlRegReg(scr, srcDest); releaseScratch(scr); return; } m_assembler.xorlImm8r(imm.m_value, srcDest); } void compare32(int imm, RegisterID dst, RelationalCondition cond) { if (((cond == Equal) || (cond == NotEqual)) && (dst == SH4Registers::r0) && m_assembler.isImmediate(imm)) { m_assembler.cmpEqImmR0(imm, dst); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant(imm, scr); m_assembler.cmplRegReg(scr, dst, SH4Condition(cond)); releaseScratch(scr); } void compare32(int offset, RegisterID base, RegisterID left, RelationalCondition cond) { RegisterID scr = claimScratch(); if (!offset) { m_assembler.movlMemReg(base, scr); m_assembler.cmplRegReg(scr, left, SH4Condition(cond)); releaseScratch(scr); return; } if ((offset < 0) || (offset >= 64)) { m_assembler.loadConstant(offset, scr); m_assembler.addlRegReg(base, scr); m_assembler.movlMemReg(scr, scr); m_assembler.cmplRegReg(scr, left, SH4Condition(cond)); releaseScratch(scr); return; } m_assembler.movlMemReg(offset >> 2, base, scr); m_assembler.cmplRegReg(scr, left, SH4Condition(cond)); releaseScratch(scr); } void testImm(int imm, int offset, RegisterID base) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); if ((offset < 0) || (offset >= 64)) { m_assembler.loadConstant(offset, scr); m_assembler.addlRegReg(base, scr); m_assembler.movlMemReg(scr, scr); } else if (offset) m_assembler.movlMemReg(offset >> 2, base, scr); else m_assembler.movlMemReg(base, scr); if (m_assembler.isImmediate(imm)) m_assembler.movImm8(imm, scr1); else m_assembler.loadConstant(imm, scr1); m_assembler.testlRegReg(scr, scr1); releaseScratch(scr); releaseScratch(scr1); } void testlImm(int imm, RegisterID dst) { if ((dst == SH4Registers::r0) && (imm <= 255) && (imm >= 0)) { m_assembler.testlImm8r(imm, dst); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant(imm, scr); m_assembler.testlRegReg(scr, dst); releaseScratch(scr); } void compare32(RegisterID right, int offset, RegisterID base, RelationalCondition cond) { if (!offset) { RegisterID scr = claimScratch(); m_assembler.movlMemReg(base, scr); m_assembler.cmplRegReg(right, scr, SH4Condition(cond)); releaseScratch(scr); return; } if ((offset < 0) || (offset >= 64)) { RegisterID scr = claimScratch(); m_assembler.loadConstant(offset, scr); m_assembler.addlRegReg(base, scr); m_assembler.movlMemReg(scr, scr); m_assembler.cmplRegReg(right, scr, SH4Condition(cond)); releaseScratch(scr); return; } RegisterID scr = claimScratch(); m_assembler.movlMemReg(offset >> 2, base, scr); m_assembler.cmplRegReg(right, scr, SH4Condition(cond)); releaseScratch(scr); } void compare32(int imm, int offset, RegisterID base, RelationalCondition cond) { if (!offset) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); m_assembler.movlMemReg(base, scr); m_assembler.loadConstant(imm, scr1); m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond)); releaseScratch(scr1); releaseScratch(scr); return; } if ((offset < 0) || (offset >= 64)) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); m_assembler.loadConstant(offset, scr); m_assembler.addlRegReg(base, scr); m_assembler.movlMemReg(scr, scr); m_assembler.loadConstant(imm, scr1); m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond)); releaseScratch(scr1); releaseScratch(scr); return; } RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); m_assembler.movlMemReg(offset >> 2, base, scr); m_assembler.loadConstant(imm, scr1); m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond)); releaseScratch(scr1); releaseScratch(scr); } // Memory access operation void load32(ImplicitAddress address, RegisterID dest) { load32(address.base, address.offset, dest); } void load8(ImplicitAddress address, RegisterID dest) { load8(address.base, address.offset, dest); } void load8(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); load8(scr, address.offset, dest); releaseScratch(scr); } void load8Signed(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); load8Signed(scr, address.offset, dest); releaseScratch(scr); } void load32(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); load32(scr, address.offset, dest); releaseScratch(scr); } void load32(const void* address, RegisterID dest) { m_assembler.loadConstant(reinterpret_cast(const_cast(address)), dest); m_assembler.movlMemReg(dest, dest); } void load32(RegisterID base, int offset, RegisterID dest) { if (!offset) { m_assembler.movlMemReg(base, dest); return; } if ((offset >= 0) && (offset < 64)) { m_assembler.movlMemReg(offset >> 2, base, dest); return; } if ((dest == SH4Registers::r0) && (dest != base)) { m_assembler.loadConstant((offset), dest); m_assembler.movlR0mr(base, dest); return; } RegisterID scr; if (dest == base) scr = claimScratch(); else scr = dest; m_assembler.loadConstant((offset), scr); m_assembler.addlRegReg(base, scr); m_assembler.movlMemReg(scr, dest); if (dest == base) releaseScratch(scr); } void load8Signed(RegisterID base, int offset, RegisterID dest) { if (!offset) { m_assembler.movbMemReg(base, dest); return; } if ((offset > 0) && (offset < 64) && (dest == SH4Registers::r0)) { m_assembler.movbMemReg(offset, base, dest); return; } if (base != dest) { m_assembler.loadConstant((offset), dest); m_assembler.addlRegReg(base, dest); m_assembler.movbMemReg(dest, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant((offset), scr); m_assembler.addlRegReg(base, scr); m_assembler.movbMemReg(scr, dest); releaseScratch(scr); } void load8(RegisterID base, int offset, RegisterID dest) { if (!offset) { m_assembler.movbMemReg(base, dest); m_assembler.extub(dest, dest); return; } if ((offset > 0) && (offset < 64) && (dest == SH4Registers::r0)) { m_assembler.movbMemReg(offset, base, dest); m_assembler.extub(dest, dest); return; } if (base != dest) { m_assembler.loadConstant((offset), dest); m_assembler.addlRegReg(base, dest); m_assembler.movbMemReg(dest, dest); m_assembler.extub(dest, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant((offset), scr); m_assembler.addlRegReg(base, scr); m_assembler.movbMemReg(scr, dest); m_assembler.extub(dest, dest); releaseScratch(scr); } void load32(RegisterID r0, RegisterID src, RegisterID dst) { ASSERT(r0 == SH4Registers::r0); m_assembler.movlR0mr(src, dst); } void load32(RegisterID src, RegisterID dst) { m_assembler.movlMemReg(src, dst); } void load16(ImplicitAddress address, RegisterID dest) { if (!address.offset) { m_assembler.movwMemReg(address.base, dest); extuw(dest, dest); return; } if ((address.offset > 0) && (address.offset < 64) && (dest == SH4Registers::r0)) { m_assembler.movwMemReg(address.offset, address.base, dest); extuw(dest, dest); return; } if (address.base != dest) { m_assembler.loadConstant((address.offset), dest); m_assembler.addlRegReg(address.base, dest); m_assembler.movwMemReg(dest, dest); extuw(dest, dest); return; } RegisterID scr = claimScratch(); m_assembler.loadConstant((address.offset), scr); m_assembler.addlRegReg(address.base, scr); m_assembler.movwMemReg(scr, dest); extuw(dest, dest); releaseScratch(scr); } void load16Unaligned(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); if (address.offset) add32(TrustedImm32(address.offset), scr); add32(address.base, scr); load8(scr, scr1); add32(TrustedImm32(1), scr); load8(scr, dest); m_assembler.shllImm8r(8, dest); or32(scr1, dest); releaseScratch(scr); releaseScratch(scr1); } void load16(RegisterID src, RegisterID dest) { m_assembler.movwMemReg(src, dest); extuw(dest, dest); } void load16Signed(RegisterID src, RegisterID dest) { m_assembler.movwMemReg(src, dest); } void load16(RegisterID r0, RegisterID src, RegisterID dest) { ASSERT(r0 == SH4Registers::r0); m_assembler.movwR0mr(src, dest); extuw(dest, dest); } void load16Signed(RegisterID r0, RegisterID src, RegisterID dest) { ASSERT(r0 == SH4Registers::r0); m_assembler.movwR0mr(src, dest); } void load16(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); if (address.offset) add32(TrustedImm32(address.offset), scr); if (address.base == SH4Registers::r0) load16(address.base, scr, dest); else { add32(address.base, scr); load16(scr, dest); } releaseScratch(scr); } void load16Signed(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); if (address.offset) add32(TrustedImm32(address.offset), scr); if (address.base == SH4Registers::r0) load16Signed(address.base, scr, dest); else { add32(address.base, scr); load16Signed(scr, dest); } releaseScratch(scr); } void store8(RegisterID src, BaseIndex address) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); m_assembler.movbRegMem(src, scr); releaseScratch(scr); } void store16(RegisterID src, BaseIndex address) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); m_assembler.movwRegMem(src, scr); releaseScratch(scr); } void store32(RegisterID src, ImplicitAddress address) { RegisterID scr = claimScratch(); store32(src, address.offset, address.base, scr); releaseScratch(scr); } void store32(RegisterID src, int offset, RegisterID base, RegisterID scr) { if (!offset) { m_assembler.movlRegMem(src, base); return; } if ((offset >=0) && (offset < 64)) { m_assembler.movlRegMem(src, offset >> 2, base); return; } m_assembler.loadConstant((offset), scr); if (scr == SH4Registers::r0) { m_assembler.movlRegMemr0(src, base); return; } m_assembler.addlRegReg(base, scr); m_assembler.movlRegMem(src, scr); } void store32(RegisterID src, RegisterID offset, RegisterID base) { ASSERT(offset == SH4Registers::r0); m_assembler.movlRegMemr0(src, base); } void store32(RegisterID src, RegisterID dst) { m_assembler.movlRegMem(src, dst); } void store32(TrustedImm32 imm, ImplicitAddress address) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); m_assembler.loadConstant((imm.m_value), scr); store32(scr, address.offset, address.base, scr1); releaseScratch(scr); releaseScratch(scr1); } void store32(RegisterID src, BaseIndex address) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); store32(src, Address(scr, address.offset)); releaseScratch(scr); } void store32(TrustedImm32 imm, void* address) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); m_assembler.loadConstant((imm.m_value), scr); m_assembler.loadConstant(reinterpret_cast(address), scr1); m_assembler.movlRegMem(scr, scr1); releaseScratch(scr); releaseScratch(scr1); } void store32(RegisterID src, void* address) { RegisterID scr = claimScratch(); m_assembler.loadConstant(reinterpret_cast(address), scr); m_assembler.movlRegMem(src, scr); releaseScratch(scr); } DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest) { RegisterID scr = claimScratch(); DataLabel32 label(this); m_assembler.loadConstantUnReusable(address.offset, scr); m_assembler.addlRegReg(address.base, scr); m_assembler.movlMemReg(scr, dest); releaseScratch(scr); return label; } DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address) { RegisterID scr = claimScratch(); DataLabel32 label(this); m_assembler.loadConstantUnReusable(address.offset, scr); m_assembler.addlRegReg(address.base, scr); m_assembler.movlRegMem(src, scr); releaseScratch(scr); return label; } DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest) { DataLabelCompact dataLabel(this); ASSERT(address.offset <= MaximumCompactPtrAlignedAddressOffset); ASSERT(address.offset >= 0); m_assembler.movlMemRegCompact(address.offset >> 2, address.base, dest); return dataLabel; } ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest) { ConvertibleLoadLabel result(this); RegisterID scr = claimScratch(); m_assembler.movImm8(address.offset, scr); m_assembler.addlRegReg(address.base, scr); m_assembler.movlMemReg(scr, dest); releaseScratch(scr); return result; } // Floating-point operations static bool supportsFloatingPoint() { return true; } static bool supportsFloatingPointTruncate() { return true; } static bool supportsFloatingPointSqrt() { return true; } static bool supportsFloatingPointAbs() { return false; } void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2) { m_assembler.fldsfpul((FPRegisterID)(src + 1)); m_assembler.stsfpulReg(dest1); m_assembler.fldsfpul(src); m_assembler.stsfpulReg(dest2); } void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID scratch) { UNUSED_PARAM(scratch); m_assembler.ldsrmfpul(src1); m_assembler.fstsfpul((FPRegisterID)(dest + 1)); m_assembler.ldsrmfpul(src2); m_assembler.fstsfpul(dest); } void loadFloat(BaseIndex address, FPRegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); if (address.offset) add32(TrustedImm32(address.offset), scr); m_assembler.fmovsReadrm(scr, dest); releaseScratch(scr); } void loadDouble(BaseIndex address, FPRegisterID dest) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); if (address.offset) add32(TrustedImm32(address.offset), scr); m_assembler.fmovsReadrminc(scr, (FPRegisterID)(dest + 1)); m_assembler.fmovsReadrm(scr, dest); releaseScratch(scr); } void loadDouble(ImplicitAddress address, FPRegisterID dest) { RegisterID scr = claimScratch(); m_assembler.loadConstant(address.offset, scr); if (address.base == SH4Registers::r0) { m_assembler.fmovsReadr0r(scr, (FPRegisterID)(dest + 1)); m_assembler.addlImm8r(4, scr); m_assembler.fmovsReadr0r(scr, dest); releaseScratch(scr); return; } m_assembler.addlRegReg(address.base, scr); m_assembler.fmovsReadrminc(scr, (FPRegisterID)(dest + 1)); m_assembler.fmovsReadrm(scr, dest); releaseScratch(scr); } void loadDouble(const void* address, FPRegisterID dest) { RegisterID scr = claimScratch(); m_assembler.loadConstant(reinterpret_cast(address), scr); m_assembler.fmovsReadrminc(scr, (FPRegisterID)(dest + 1)); m_assembler.fmovsReadrm(scr, dest); releaseScratch(scr); } void storeFloat(FPRegisterID src, BaseIndex address) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); if (address.offset) add32(TrustedImm32(address.offset), scr); m_assembler.fmovsWriterm(src, scr); releaseScratch(scr); } void