/**************************************************************************** ** ** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the Declarative module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include #include #include #include #include "qsgimageparticle_p.h" #include "qsgparticleemitter_p.h" #include #include #include #include #include QT_BEGIN_NAMESPACE //###Switch to define later, for now user-friendly (no compilation) debugging is worth it DEFINE_BOOL_CONFIG_OPTION(qmlParticlesDebug, QML_PARTICLES_DEBUG) #ifndef QT_OPENGL_ES_2 #define SHADER_DEFINES "#version 120\n" #else #define SHADER_DEFINES "" #endif //TODO: Make it larger on desktop? Requires fixing up shader code with the same define #define UNIFORM_ARRAY_SIZE 64 static const char vertexShaderCode[] = "attribute highp vec2 vPos;\n" "attribute highp vec4 vData; // x = time, y = lifeSpan, z = size, w = endSize\n" "attribute highp vec4 vVec; // x,y = constant speed, z,w = acceleration\n" "uniform highp float entry;\n" "#ifdef COLOR\n" "attribute lowp vec4 vColor;\n" "#endif\n" "#ifdef DEFORM\n" "attribute highp vec2 vTex;\n" "attribute highp vec4 vDeformVec; //x,y x unit vector; z,w = y unit vector\n" "attribute highp vec3 vRotation; //x = radians of rotation, y=rotation speed, z= bool autoRotate\n" "#endif\n" "#ifdef SPRITE\n" "attribute highp vec4 vAnimData;// interpolate(bool), duration, frameCount (this anim), timestamp (this anim)\n" "attribute highp vec4 vAnimPos;//sheet x,y, width/height of this anim\n" "uniform highp vec2 animSheetSize; //width/height of whole sheet\n" "#endif\n" "\n" "uniform highp mat4 qt_Matrix;\n" "uniform highp float timestamp;\n" "#ifdef TABLE\n" "varying lowp vec2 tt;//y is progress if Sprite mode\n" "uniform highp float sizetable[64];\n" "uniform highp float opacitytable[64];\n" "#endif\n" "#ifdef SPRITE\n" "varying highp vec4 fTexS;\n" "#else\n" "#ifdef DEFORM\n" "varying highp vec2 fTex;\n" "#endif\n" "#endif\n" "#ifdef COLOR\n" "varying lowp vec4 fColor;\n" "#else\n" "varying lowp float fFade;\n" "#endif\n" "\n" "\n" "void main() {\n" "\n" " highp float t = (timestamp - vData.x) / vData.y;\n" " if (t < 0. || t > 1.){\n" "#ifdef DEFORM //Not point sprites\n" " gl_Position = qt_Matrix * vec4(vPos.x, vPos.y, 0., 1.);\n" "#else\n" " gl_PointSize = 0.;\n" "#endif\n" " return;\n" " }\n" "#ifdef SPRITE\n" " //Calculate frame location in texture\n" " highp float frameIndex = mod((((timestamp - vAnimData.w)*1000.)/vAnimData.y),vAnimData.z);\n" " tt.y = mod((timestamp - vAnimData.w)*1000., vAnimData.y) / vAnimData.y;\n" "\n" " frameIndex = floor(frameIndex);\n" " fTexS.xy = vec2(((frameIndex + vTex.x) * vAnimPos.z / animSheetSize.x), ((vAnimPos.y + vTex.y * vAnimPos.w) / animSheetSize.y));\n" "\n" " //Next frame is also passed, for interpolation\n" " //### Should the next anim be precalculated to allow for interpolation there?\n" " if (vAnimData.x == 1.0 && frameIndex != vAnimData.z - 1.)//Can't do it for the last frame though, this anim may not loop\n" " frameIndex = mod(frameIndex+1., vAnimData.z);\n" " fTexS.zw = vec2(((frameIndex + vTex.x) * vAnimPos.z / animSheetSize.x), ((vAnimPos.y + vTex.y * vAnimPos.w) / animSheetSize.y));\n" "#else\n" "#ifdef DEFORM\n" " fTex = vTex;\n" "#endif\n" "#endif\n" " highp float currentSize = mix(vData.z, vData.w, t * t);\n" " lowp float fade = 1.;\n" " highp float fadeIn = min(t * 10., 1.);\n" " highp float fadeOut = 1. - clamp((t - 0.75) * 4.,0., 1.);\n" "\n" "#ifdef TABLE\n" " currentSize = currentSize * sizetable[int(floor(t*64.))];\n" " fade = fade * opacitytable[int(floor(t*64.))];\n" "#endif\n" "\n" " if (entry == 1.)\n" " fade = fade * fadeIn * fadeOut;\n" " else if (entry == 2.)\n" " currentSize = currentSize * fadeIn * fadeOut;\n" "\n" " if (currentSize <= 0)//Sizes too small look jittery as they move\n" " currentSize = 0;\n" " else if (currentSize < 3)\n" " currentSize = 3;\n" "\n" " highp vec2 pos;\n" "#ifdef DEFORM\n" " highp float rotation = vRotation.x + vRotation.y * t * vData.y;\n" " if (vRotation.z == 1.0){\n" " highp vec2 curVel = vVec.zw * t * vData.y + vVec.xy;\n" " rotation += atan(curVel.y, curVel.x);\n" " }\n" " highp vec2 trigCalcs = vec2(cos(rotation), sin(rotation));\n" " highp vec4 deform = vDeformVec * currentSize * (vTex.xxyy - 0.5);\n" " highp vec4 rotatedDeform = deform.xxzz * trigCalcs.xyxy;\n" " rotatedDeform = rotatedDeform + (deform.yyww * trigCalcs.yxyx * vec4(-1.,1.,-1.,1.));\n" " /* The readable version:\n" " highp vec2 xDeform = vDeformVec.xy * currentSize * (vTex.x-0.5);\n" " highp vec2 yDeform = vDeformVec.zw * currentSize * (vTex.y-0.5);\n" " highp vec2 xRotatedDeform;\n" " xRotatedDeform.x = trigCalcs.x*xDeform.x - trigCalcs.y*xDeform.y;\n" " xRotatedDeform.y = trigCalcs.y*xDeform.x + trigCalcs.x*xDeform.y;\n" " highp vec2 yRotatedDeform;\n" " yRotatedDeform.x = trigCalcs.x*yDeform.x - trigCalcs.y*yDeform.y;\n" " yRotatedDeform.y = trigCalcs.y*yDeform.x + trigCalcs.x*yDeform.y;\n" " */\n" " pos = vPos\n" " + rotatedDeform.xy\n" " + rotatedDeform.zw\n" " + vVec.xy * t * vData.y // apply speed\n" " + 0.5 * vVec.zw * pow(t * vData.y, 2.); // apply acceleration\n" "#else\n" " pos = vPos\n" " + vVec.xy * t * vData.y // apply speed vector..