/* * Copyright (C) 2008, 2012 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerX86_64_h #define MacroAssemblerX86_64_h #if ENABLE(ASSEMBLER) && CPU(X86_64) #include "MacroAssemblerX86Common.h" #define REPTACH_OFFSET_CALL_R11 3 namespace JSC { class MacroAssemblerX86_64 : public MacroAssemblerX86Common { public: static const Scale ScalePtr = TimesEight; static const int PointerSize = 8; using MacroAssemblerX86Common::add32; using MacroAssemblerX86Common::and32; using MacroAssemblerX86Common::branchAdd32; using MacroAssemblerX86Common::or32; using MacroAssemblerX86Common::sub32; using MacroAssemblerX86Common::load32; using MacroAssemblerX86Common::store32; using MacroAssemblerX86Common::store8; using MacroAssemblerX86Common::call; using MacroAssemblerX86Common::jump; using MacroAssemblerX86Common::addDouble; using MacroAssemblerX86Common::loadDouble; using MacroAssemblerX86Common::convertInt32ToDouble; #if defined(V4_BOOTSTRAP) void loadPtr(ImplicitAddress address, RegisterID dest) { load64(address, dest); } void subPtr(TrustedImm32 imm, RegisterID dest) { sub64(imm, dest); } void addPtr(TrustedImm32 imm, RegisterID dest) { add64(imm, dest); } void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) { add64(imm, src, dest); } void storePtr(RegisterID src, ImplicitAddress address) { store64(src, address); } #endif void add32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); add32(imm, Address(scratchRegister)); } void and32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); and32(imm, Address(scratchRegister)); } void add32(AbsoluteAddress address, RegisterID dest) { move(TrustedImmPtr(address.m_ptr), scratchRegister); add32(Address(scratchRegister), dest); } void or32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); or32(imm, Address(scratchRegister)); } void or32(RegisterID reg, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); or32(reg, Address(scratchRegister)); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); sub32(imm, Address(scratchRegister)); } void load16(ExtendedAddress address, RegisterID dest) { TrustedImmPtr addr(reinterpret_cast(address.offset)); MacroAssemblerX86Common::move(addr, scratchRegister); MacroAssemblerX86Common::load16(BaseIndex(scratchRegister, address.base, TimesTwo), dest); } void load16(BaseIndex address, RegisterID dest) { MacroAssemblerX86Common::load16(address, dest); } void load16(Address address, RegisterID dest) { MacroAssemblerX86Common::load16(address, dest); } void load32(const void* address, RegisterID dest) { if (dest == X86Registers::eax) m_assembler.movl_mEAX(address); else { move(TrustedImmPtr(address), dest); load32(dest, dest); } } void addDouble(AbsoluteAddress address, FPRegisterID dest) { move(TrustedImmPtr(address.m_ptr), scratchRegister); m_assembler.addsd_mr(0, scratchRegister, dest); } void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest) { move(imm, scratchRegister); m_assembler.cvtsi2sd_rr(scratchRegister, dest); } void convertUInt32ToDouble(RegisterID src, FPRegisterID dest, RegisterID /*scratch*/) { zeroExtend32ToPtr(src, src); m_assembler.cvtsiq2sd_rr(src, dest); } void store32(TrustedImm32 imm, void* address) { move(TrustedImmPtr(address), scratchRegister); store32(imm, scratchRegister); } void store8(TrustedImm32 imm, void* address) { move(TrustedImmPtr(address), scratchRegister); store8(imm, Address(scratchRegister)); } Call call() { DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister); Call result = Call(m_assembler.call(scratchRegister), Call::Linkable); ASSERT_UNUSED(label, differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11); return result; } void callToRetrieveIP() { m_assembler.call(); } // Address is a memory location containing the address to jump to void jump(AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); jump(Address(scratchRegister)); } Call tailRecursiveCall() { DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister)); ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } Call makeTailRecursiveCall(Jump oldJump) { oldJump.link(this); DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister)); ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest) { move(TrustedImmPtr(dest.m_ptr), scratchRegister); add32(src, Address(scratchRegister)); return Jump(m_assembler.jCC(x86Condition(cond))); } void add64(RegisterID src, RegisterID dest) { m_assembler.addq_rr(src, dest); } void add64(Address src, RegisterID dest) { m_assembler.addq_mr(src.offset, src.base, dest); } void add64(AbsoluteAddress src, RegisterID dest) { move(TrustedImmPtr(src.m_ptr), scratchRegister); add64(Address(scratchRegister), dest); } void add64(TrustedImm32 imm, RegisterID srcDest) { m_assembler.addq_ir(imm.m_value, srcDest); } void add64(TrustedImm64 imm, RegisterID dest) { move(imm, scratchRegister); add64(scratchRegister, dest); } void add64(TrustedImm32 imm, RegisterID src, RegisterID dest) { m_assembler.leaq_mr(imm.m_value, src, dest); } void add64(TrustedImm32 imm, Address address) { m_assembler.addq_im(imm.m_value, address.offset, address.base); } void add64(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); add64(imm, Address(scratchRegister)); } void x86Lea64(BaseIndex index, RegisterID dest) { if (!index.scale && !index.offset) { if (index.base == dest) { add64(index.index, dest); return; } if (index.index == dest) { add64(index.base, dest); return; } } m_assembler.leaq_mr(index.offset, index.base, index.index, index.scale, dest); } void getEffectiveAddress(BaseIndex address, RegisterID dest) { return x86Lea64(address, dest); } void and64(RegisterID src, RegisterID dest) { m_assembler.andq_rr(src, dest); } void and64(TrustedImm32 imm, RegisterID srcDest) { m_assembler.andq_ir(imm.m_value, srcDest); } void neg64(RegisterID dest) { m_assembler.negq_r(dest); } void or64(RegisterID src, RegisterID dest) { m_assembler.orq_rr(src, dest); } void or64(TrustedImm64 imm, RegisterID dest) { move(imm, scratchRegister); or64(scratchRegister, dest); } void or64(TrustedImm32 imm, RegisterID dest) { m_assembler.orq_ir(imm.m_value, dest); } void or64(RegisterID op1, RegisterID op2, RegisterID dest) { if (op1 == op2) move(op1, dest); else if (op1 == dest) or64(op2, dest); else { move(op2, dest); or64(op1, dest); } } void or64(TrustedImm32 imm, RegisterID src, RegisterID dest) { move(src, dest); or64(imm, dest); } void or64(TrustedImm64 imm, RegisterID src, RegisterID dest) { move(src, dest); or64(imm, dest); } void rotateRight64(TrustedImm32 imm, RegisterID srcDst) { m_assembler.rorq_i8r(imm.m_value, srcDst); } void sub64(RegisterID src, RegisterID dest) { m_assembler.subq_rr(src, dest); } void sub64(TrustedImm32 imm, RegisterID dest) { m_assembler.subq_ir(imm.m_value, dest); } void sub64(TrustedImm64 imm, RegisterID dest) { move(imm, scratchRegister); sub64(scratchRegister, dest); } void xor64(RegisterID src, RegisterID dest) { m_assembler.xorq_rr(src, dest); } void xor64(RegisterID src, Address dest) { m_assembler.xorq_rm(src, dest.offset, dest.base); } void xor64(TrustedImm32 imm, RegisterID srcDest) { m_assembler.xorq_ir(imm.m_value, srcDest); } void lshift64(TrustedImm32 imm, RegisterID dest) { m_assembler.shlq_i8r(imm.m_value, dest); } void lshift64(RegisterID src, RegisterID dest) { if (src == X86Registers::ecx) m_assembler.shlq_CLr(dest); else { ASSERT(src != dest); // Can only shift by ecx, so we do some swapping if we see anything else. swap(src, X86Registers::ecx); m_assembler.shlq_CLr(dest == X86Registers::ecx ? src : dest); swap(src, X86Registers::ecx); } } void rshift64(TrustedImm32 imm, RegisterID dest) { m_assembler.sarq_i8r(imm.m_value, dest); } void rshift64(RegisterID src, RegisterID dest) { if (src == X86Registers::ecx) m_assembler.sarq_CLr(dest); else { ASSERT(src != dest); // Can only shift by ecx, so we do some swapping if we see anything else. swap(src, X86Registers::ecx); m_assembler.sarq_CLr(dest == X86Registers::ecx ? src : dest); swap(src, X86Registers::ecx); } } void urshift64(RegisterID src, TrustedImm32 imm, RegisterID dest) { if (src != dest) move(src, dest); urshift64(imm, dest); } void urshift64(TrustedImm32 imm, RegisterID dest) { m_assembler.shrq_i8r(imm.m_value, dest); } void urshift64(RegisterID src, RegisterID dest) { if (src == X86Registers::ecx) m_assembler.shrq_CLr(dest); else { ASSERT(src != dest); // Can only shift by ecx, so we do some swapping if we see anything else. swap(src, X86Registers::ecx); m_assembler.shrq_CLr(dest == X86Registers::ecx ? src : dest); swap(src, X86Registers::ecx); } } void load64(ImplicitAddress address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, dest); } void load64(BaseIndex address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); } void load64(const void* address, RegisterID dest) { if (dest == X86Registers::eax) m_assembler.movq_mEAX(address); else { move(TrustedImmPtr(address), dest); load64(dest, dest); } } DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest) { padBeforePatch(); m_assembler.movq_mr_disp32(address.offset, address.base, dest); return DataLabel32(this); } DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest) { padBeforePatch(); m_assembler.movq_mr_disp8(address.offset, address.base, dest); return DataLabelCompact(this); } void store64(RegisterID src, ImplicitAddress address) { m_assembler.movq_rm(src, address.offset, address.base); } void store64(RegisterID src, BaseIndex address) { m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); } void store64(RegisterID src, void* address) { if (src == X86Registers::eax) m_assembler.movq_EAXm(address); else { move(TrustedImmPtr(address), scratchRegister); store64(src, scratchRegister); } } void store64(TrustedImm64 imm, ImplicitAddress address) { move(imm, scratchRegister); store64(scratchRegister, address); } void store64(TrustedImm64 imm, BaseIndex address) { move(imm, scratchRegister); m_assembler.movq_rm(scratchRegister, address.offset, address.base, address.index, address.scale); } DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address) { padBeforePatch(); m_assembler.movq_rm_disp32(src, address.offset, address.base); return DataLabel32(this); } void move64ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.movq_rr(src, dest); } void moveDoubleTo64(FPRegisterID src, RegisterID dest) { m_assembler.movq_rr(src, dest); } void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) m_assembler.testq_rr(left, left); else