storeDouble(FPRegisterID src, ImplicitAddress address) { RegisterID scr = claimScratch(); m_assembler.loadConstant(address.offset, scr); m_assembler.addlRegReg(address.base, scr); m_assembler.fmovsWriterm((FPRegisterID)(src + 1), scr); m_assembler.addlImm8r(4, scr); m_assembler.fmovsWriterm(src, scr); releaseScratch(scr); } void storeDouble(FPRegisterID src, BaseIndex address) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); if (address.offset) add32(TrustedImm32(address.offset), scr); m_assembler.fmovsWriterm((FPRegisterID)(src + 1), scr); m_assembler.addlImm8r(4, scr); m_assembler.fmovsWriterm(src, scr); releaseScratch(scr); } void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { if (op1 == dest) m_assembler.daddRegReg(op2, dest); else { m_assembler.dmovRegReg(op1, dest); m_assembler.daddRegReg(op2, dest); } } void addDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.daddRegReg(src, dest); } void addDouble(AbsoluteAddress address, FPRegisterID dest) { loadDouble(address.m_ptr, fscratch); addDouble(fscratch, dest); } void addDouble(Address address, FPRegisterID dest) { loadDouble(address, fscratch); addDouble(fscratch, dest); } void subDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.dsubRegReg(src, dest); } void subDouble(Address address, FPRegisterID dest) { loadDouble(address, fscratch); subDouble(fscratch, dest); } void mulDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.dmulRegReg(src, dest); } void mulDouble(Address address, FPRegisterID dest) { loadDouble(address, fscratch); mulDouble(fscratch, dest); } void divDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.ddivRegReg(src, dest); } void convertFloatToDouble(FPRegisterID src, FPRegisterID dst) { m_assembler.fldsfpul(src); m_assembler.dcnvsd(dst); } void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst) { m_assembler.dcnvds(src); m_assembler.fstsfpul(dst); } void convertInt32ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.ldsrmfpul(src); m_assembler.floatfpulDreg(dest); } void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest) { RegisterID scr = claimScratch(); m_assembler.loadConstant(reinterpret_cast(src.m_ptr), scr); convertInt32ToDouble(scr, dest); releaseScratch(scr); } void convertInt32ToDouble(Address src, FPRegisterID dest) { RegisterID scr = claimScratch(); load32(src, scr); convertInt32ToDouble(scr, dest); releaseScratch(scr); } void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { RegisterID scr = claimScratch(); RegisterID scr1 = claimScratch(); Jump m_jump; JumpList end; if (dest != SH4Registers::r0) move(SH4Registers::r0, scr1); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); if (address.offset) add32(TrustedImm32(address.offset), scr); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 68, sizeof(uint32_t)); move(scr, SH4Registers::r0); m_assembler.andlImm8r(0x3, SH4Registers::r0); m_assembler.cmpEqImmR0(0x0, SH4Registers::r0); m_jump = Jump(m_assembler.jne(), SH4Assembler::JumpNear); if (dest != SH4Registers::r0) move(scr1, SH4Registers::r0); load32(scr, dest); end.append(Jump(m_assembler.bra(), SH4Assembler::JumpNear)); m_assembler.nop(); m_jump.link(this); m_assembler.andlImm8r(0x1, SH4Registers::r0); m_assembler.cmpEqImmR0(0x0, SH4Registers::r0); if (dest != SH4Registers::r0) move(scr1, SH4Registers::r0); m_jump = Jump(m_assembler.jne(), SH4Assembler::JumpNear); load16(scr, scr1); add32(TrustedImm32(2), scr); load16(scr, dest); m_assembler.shllImm8r(16, dest); or32(scr1, dest); end.append(Jump(m_assembler.bra(), SH4Assembler::JumpNear)); m_assembler.nop(); m_jump.link(this); load8(scr, scr1); add32(TrustedImm32(1), scr); load16(scr, dest); m_assembler.shllImm8r(8, dest); or32(dest, scr1); add32(TrustedImm32(2), scr); load8(scr, dest); m_assembler.shllImm8r(8, dest); m_assembler.shllImm8r(16, dest); or32(scr1, dest); end.link(this); releaseScratch(scr); releaseScratch(scr1); } Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { RegisterID scr = scratchReg3; load32WithUnalignedHalfWords(left, scr); if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) m_assembler.testlRegReg(scr, scr); else compare32(right.m_value, scr, cond); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch) { m_assembler.movImm8(0, scratchReg3); convertInt32ToDouble(scratchReg3, scratch); return branchDouble(DoubleNotEqual, reg, scratch); } Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch) { m_assembler.movImm8(0, scratchReg3); convertInt32ToDouble(scratchReg3, scratch); return branchDouble(DoubleEqualOrUnordered, reg, scratch); } Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right) { if (cond == DoubleEqual) { m_assembler.dcmppeq(right, left); return branchTrue(); } if (cond == DoubleNotEqual) { RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppeq(right, left); releaseScratch(scr); Jump m_jump = branchFalse(); end.link(this); return m_jump; } if (cond == DoubleGreaterThan) { m_assembler.dcmppgt(right, left); return branchTrue(); } if (cond == DoubleGreaterThanOrEqual) { m_assembler.dcmppgt(left, right); return branchFalse(); } if (cond == DoubleLessThan) { m_assembler.dcmppgt(left, right); return branchTrue(); } if (cond == DoubleLessThanOrEqual) { m_assembler.dcmppgt(right, left); return branchFalse(); } if (cond == DoubleEqualOrUnordered) { RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppeq(left, right); Jump m_jump = Jump(m_assembler.je()); end.link(this); m_assembler.extraInstrForBranch(scr); releaseScratch(scr); return m_jump; } if (cond == DoubleGreaterThanOrUnordered) { RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppgt(right, left); Jump m_jump = Jump(m_assembler.je()); end.link(this); m_assembler.extraInstrForBranch(scr); releaseScratch(scr); return m_jump; } if (cond == DoubleGreaterThanOrEqualOrUnordered) { RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppgt(left, right); Jump m_jump = Jump(m_assembler.jne()); end.link(this); m_assembler.extraInstrForBranch(scr); releaseScratch(scr); return m_jump; } if (cond == DoubleLessThanOrUnordered) { RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppgt(left, right); Jump m_jump = Jump(m_assembler.je()); end.link(this); m_assembler.extraInstrForBranch(scr); releaseScratch(scr); return m_jump; } if (cond == DoubleLessThanOrEqualOrUnordered) { RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppgt(right, left); Jump m_jump = Jump(m_assembler.jne()); end.link(this); m_assembler.extraInstrForBranch(scr); releaseScratch(scr); return m_jump; } ASSERT(cond == DoubleNotEqualOrUnordered); RegisterID scr = claimScratch(); JumpList end; m_assembler.loadConstant(0x7fbfffff, scratchReg3); m_assembler.dcnvds(right); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcnvds(left); m_assembler.stsfpulReg(scr); m_assembler.cmplRegReg(scratchReg3, scr, SH4Condition(Equal)); end.append(Jump(m_assembler.je(), SH4Assembler::JumpNear)); m_assembler.dcmppeq(right, left); Jump m_jump = Jump(m_assembler.jne()); end.link(this); m_assembler.extraInstrForBranch(scr); releaseScratch(scr); return m_jump; } Jump branchTrue() { m_assembler.ensureSpace(m_assembler.maxInstructionSize + 6, sizeof(uint32_t)); Jump m_jump = Jump(m_assembler.je()); m_assembler.extraInstrForBranch(scratchReg3); return m_jump; } Jump branchFalse() { m_assembler.ensureSpace(m_assembler.maxInstructionSize + 6, sizeof(uint32_t)); Jump m_jump = Jump(m_assembler.jne()); m_assembler.extraInstrForBranch(scratchReg3); return m_jump; } Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { RegisterID scr = claimScratch(); move(left.index, scr); lshift32(TrustedImm32(left.scale), scr); add32(left.base, scr); load32(scr, left.offset, scr); compare32(right.m_value, scr, cond); releaseScratch(scr); if (cond == NotEqual) return branchFalse(); return branchTrue(); } void sqrtDouble(FPRegisterID src, FPRegisterID dest) { if (dest != src) m_assembler.dmovRegReg(src, dest); m_assembler.dsqrt(dest); } void absDouble(FPRegisterID, FPRegisterID) { RELEASE_ASSERT_NOT_REACHED(); } Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { RegisterID addressTempRegister = claimScratch(); load8(address, addressTempRegister); Jump jmp = branchTest32(cond, addressTempRegister, mask); releaseScratch(addressTempRegister); return jmp; } Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { RegisterID addressTempRegister = claimScratch(); move(TrustedImmPtr(address.m_ptr), addressTempRegister); load8(Address(addressTempRegister), addressTempRegister); Jump jmp = branchTest32(cond, addressTempRegister, mask); releaseScratch(addressTempRegister); return jmp; } void signExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right) { RegisterID addressTempRegister = claimScratch(); load8(left, addressTempRegister); Jump jmp = branch32(cond, addressTempRegister, right); releaseScratch(addressTempRegister); return jmp; } void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest) { RegisterID addressTempRegister = claimScratch(); load8(left, addressTempRegister); compare32(cond, addressTempRegister, right, dest); releaseScratch(addressTempRegister); } Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest) { m_assembler.ftrcdrmfpul(src); m_assembler.stsfpulReg(dest); m_assembler.loadConstant(0x7fffffff, scratchReg3); m_assembler.cmplRegReg(dest, scratchReg3, SH4Condition(Equal)); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 