\n" " + 0.5 * vVec.zw * pow(t * vData.y, 2.);\n" " gl_PointSize = currentSize;\n" "#endif\n" " gl_Position = qt_Matrix * vec4(pos.x, pos.y, 0, 1);\n" "\n" "#ifdef COLOR\n" " fColor = vColor * fade;\n" "#else\n" " fFade = fade;\n" "#endif\n" "#ifdef TABLE\n" " tt.x = t;\n" "#endif\n" "}\n"; static const char fragmentShaderCode[] = "uniform sampler2D texture;\n" "uniform lowp float qt_Opacity;\n" "\n" "#ifdef SPRITE\n" "varying highp vec4 fTexS;\n" "#else\n" "#ifdef DEFORM //First non-pointsprite\n" "varying highp vec2 fTex;\n" "#endif\n" "#endif\n" "#ifdef COLOR\n" "varying lowp vec4 fColor;\n" "#else\n" "varying lowp float fFade;\n" "#endif\n" "#ifdef TABLE\n" "varying lowp vec2 tt;\n" "uniform sampler2D colortable;\n" "#endif\n" "\n" "void main() {\n" "#ifdef SPRITE\n" " gl_FragColor = mix(texture2D(texture, fTexS.xy), texture2D(texture, fTexS.zw), tt.y)\n" " * fColor\n" " * texture2D(colortable, tt)\n" " * qt_Opacity;\n" "#else\n" "#ifdef TABLE\n" " gl_FragColor = texture2D(texture, fTex)\n" " * fColor\n" " * texture2D(colortable, tt)\n" " * qt_Opacity;\n" "#else\n" "#ifdef DEFORM\n" " gl_FragColor = (texture2D(texture, fTex)) * fColor * qt_Opacity;\n" "#else\n" "#ifdef COLOR\n" " gl_FragColor = (texture2D(texture, gl_PointCoord)) * fColor * qt_Opacity;\n" "#else\n" " gl_FragColor = texture2D(texture, gl_PointCoord) * (fFade * qt_Opacity);\n" "#endif //COLOR\n" "#endif //DEFORM\n" "#endif //TABLE\n" "#endif //SPRITE\n" "}\n"; const qreal CONV = 0.017453292519943295; class ImageMaterialData { public: ImageMaterialData() : texture(0), colorTable(0) {} ~ImageMaterialData(){ delete texture; delete colorTable; } QSGTexture *texture; QSGTexture *colorTable; float sizeTable[UNIFORM_ARRAY_SIZE]; float opacityTable[UNIFORM_ARRAY_SIZE]; qreal timestamp; qreal entry; QSizeF animSheetSize; }; class TabledMaterialData : public ImageMaterialData {}; class TabledMaterial : public QSGSimpleMaterialShader { QSG_DECLARE_SIMPLE_SHADER(TabledMaterial, TabledMaterialData) public: TabledMaterial() { m_vertex_code = QByteArray(SHADER_DEFINES) + QByteArray("#define TABLE\n#define DEFORM\n#define COLOR\n") + vertexShaderCode; m_fragment_code = QByteArray(SHADER_DEFINES) + QByteArray("#define TABLE\n#define DEFORM\n#define COLOR\n") + fragmentShaderCode; Q_ASSERT(!m_vertex_code.isNull()); Q_ASSERT(!m_fragment_code.isNull()); } const char *vertexShader() const { return m_vertex_code.constData(); } const char *fragmentShader() const { return m_fragment_code.constData(); } QList attributes() const { return QList() << "vPos" << "vTex" << "vData" << "vVec" << "vColor" << "vDeformVec" << "vRotation"; }; void initialize() { QSGSimpleMaterialShader::initialize(); program()->bind(); program()->setUniformValue("texture", 0); program()->setUniformValue("colortable", 1); glFuncs = QOpenGLContext::currentContext()->functions(); m_timestamp_id = program()->uniformLocation("timestamp"); m_entry_id = program()->uniformLocation("entry"); m_sizetable_id = program()->uniformLocation("sizetable"); m_opacitytable_id = program()->uniformLocation("opacitytable"); } void updateState(const TabledMaterialData* d, const TabledMaterialData*) { glFuncs->glActiveTexture(GL_TEXTURE1); d->colorTable->bind(); glFuncs->glActiveTexture(GL_TEXTURE0); d->texture->bind(); program()->setUniformValue(m_timestamp_id, (float) d->timestamp); program()->setUniformValue(m_entry_id, (float) d->entry); program()->setUniformValueArray(m_sizetable_id, (float*) d->sizeTable, UNIFORM_ARRAY_SIZE, 1); program()->setUniformValueArray(m_opacitytable_id, (float*) d->opacityTable, UNIFORM_ARRAY_SIZE, 1); } int m_entry_id; int m_timestamp_id; int m_sizetable_id; int m_opacitytable_id; QByteArray m_vertex_code; QByteArray m_fragment_code; QOpenGLFunctions* glFuncs; }; class DeformableMaterialData : public ImageMaterialData {}; class DeformableMaterial : public QSGSimpleMaterialShader { QSG_DECLARE_SIMPLE_SHADER(DeformableMaterial, DeformableMaterialData) public: DeformableMaterial() { m_vertex_code = QByteArray(SHADER_DEFINES) + QByteArray("#define DEFORM\n#define COLOR\n") + vertexShaderCode; m_fragment_code = QByteArray(SHADER_DEFINES) + QByteArray("#define DEFORM\n#define COLOR\n") + fragmentShaderCode; Q_ASSERT(!m_vertex_code.isNull()); Q_ASSERT(!m_fragment_code.isNull()); } const char *vertexShader() const { return m_vertex_code.constData(); } const char *fragmentShader() const { return m_fragment_code.constData(); } QList attributes() const { return QList() << "vPos" << "vTex" << "vData" << "vVec" << "vColor" << "vDeformVec" << "vRotation"; }; void initialize() { QSGSimpleMaterialShader::initialize(); program()->bind(); program()->setUniformValue("texture", 0); glFuncs = QOpenGLContext::currentContext()->functions(); m_timestamp_id = program()->uniformLocation("timestamp"); m_entry_id = program()->uniformLocation("entry"); } void updateState(const DeformableMaterialData* d, const DeformableMaterialData*) { glFuncs->glActiveTexture(GL_TEXTURE0); d->texture->bind(); program()->setUniformValue(m_timestamp_id, (float) d->timestamp); program()->setUniformValue(m_entry_id, (float) d->entry); } int m_entry_id; int m_timestamp_id; QByteArray m_vertex_code; QByteArray m_fragment_code; QOpenGLFunctions* glFuncs; }; class SpriteMaterialData : public ImageMaterialData {}; class SpriteMaterial : public QSGSimpleMaterialShader { QSG_DECLARE_SIMPLE_SHADER(SpriteMaterial, SpriteMaterialData) public: SpriteMaterial() { m_vertex_code = QByteArray(SHADER_DEFINES) + QByteArray("#define SPRITE\n#define TABLE\n#define DEFORM\n#define COLOR\n") + vertexShaderCode; m_fragment_code = QByteArray(SHADER_DEFINES) + QByteArray("#define SPRITE\n#define TABLE\n#define DEFORM\n#define COLOR\n") + fragmentShaderCode; Q_ASSERT(!m_vertex_code.isNull()); Q_ASSERT(!m_fragment_code.isNull()); } const char *vertexShader() const { return m_vertex_code.constData(); } const char *fragmentShader() const { return m_fragment_code.constData(); } QList attributes() const { return QList() << "vPos" << "vTex" << "vData" << "vVec" << "vColor" << "vDeformVec" << "vRotation" << "vAnimData" << "vAnimPos"; }; void initialize() { QSGSimpleMaterialShader::initialize(); program()->bind(); program()->setUniformValue("texture", 0); program()->setUniformValue("colortable", 1); glFuncs = QOpenGLContext::currentContext()->functions(); m_timestamp_id = program()->uniformLocation("timestamp"); m_animsize_id = program()->uniformLocation("animSheetSize"); m_entry_id = program()->uniformLocation("entry"); m_sizetable_id = program()->uniformLocation("sizetable"); m_opacitytable_id = program()->uniformLocation("opacitytable"); } void updateState(const SpriteMaterialData* d, const SpriteMaterialData*) { glFuncs->glActiveTexture(GL_TEXTURE1); d->colorTable->bind(); // make sure we end by setting GL_TEXTURE0 as active texture glFuncs->glActiveTexture(GL_TEXTURE0); d->texture->bind(); program()->setUniformValue(m_timestamp_id, (float) d->timestamp); program()->setUniformValue(m_animsize_id, d->animSheetSize); program()->setUniformValue(m_entry_id, (float) d->entry); program()->setUniformValueArray(m_sizetable_id, (float*) d->sizeTable, 64, 1); program()->setUniformValueArray(m_opacitytable_id, (float*) d->opacityTable, UNIFORM_ARRAY_SIZE, 1); } int m_timestamp_id; int m_animsize_id; int m_entry_id; int m_sizetable_id; int m_opacitytable_id; QByteArray m_vertex_code; QByteArray m_fragment_code; QOpenGLFunctions* glFuncs; }; class ColoredMaterialData : public ImageMaterialData {}; class ColoredMaterial : public QSGSimpleMaterialShader { QSG_DECLARE_SIMPLE_SHADER(ColoredMaterial, ColoredMaterialData) public: ColoredMaterial() { m_vertex_code = QByteArray(SHADER_DEFINES) + QByteArray("#define COLOR\n") + vertexShaderCode; m_fragment_code = QByteArray(SHADER_DEFINES) + QByteArray("#define COLOR\n") + fragmentShaderCode; Q_ASSERT(!m_vertex_code.isNull()); Q_ASSERT(!m_fragment_code.isNull()); } const char *vertexShader() const { return m_vertex_code.constData(); } const char *fragmentShader() const { return m_fragment_code.constData(); } void activate() { QSGSimpleMaterialShader::activate(); #if !defined(QT_OPENGL_ES_2) && !defined(Q_OS_WIN) glEnable(GL_POINT_SPRITE); glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif } void deactivate() { QSGSimpleMaterialShader::deactivate(); #if !defined(QT_OPENGL_ES_2) && !defined(Q_OS_WIN) glDisable(GL_POINT_SPRITE); glDisable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif } QList attributes() const { return QList() << "vPos" << "vData" << "vVec" << "vColor"; } void initialize() { QSGSimpleMaterialShader::initialize(); program()->bind(); program()->setUniformValue("texture", 0); glFuncs = QOpenGLContext::currentContext()->functions(); m_timestamp_id = program()->uniformLocation("timestamp"); m_entry_id = program()->uniformLocation("entry"); } void updateState(const ColoredMaterialData* d, const ColoredMaterialData*) { glFuncs->glActiveTexture(GL_TEXTURE0); d->texture->bind(); program()->setUniformValue(m_timestamp_id, (float) d->timestamp); program()->setUniformValue(m_entry_id, (float) d->entry); } int m_timestamp_id; int m_entry_id; QByteArray m_vertex_code; QByteArray m_fragment_code; QOpenGLFunctions* glFuncs; }; class SimpleMaterialData : public ImageMaterialData {}; class SimpleMaterial : public QSGSimpleMaterialShader { QSG_DECLARE_SIMPLE_SHADER(SimpleMaterial, SimpleMaterialData) public: SimpleMaterial() { m_vertex_code = QByteArray(SHADER_DEFINES) + vertexShaderCode; m_fragment_code = QByteArray(SHADER_DEFINES) + fragmentShaderCode; Q_ASSERT(!m_vertex_code.isNull()); Q_ASSERT(!m_fragment_code.isNull()); } const char *vertexShader() const { return m_vertex_code.constData(); } const char *fragmentShader() const { return m_fragment_code.constData(); } void activate() { QSGSimpleMaterialShader::activate(); #if !defined(QT_OPENGL_ES_2) && !defined(Q_OS_WIN) glEnable(GL_POINT_SPRITE); glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif } void deactivate() { QSGSimpleMaterialShader::deactivate(); #if !defined(QT_OPENGL_ES_2) && !defined(Q_OS_WIN) glDisable(GL_POINT_SPRITE); glDisable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif } QList attributes() const { return QList() << "vPos" << "vData" << "vVec"; } void initialize() { QSGSimpleMaterialShader::initialize(); program()->bind(); program()->setUniformValue("texture", 0); glFuncs = QOpenGLContext::currentContext()->functions(); m_timestamp_id = program()->uniformLocation("timestamp"); m_entry_id = program()->uniformLocation("entry"); } void updateState(const SimpleMaterialData* d, const SimpleMaterialData*) { glFuncs->glActiveTexture(GL_TEXTURE0); d->texture->bind(); program()->setUniformValue(m_timestamp_id, (float) d->timestamp); program()->setUniformValue(m_entry_id, (float) d->entry); } int m_timestamp_id; int m_entry_id; QByteArray m_vertex_code; QByteArray m_fragment_code; QOpenGLFunctions* glFuncs; }; void fillUniformArrayFromImage(float* array, const QImage& img, int size) { if (img.isNull()){ for (int i=0; i QtQuick.Particles2::ImageParticle::sprites The sprite or sprites used to draw this particle. Note that the sprite image will be scaled to a square based on the size of the particle being rendered. */ /*! \qmlproperty url QtQuick.Particles2::ImageParticle::colorTable An image whose color will be used as a 1D texture to determine color over life. E.g. when the particle is halfway through its lifetime, it will have the color specified halfway across the image. This color is blended with the color property and the color of the source image. */ /*! \qmlproperty url QtQuick.Particles2::ImageParticle::sizeTable An image whose opacity will be used as a 1D texture to determine size over life. This property is expected to be removed shortly, in favor of custom easing curves to determine size over life. */ /*! \qmlproperty url QtQuick.Particles2::ImageParticle::opacityTable An image whose opacity will be used as a 1D texture to determine size over life. This property is expected to be removed shortly, in favor of custom easing curves to determine opacity over life. */ /*! \qmlproperty color QtQuick.Particles2::ImageParticle::color If a color is specified, the provided image will be colorized with it. Default is white (no change). */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::colorVariation This number represents the color variation applied to individual particles. Setting colorVariation is the same as setting redVariation, greenVariation, and blueVariation to the same number. Each channel can vary between particle by up to colorVariation from its usual color. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::redVariation The variation in the red color channel between particles. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::greenVariation The variation in the green color channel between particles. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::blueVariation The variation in the blue color channel between particles. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::alpha An alpha to be applied to the image. This value is multiplied by the value in the image, and the value in the color property. Particles have additive blending, so lower alpha on single particles leads to stronger effects when multiple particles overlap. Alpha is measured from 0.0 to 1.0. Default is 1.0 */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::alphaVariation The variation in the alpha channel between particles. Alpha is measured from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::rotation If set the image will be rotated by this many degrees before it is drawn. The particle coordinates are not transformed. */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::rotationVariation If set the rotation of individual particles will vary by up to this much between particles. */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::rotationSpeed If set particles will rotate at this speed in degrees/second. */ /*! \qmlproperty real QtQuick.Particles2::ImageParticle::rotationSpeedVariation If set the rotationSpeed of individual particles will vary by up to this much between particles. */ /*! \qmlproperty bool QtQuick.Particles2::ImageParticle::autoRotation If set to true then a rotation will be applied on top of the particles rotation, so that it faces the direction of travel. So to face away from the direction of travel, set autoRotation to true and rotation to 180. Default is false */ /*! \qmlproperty StochasticDirection QtQuick.Particles2::ImageParticle::xVector Allows you to deform the particle image when drawn. The rectangular image will be deformed so that the horizontal sides are in the shape of this vector instead of (1,0). */ /*! \qmlproperty StochasticDirection QtQuick.Particles2::ImageParticle::yVector Allows you to deform the particle image when drawn. The rectangular image will be deformed so that the vertical sides are in the shape of this vector instead of (0,1). */ /*! \qmlproperty EntryEffect QtQuick.Particles2::ImageParticle::entryEffect This property provides basic and cheap entrance and exit effects for the particles. For fine-grained control, see sizeTable and opacityTable. Acceptable values are \list \o None: Particles just appear and disappear. \o Fade: Particles fade in from 0 opacity at the start of their life, and fade out to 0 at the end. \o Scale: Particles scale in from 0 size at the start of their life, and scale back to 0 at the end. \endlist Default value is Fade. */ /*! \qmlproperty bool QtQuick.Particles2::ImageParticle::spritesInterpolate If set to true, sprite particles will interpolate between sprite frames each rendered frame, making the sprites look smoother. Default is true. */ QSGImageParticle::QSGImageParticle(QSGItem* parent) : QSGParticlePainter(parent) , m_color_variation(0.0) , m_rootNode(0) , m_material(0) , m_alphaVariation(0.0) , m_alpha(1.0) , m_redVariation(0.0) , m_greenVariation(0.0) , m_blueVariation(0.0) , m_rotation(0) , m_rotationVariation(0) , m_rotationSpeed(0) , m_rotationSpeedVariation(0) , m_autoRotation(false) , m_xVector(0) , m_yVector(0) , m_spriteEngine(0) , m_spritesInterpolate(true) , m_explicitColor(false) , m_explicitRotation(false) , m_explicitDeformation(false) , m_explicitAnimation(false) , m_bloat(false) , perfLevel(Unknown) , m_lastLevel(Unknown) , m_debugMode(false) , m_entryEffect(Fade) { setFlag(ItemHasContents); m_debugMode = qmlParticlesDebug(); } QSGImageParticle::~QSGImageParticle() { } QDeclarativeListProperty QSGImageParticle::sprites() { return QDeclarativeListProperty(this, &m_sprites, spriteAppend, spriteCount, spriteAt, spriteClear); } void QSGImageParticle::setImage(const QUrl &image) { if (image == m_image_name) return; m_image_name = image; emit imageChanged(); reset(); } void QSGImageParticle::setColortable(const QUrl &table) { if (table == m_colortable_name) return; m_colortable_name = table; emit colortableChanged(); reset(); } void QSGImageParticle::setSizetable(const QUrl &table) { if (table == m_sizetable_name) return; m_sizetable_name = table; emit sizetableChanged(); reset(); } void QSGImageParticle::setOpacitytable(const QUrl &table) { if (table == m_opacitytable_name) return; m_opacitytable_name = table; emit opacitytableChanged(); reset(); } void QSGImageParticle::setColor(const QColor &color) { if (color == m_color) return; m_color = color; emit colorChanged(); m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setColorVariation(qreal var) { if (var == m_color_variation) return; m_color_variation = var; emit colorVariationChanged(); m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setAlphaVariation(qreal arg) { if (m_alphaVariation != arg) { m_alphaVariation = arg; emit alphaVariationChanged(arg); } m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setAlpha(qreal arg) { if (m_alpha != arg) { m_alpha = arg; emit alphaChanged(arg); } m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setRedVariation(qreal arg) { if (m_redVariation != arg) { m_redVariation = arg; emit