m_assembler.cmpq_ir(right.m_value, left); m_assembler.setCC_r(x86Condition(cond), dest); m_assembler.movzbl_rr(dest, dest); } void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmpq_rr(right, left); m_assembler.setCC_r(x86Condition(cond), dest); m_assembler.movzbl_rr(dest, dest); } Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right) { m_assembler.cmpq_rr(right, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right) { if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) { m_assembler.testq_rr(left, left); return Jump(m_assembler.jCC(x86Condition(cond))); } move(right, scratchRegister); return branch64(cond, left, scratchRegister); } Jump branch64(RelationalCondition cond, RegisterID left, Address right) { m_assembler.cmpq_mr(right.offset, right.base, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right) { move(TrustedImmPtr(left.m_ptr), scratchRegister); return branch64(cond, Address(scratchRegister), right); } Jump branch64(RelationalCondition cond, Address left, RegisterID right) { m_assembler.cmpq_rm(right, left.offset, left.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right) { move(right, scratchRegister); return branch64(cond, left, scratchRegister); } Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask) { m_assembler.testq_rr(reg, mask); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { // if we are only interested in the low seven bits, this can be tested with a testb if (mask.m_value == -1) m_assembler.testq_rr(reg, reg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, reg); else m_assembler.testq_i32r(mask.m_value, reg); return Jump(m_assembler.jCC(x86Condition(cond))); } void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) { if (mask.m_value == -1) m_assembler.testq_rr(reg, reg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, reg); else m_assembler.testq_i32r(mask.m_value, reg); set32(x86Condition(cond), dest); } void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) { m_assembler.testq_rr(reg, mask); set32(x86Condition(cond), dest); } Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { load64(address.m_ptr, scratchRegister); return branchTest64(cond, scratchRegister, mask); } Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, Address address, RegisterID reg) { m_assembler.testq_rm(reg, address.offset, address.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { add64(imm, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest) { add64(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { sub64(imm, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest) { sub64(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) { move(src1, dest); return branchSub64(cond, src2, dest); } ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest) { ConvertibleLoadLabel result = ConvertibleLoadLabel(this); m_assembler.movq_mr(address.offset, address.base, dest); return result; } DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) { padBeforePatch(); m_assembler.movq_i64r(initialValue.asIntptr(), dest); return DataLabelPtr(this); } Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister); return branch64(cond, left, scratchRegister); } Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister); return branch64(cond, left, scratchRegister); } DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { DataLabelPtr label = moveWithPatch(initialValue, scratchRegister); store64(scratchRegister, address); return label; } using MacroAssemblerX86Common::branchTest8; Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) { TrustedImmPtr addr(reinterpret_cast(address.offset)); MacroAssemblerX86Common::move(addr, scratchRegister); return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister, address.base, TimesOne), mask); } Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister); return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister), mask); } static bool supportsFloatingPoint() { return true; } // See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate() static bool supportsFloatingPointTruncate() { return true; } static bool supportsFloatingPointSqrt() { return true; } static bool supportsFloatingPointAbs() { return true; } static FunctionPtr readCallTarget(CodeLocationCall call) { return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation())); } static RegisterID scratchRegisterForBlinding() { return scratchRegister; } static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; } static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label) { const int rexBytes = 1; const int opcodeBytes = 1; const int immediateBytes = 8; const int totalBytes = rexBytes + opcodeBytes + immediateBytes; ASSERT(totalBytes >= maxJumpReplacementSize()); return label.labelAtOffset(-totalBytes); } static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label) { return startOfBranchPtrWithPatchOnRegister(label); } static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue) { X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast(initialValue), scratchRegister); } static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue) { X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast(initialValue), scratchRegister); } private: template class> friend class LinkBufferBase; friend class RepatchBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { if (!call.isFlagSet(Call::Near)) X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPTACH_OFFSET_CALL_R11), function.value()); else X86Assembler::linkCall(code, call.m_label, function.value()); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // MacroAssemblerX86_64_h