14, sizeof(uint32_t)); m_assembler.branch(BT_OPCODE, 2); m_assembler.addlImm8r(1, scratchReg3); m_assembler.cmplRegReg(dest, scratchReg3, SH4Condition(Equal)); return branchTrue(); } // Stack manipulation operations void pop(RegisterID dest) { m_assembler.popReg(dest); } void push(RegisterID src) { m_assembler.pushReg(src); } void push(Address address) { if (!address.offset) { push(address.base); return; } if ((address.offset < 0) || (address.offset >= 64)) { RegisterID scr = claimScratch(); m_assembler.loadConstant(address.offset, scr); m_assembler.addlRegReg(address.base, scr); m_assembler.movlMemReg(scr, SH4Registers::sp); m_assembler.addlImm8r(-4, SH4Registers::sp); releaseScratch(scr); return; } m_assembler.movlMemReg(address.offset >> 2, address.base, SH4Registers::sp); m_assembler.addlImm8r(-4, SH4Registers::sp); } void push(TrustedImm32 imm) { RegisterID scr = claimScratch(); m_assembler.loadConstant(imm.m_value, scr); push(scr); releaseScratch(scr); } // Register move operations void move(TrustedImm32 imm, RegisterID dest) { m_assembler.loadConstant(imm.m_value, dest); } DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) { m_assembler.ensureSpace(m_assembler.maxInstructionSize, sizeof(uint32_t)); DataLabelPtr dataLabel(this); m_assembler.loadConstantUnReusable(reinterpret_cast(initialValue.m_value), dest); return dataLabel; } void move(RegisterID src, RegisterID dest) { if (src != dest) m_assembler.movlRegReg(src, dest); } void move(TrustedImmPtr imm, RegisterID dest) { m_assembler.loadConstant(imm.asIntptr(), dest); } void extuw(RegisterID src, RegisterID dst) { m_assembler.extuw(src, dst); } void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmplRegReg(right, left, SH4Condition(cond)); if (cond != NotEqual) { m_assembler.movt(dest); return; } m_assembler.ensureSpace(m_assembler.maxInstructionSize + 4); m_assembler.movImm8(0, dest); m_assembler.branch(BT_OPCODE, 0); m_assembler.movImm8(1, dest); } void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { if (left != dest) { move(right, dest); compare32(cond, left, dest, dest); return; } RegisterID scr = claimScratch(); move(right, scr); compare32(cond, left, scr, dest); releaseScratch(scr); } void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest) { ASSERT((cond == Zero) || (cond == NonZero)); load8(address, dest); if (mask.m_value == -1) compare32(0, dest, static_cast(cond)); else testlImm(mask.m_value, dest); if (cond != NonZero) { m_assembler.movt(dest); return; } m_assembler.ensureSpace(m_assembler.maxInstructionSize + 4); m_assembler.movImm8(0, dest); m_assembler.branch(BT_OPCODE, 0); m_assembler.movImm8(1, dest); } void loadPtrLinkReg(ImplicitAddress address) { RegisterID scr = claimScratch(); load32(address, scr); m_assembler.ldspr(scr); releaseScratch(scr); } Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right) { m_assembler.cmplRegReg(right, left, SH4Condition(cond)); /* BT label => BF off nop LDR reg nop braf @reg nop nop */ if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right) { if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) m_assembler.testlRegReg(left, left); else compare32(right.m_value, left, cond); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch32(RelationalCondition cond, RegisterID left, Address right) { compare32(right.offset, right.base, left, cond); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch32(RelationalCondition cond, Address left, RegisterID right) { compare32(right, left.offset, left.base, cond); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right) { compare32(right.m_value, left.offset, left.base, cond); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right) { RegisterID scr = claimScratch(); move(TrustedImm32(reinterpret_cast(left.m_ptr)), scr); m_assembler.cmplRegReg(right, scr, SH4Condition(cond)); releaseScratch(scr); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right) { RegisterID addressTempRegister = claimScratch(); m_assembler.loadConstant(reinterpret_cast(left.m_ptr), addressTempRegister); m_assembler.movlMemReg(addressTempRegister, addressTempRegister); compare32(right.m_value, addressTempRegister, cond); releaseScratch(addressTempRegister); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { ASSERT(!