redVariationChanged(arg); } m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setGreenVariation(qreal arg) { if (m_greenVariation != arg) { m_greenVariation = arg; emit greenVariationChanged(arg); } m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setBlueVariation(qreal arg) { if (m_blueVariation != arg) { m_blueVariation = arg; emit blueVariationChanged(arg); } m_explicitColor = true; if (perfLevel < Colored) reset(); } void QSGImageParticle::setRotation(qreal arg) { if (m_rotation != arg) { m_rotation = arg; emit rotationChanged(arg); } m_explicitRotation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setRotationVariation(qreal arg) { if (m_rotationVariation != arg) { m_rotationVariation = arg; emit rotationVariationChanged(arg); } m_explicitRotation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setRotationSpeed(qreal arg) { if (m_rotationSpeed != arg) { m_rotationSpeed = arg; emit rotationSpeedChanged(arg); } m_explicitRotation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setRotationSpeedVariation(qreal arg) { if (m_rotationSpeedVariation != arg) { m_rotationSpeedVariation = arg; emit rotationSpeedVariationChanged(arg); } m_explicitRotation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setAutoRotation(bool arg) { if (m_autoRotation != arg) { m_autoRotation = arg; emit autoRotationChanged(arg); } m_explicitRotation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setXVector(QSGDirection* arg) { if (m_xVector != arg) { m_xVector = arg; emit xVectorChanged(arg); } m_explicitDeformation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setYVector(QSGDirection* arg) { if (m_yVector != arg) { m_yVector = arg; emit yVectorChanged(arg); } m_explicitDeformation = true; if (perfLevel < Deformable) reset(); } void QSGImageParticle::setSpritesInterpolate(bool arg) { if (m_spritesInterpolate != arg) { m_spritesInterpolate = arg; emit spritesInterpolateChanged(arg); } } void QSGImageParticle::setBloat(bool arg) { if (m_bloat != arg) { m_bloat = arg; emit bloatChanged(arg); } if (perfLevel < 9999) reset(); } void QSGImageParticle::setEntryEffect(EntryEffect arg) { if (m_entryEffect != arg) { m_entryEffect = arg; if (m_material) getState(m_material)->entry = (qreal) m_entryEffect; emit entryEffectChanged(arg); } } void QSGImageParticle::resetColor() { m_explicitColor = false; foreach (const QString &str, m_groups) foreach (QSGParticleData* d, m_system->groupData[m_system->groupIds[str]]->data) if (d->colorOwner == this) d->colorOwner = 0; m_color = QColor(); m_color_variation = 0.0f; m_redVariation = 0.0f; m_blueVariation = 0.0f; m_greenVariation = 0.0f; m_alpha = 1.0f; m_alphaVariation = 0.0f; } void QSGImageParticle::resetRotation() { m_explicitRotation = false; foreach (const QString &str, m_groups) foreach (QSGParticleData* d, m_system->groupData[m_system->groupIds[str]]->data) if (d->rotationOwner == this) d->rotationOwner = 0; m_rotation = 0; m_rotationVariation = 0; m_rotationSpeed = 0; m_rotationSpeedVariation = 0; m_autoRotation = false; } void QSGImageParticle::resetDeformation() { m_explicitDeformation = false; foreach (const QString &str, m_groups) foreach (QSGParticleData* d, m_system->groupData[m_system->groupIds[str]]->data) if (d->deformationOwner == this) d->deformationOwner = 0; if (m_xVector) delete m_xVector; if (m_yVector) delete m_yVector; m_xVector = 0; m_yVector = 0; } void QSGImageParticle::reset() { QSGParticlePainter::reset(); m_pleaseReset = true; update(); } void QSGImageParticle::createEngine() { if (m_spriteEngine) delete m_spriteEngine; if (m_sprites.count()) m_spriteEngine = new QSGSpriteEngine(m_sprites, this); else m_spriteEngine = 0; m_explicitAnimation = true; reset(); } static QSGGeometry::Attribute SimpleParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, GL_FLOAT, true), // Position QSGGeometry::Attribute::create(1, 4, GL_FLOAT), // Data QSGGeometry::Attribute::create(2, 4, GL_FLOAT) // Vectors }; static QSGGeometry::AttributeSet SimpleParticle_AttributeSet = { 3, // Attribute Count ( 2 + 4 + 4 ) * sizeof(float), SimpleParticle_Attributes }; static QSGGeometry::Attribute ColoredParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, GL_FLOAT, true), // Position QSGGeometry::Attribute::create(1, 4, GL_FLOAT), // Data QSGGeometry::Attribute::create(2, 4, GL_FLOAT), // Vectors QSGGeometry::Attribute::create(3, 4, GL_UNSIGNED_BYTE), // Colors }; static QSGGeometry::AttributeSet ColoredParticle_AttributeSet = { 4, // Attribute Count ( 2 + 4 + 4 ) * sizeof(float) + 4 * sizeof(uchar), ColoredParticle_Attributes }; static QSGGeometry::Attribute DeformableParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, GL_FLOAT, true), // Position