(right.m_value & 0xFFFFFF00)); RegisterID scr = claimScratch(); move(left.index, scr); lshift32(TrustedImm32(left.scale), scr); if (left.offset) add32(TrustedImm32(left.offset), scr); add32(left.base, scr); load8(scr, scr); RegisterID scr1 = claimScratch(); m_assembler.loadConstant(right.m_value, scr1); releaseScratch(scr); releaseScratch(scr1); return branch32(cond, scr, scr1); } Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask) { ASSERT((cond == Zero) || (cond == NonZero)); m_assembler.testlRegReg(reg, mask); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { ASSERT((cond == Zero) || (cond == NonZero)); if (mask.m_value == -1) m_assembler.testlRegReg(reg, reg); else testlImm(mask.m_value, reg); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { ASSERT((cond == Zero) || (cond == NonZero)); if (mask.m_value == -1) compare32(0, address.offset, address.base, static_cast(cond)); else testImm(mask.m_value, address.offset, address.base); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { RegisterID scr = claimScratch(); move(address.index, scr); lshift32(TrustedImm32(address.scale), scr); add32(address.base, scr); load32(scr, address.offset, scr); if (mask.m_value == -1) m_assembler.testlRegReg(scr, scr); else testlImm(mask.m_value, scr); releaseScratch(scr); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump jump() { return Jump(m_assembler.jmp()); } void jump(RegisterID target) { m_assembler.jmpReg(target); } void jump(Address address) { RegisterID scr = claimScratch(); if ((address.offset < 0) || (address.offset >= 64)) { m_assembler.loadConstant(address.offset, scr); m_assembler.addlRegReg(address.base, scr); m_assembler.movlMemReg(scr, scr); } else if (address.offset) m_assembler.movlMemReg(address.offset >> 2, address.base, scr); else m_assembler.movlMemReg(address.base, scr); m_assembler.jmpReg(scr); releaseScratch(scr); } // Arithmetic control flow operations Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { m_assembler.addvlRegReg(src, dest); return branchTrue(); } if (cond == Signed) { m_assembler.addlRegReg(src, dest); // Check if dest is negative m_assembler.cmppz(dest); return branchFalse(); } m_assembler.addlRegReg(src, dest); compare32(0, dest, Equal); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); move(imm, scratchReg3); return branchAdd32(cond, scratchReg3, dest); } Jump branchAdd32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (src != dest) move(src, dest); if (cond == Overflow) { move(imm, scratchReg3); m_assembler.addvlRegReg(scratchReg3, dest); return branchTrue(); } add32(imm, dest); if (cond == Signed) { m_assembler.cmppz(dest); return branchFalse(); } compare32(0, dest, Equal); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { RegisterID scr1 = claimScratch(); RegisterID scr = claimScratch(); m_assembler.dmullRegReg(src, dest); m_assembler.stsmacl(dest); m_assembler.movImm8(-31, scr); m_assembler.movlRegReg(dest, scr1); m_assembler.shaRegReg(scr1, scr); m_assembler.stsmach(scr); m_assembler.cmplRegReg(scr, scr1, SH4Condition(Equal)); releaseScratch(scr1); releaseScratch(scr); return branchFalse(); } m_assembler.imullRegReg(src, dest); m_assembler.stsmacl(dest); if (cond == Signed) { // Check if dest is negative m_assembler.cmppz(dest); return branchFalse(); } compare32(0, dest, static_cast(cond)); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchMul32(ResultCondition cond, TrustedImm32 imm, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); move(imm, scratchReg3); if (src != dest) move(src, dest); return branchMul32(cond, scratchReg3, dest); } Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { m_assembler.subvlRegReg(src, dest); return branchTrue(); } if (cond == Signed) { // Check if dest is negative m_assembler.sublRegReg(src, dest); compare32(0, dest, LessThan); return branchTrue(); } sub32(src, dest); compare32(0, dest, static_cast(cond)); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); move(imm, scratchReg3); return branchSub32(cond, scratchReg3, dest); } Jump branchSub32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest) { move(imm, scratchReg3); if (src != dest) move(src, dest); return branchSub32(cond, scratchReg3, dest); } Jump branchSub32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) { if (src1 != dest) move(src1, dest); return branchSub32(cond, src2, dest); } Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Signed) { or32(src, dest); compare32(0, dest, static_cast(LessThan)); return branchTrue(); } or32(src, dest); compare32(0, dest, static_cast(cond)); if (cond == NonZero) // NotEqual return branchFalse(); return branchTrue(); } void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp) { m_assembler.ftrcdrmfpul(src); m_assembler.stsfpulReg(dest); convertInt32ToDouble(dest, fscratch); failureCases.append(branchDouble(DoubleNotEqualOrUnordered, fscratch, src)); if (dest == SH4Registers::r0) m_assembler.cmpEqImmR0(0, dest); else { m_assembler.movImm8(0, scratchReg3); m_assembler.cmplRegReg(scratchReg3, dest, SH4Condition(Equal)); } failureCases.append(branchTrue()); } void neg32(RegisterID dst) { m_assembler.neg(dst, dst); } void urshift32(RegisterID shiftamount, RegisterID dest) { if (shiftamount == SH4Registers::r0) m_assembler.andlImm8r(0x1f, shiftamount); else { RegisterID scr = claimScratch(); m_assembler.loadConstant(0x1f, scr); m_assembler.andlRegReg(scr, shiftamount); releaseScratch(scr); } m_assembler.neg(shiftamount, shiftamount); m_assembler.shllRegReg(dest, shiftamount); } void urshift32(TrustedImm32 imm, RegisterID dest) { RegisterID scr = claimScratch(); m_assembler.loadConstant(-(imm.m_value & 0x1f), scr); m_assembler.shaRegReg(dest, scr); releaseScratch(scr); } void urshift32(RegisterID src, TrustedImm32 shiftamount, RegisterID dest) { if (src != dest) move(src, dest); urshift32(shiftamount, dest); } Call call() { return Call(m_assembler.call(), Call::Linkable); } Call nearCall() { return Call(m_assembler.call(), Call::LinkableNear); } Call call(RegisterID target) { return Call(m_assembler.call(target), Call::None); } void call(Address address, RegisterID target) { load32(address.base, address.offset, target); m_assembler.ensureSpace(m_assembler.maxInstructionSize + 2); m_assembler.branch(JSR_OPCODE, target); m_assembler.nop(); } void breakpoint() { m_assembler.bkpt(); m_assembler.nop(); } Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { RegisterID dataTempRegister = claimScratch(); dataLabel = moveWithPatch(initialRightValue, dataTempRegister); m_assembler.cmplRegReg(dataTempRegister, left, SH4Condition(cond)); releaseScratch(dataTempRegister); if (cond == NotEqual) return branchFalse(); return branchTrue(); } Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { RegisterID scr = claimScratch(); m_assembler.loadConstant(left.offset, scr); m_assembler.addlRegReg(left.base, scr); m_assembler.movlMemReg(scr, scr); RegisterID scr1 = claimScratch(); dataLabel = moveWithPatch(initialRightValue, scr1); m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond)); releaseScratch(scr); releaseScratch(scr1); if (cond == NotEqual) return branchFalse(); return branchTrue(); } void ret() { m_assembler.ret(); m_assembler.nop(); } DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { RegisterID scr = claimScratch(); DataLabelPtr label = moveWithPatch(initialValue, scr); store32(scr, address); releaseScratch(scr); return label; } DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(TrustedImmPtr(0), address); } int sizeOfConstantPool() { return m_assembler.sizeOfConstantPool(); } Call tailRecursiveCall() { RegisterID scr = claimScratch(); m_assembler.loadConstantUnReusable(0x0, scr, true); Jump m_jump = Jump(m_assembler.jmp(scr)); releaseScratch(scr); return Call::fromTailJump(m_jump); } Call makeTailRecursiveCall(Jump oldJump) { oldJump.link(this); return tailRecursiveCall(); } void nop() { m_assembler.nop(); } static FunctionPtr readCallTarget(CodeLocationCall call) { return FunctionPtr(reinterpret_cast(SH4Assembler::readCallTarget(call.dataLocation()))); } static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination) { RELEASE_ASSERT_NOT_REACHED(); } static ptrdiff_t maxJumpReplacementSize() { RELEASE_ASSERT_NOT_REACHED(); return 0; } static bool canJumpReplacePatchableBranchPtrWithPatch() { return false; } static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label) { return label.labelAtOffset(0); } static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue) { SH4Assembler::revertJump(instructionStart.dataLocation(), reinterpret_cast(initialValue) & 0xffff); } static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr) { UNREACHABLE_FOR_PLATFORM(); return CodeLocationLabel(); } static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue) { UNREACHABLE_FOR_PLATFORM(); } protected: SH4Assembler::Condition SH4Condition(RelationalCondition cond) { return static_cast(cond); } SH4Assembler::Condition SH4Condition(ResultCondition cond) { return static_cast(cond); } private: friend class LinkBuffer; friend class RepatchBuffer; static void linkCall(void*, Call, FunctionPtr); static void repatchCall(CodeLocationCall, CodeLocationLabel); static void repatchCall(CodeLocationCall, FunctionPtr); }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // MacroAssemblerSH4_h