QSGGeometry::Attribute::create(1, 2, GL_FLOAT), // TexCoord QSGGeometry::Attribute::create(2, 4, GL_FLOAT), // Data QSGGeometry::Attribute::create(3, 4, GL_FLOAT), // Vectors QSGGeometry::Attribute::create(4, 4, GL_UNSIGNED_BYTE), // Colors QSGGeometry::Attribute::create(5, 4, GL_FLOAT), // DeformationVectors QSGGeometry::Attribute::create(6, 3, GL_FLOAT), // Rotation }; static QSGGeometry::AttributeSet DeformableParticle_AttributeSet = { 7, // Attribute Count (2 + 2 + 4 + 4 + 4 + 3) * sizeof(float) + 4 * sizeof(uchar), DeformableParticle_Attributes }; static QSGGeometry::Attribute SpriteParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, GL_FLOAT, true), // Position QSGGeometry::Attribute::create(1, 2, GL_FLOAT), // TexCoord QSGGeometry::Attribute::create(2, 4, GL_FLOAT), // Data QSGGeometry::Attribute::create(3, 4, GL_FLOAT), // Vectors QSGGeometry::Attribute::create(4, 4, GL_UNSIGNED_BYTE), // Colors QSGGeometry::Attribute::create(5, 4, GL_FLOAT), // DeformationVectors QSGGeometry::Attribute::create(6, 3, GL_FLOAT), // Rotation QSGGeometry::Attribute::create(7, 4, GL_FLOAT), // Anim Data QSGGeometry::Attribute::create(8, 4, GL_FLOAT) // Anim Pos }; static QSGGeometry::AttributeSet SpriteParticle_AttributeSet = { 9, // Attribute Count (2 + 2 + 4 + 4 + 4 + 4 + 4 + 3) * sizeof(float) + 4 * sizeof(uchar), SpriteParticle_Attributes }; void QSGImageParticle::clearShadows() { m_shadowInit = false; foreach (const QVector data, m_shadowData) qDeleteAll(data); m_shadowData.clear(); } //Only call if you need to, may initialize the whole array first time QSGParticleData* QSGImageParticle::getShadowDatum(QSGParticleData* datum) { QSGParticleGroupData* gd = m_system->groupData[datum->group]; if (!m_shadowData.contains(datum->group)) { QVector data; for (int i=0; isize(); i++){ QSGParticleData* datum = new QSGParticleData(m_system); *datum = *(gd->data[i]); data << datum; } m_shadowData.insert(datum->group, data); } //### If dynamic resize is added, remember to potentially resize the shadow data on out-of-bounds access request return m_shadowData[datum->group][datum->index]; } QSGGeometryNode* QSGImageParticle::buildParticleNodes() { #ifdef QT_OPENGL_ES_2 if (m_count * 4 > 0xffff) { printf("ImageParticle: Too many particles - maximum 16,000 per ImageParticle.\n");//ES 2 vertex count limit is ushort return 0; } #endif if (count() <= 0) return 0; if (m_sprites.count() || m_bloat) { perfLevel = Sprites; } else if (!m_colortable_name.isEmpty() || !m_sizetable_name.isEmpty() || !m_opacitytable_name.isEmpty()) { perfLevel = Tabled; } else if (m_autoRotation || m_rotation || m_rotationVariation || m_rotationSpeed || m_rotationSpeedVariation || m_xVector || m_yVector) { perfLevel = Deformable; } else if (m_alphaVariation || m_alpha != 1.0 || m_color.isValid() || m_color_variation || m_redVariation || m_blueVariation || m_greenVariation) { perfLevel = Colored; } else { perfLevel = Simple; } foreach (const QString &str, m_groups){//For sharing higher levels, need to have highest used so it renders int gIdx = m_system->groupIds[str]; foreach (QSGParticlePainter* p, m_system->groupData[gIdx]->painters){ QSGImageParticle* other = qobject_cast(p); if (other){ if (other->perfLevel > perfLevel) { if (other->perfLevel >= Tabled){//Deformable is the highest level needed for this, anything higher isn't shared (or requires your own sprite) if (perfLevel < Deformable) perfLevel = Deformable; } else { perfLevel = other->perfLevel; } } else if (other->perfLevel < perfLevel) { other->reset(); } } } } if (perfLevel >= Colored && !m_color.isValid()) m_color = QColor(Qt::white);//Hidden default, but different from unset QImage image; if (perfLevel >= Sprites){ if (!m_spriteEngine) { qWarning() << "ImageParticle: No sprite engine..."; return 0; } image = m_spriteEngine->assembledImage(); if (image.isNull())//Warning is printed in engine return 0; } else { image = QImage(m_image_name.toLocalFile()); if (image.isNull()) { printf("ImageParticle: loading image failed '%s'\n", qPrintable(m_image_name.toLocalFile())); return 0; } } clearShadows(); if (m_material) m_material = 0; //Setup material QImage colortable; QImage sizetable; QImage opacitytable; switch (perfLevel) {//Fallthrough intended case Sprites: m_material = SpriteMaterial::createMaterial(); getState(m_material)->animSheetSize = QSizeF(image.size()); m_spriteEngine->setCount(m_count); case Tabled: if (!m_material) m_material = TabledMaterial::createMaterial(); colortable = QImage(m_colortable_name.toLocalFile()); sizetable = QImage(m_sizetable_name.toLocalFile()); opacitytable = QImage(m_opacitytable_name.toLocalFile()); if (colortable.isNull()){ colortable = QImage(1,1,QImage::Format_ARGB32); colortable.fill(Qt::white); } Q_ASSERT(!colortable.isNull()); getState(m_material)->colorTable = QSGPlainTexture::fromImage(colortable); fillUniformArrayFromImage(getState(m_material)->sizeTable, sizetable, UNIFORM_ARRAY_SIZE); fillUniformArrayFromImage(getState(m_material)->opacityTable, opacitytable, UNIFORM_ARRAY_SIZE); case Deformable: if (!m_material) m_material = DeformableMaterial::createMaterial(); case Colored: if (!m_material) m_material = ColoredMaterial::createMaterial(); default://Also Simple if (!m_material) m_material = SimpleMaterial::createMaterial(); getState(m_material)->texture = QSGPlainTexture::fromImage(image); getState(m_material)->texture->setFiltering(QSGTexture::Linear); getState(m_material)->entry = (qreal) m_entryEffect; m_material->setFlag(QSGMaterial::Blending); } foreach (const QString &str, m_groups){ int gIdx = m_system->groupIds[str]; int count = m_system->groupData[gIdx]->size(); QSGGeometryNode* node = new QSGGeometryNode(); node->setMaterial(m_material); node->markDirty(QSGNode::DirtyMaterial); m_nodes.insert(gIdx, node); m_idxStarts.insert(gIdx, m_lastIdxStart); m_lastIdxStart += count; //Create Particle Geometry int vCount = count * 4; int iCount = count * 6; QSGGeometry *g; if (perfLevel == Sprites) g = new QSGGeometry(SpriteParticle_AttributeSet, vCount, iCount); else if (perfLevel == Tabled) g = new QSGGeometry(DeformableParticle_AttributeSet, vCount, iCount); else if (perfLevel == Deformable) g = new QSGGeometry(DeformableParticle_AttributeSet, vCount, iCount); else if (perfLevel == Colored) g = new QSGGeometry(ColoredParticle_AttributeSet, count, 0); else //Simple g = new QSGGeometry(SimpleParticle_AttributeSet, count, 0); node->setGeometry(g); if (perfLevel <= Colored){ g->setDrawingMode(GL_POINTS); if (m_debugMode){ GLfloat pointSizeRange[2]; glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, pointSizeRange); qDebug() << "Using point sprites, GL_ALIASED_POINT_SIZE_RANGE " <setDrawingMode(GL_TRIANGLES); for (int p=0; p < count; ++p) commit(gIdx, p);//commit sets geometry for the node, has its own perfLevel switch if (perfLevel == Sprites) initTexCoords((SpriteVertex*)g->vertexData(), vCount); else if (perfLevel == Tabled) initTexCoords((DeformableVertex*)g->vertexData(), vCount); else if (perfLevel == Deformable) initTexCoords((DeformableVertex*)g->vertexData(), vCount); if (perfLevel > Colored){ quint16 *indices = g->indexDataAsUShort(); for (int i=0; i < count; ++i) { int o = i * 4; indices[0] = o; indices[1] = o + 1; indices[2] = o + 2; indices[3] = o + 1; indices[4] = o + 3; indices[5] = o + 2; indices += 6; } } } foreach (QSGGeometryNode* node, m_nodes){ if (node == *(m_nodes.begin())) node->setFlag(QSGGeometryNode::OwnsMaterial);//Root node owns the material for memory management purposes else (*(m_nodes.begin()))->appendChildNode(node); } return *(m_nodes.begin()); } QSGNode *QSGImageParticle::updatePaintNode(QSGNode *, UpdatePaintNodeData *) { if (m_pleaseReset){ m_lastLevel = perfLevel; delete m_rootNode;//Automatically deletes children, and SG manages material lifetime m_rootNode = 0; m_nodes.clear(); m_idxStarts.clear(); m_lastIdxStart = 0; m_material = 0; m_pleaseReset = false; } if (m_system && m_system->isRunning() && !m_system->isPaused()){ prepareNextFrame(); if (m_rootNode) { update(); foreach (QSGGeometryNode* node, m_nodes) node->markDirty(QSGNode::DirtyGeometry); } } return m_rootNode; } void QSGImageParticle::prepareNextFrame() { if (m_rootNode == 0){//TODO: Staggered loading (as emitted) m_rootNode = buildParticleNodes(); if (m_rootNode == 0) return; if(m_debugMode){ qDebug() << "QSGImageParticle Feature level: " << perfLevel; qDebug() << "QSGImageParticle Nodes: "; int count = 0; foreach(int i, m_nodes.keys()){ qDebug() << "Group " << i << " (" << m_system->groupData[i]->size() << " particles)"; count += m_system->groupData[i]->size(); } qDebug() << "Total count: " << count; } } qint64 timeStamp = m_system->systemSync(this); qreal time = timeStamp / 1000.; switch (perfLevel){//Fall-through intended case Sprites: //Advance State m_spriteEngine->updateSprites(timeStamp); foreach (const QString &str, m_groups){ int gIdx = m_system->groupIds[str]; int count = m_system->groupData[gIdx]->size(); Vertices* particles = (Vertices *) m_nodes[gIdx]->geometry()->vertexData(); for (int i=0; i < count; i++){ int spriteIdx = m_idxStarts[gIdx] + i; Vertices &p = particles[i]; int curY = m_spriteEngine->spriteY(spriteIdx);//Y is fixed per sprite row, used to distinguish rows here if (curY != p.v1.animY){ p.v1.animT = p.v2.animT = p.v3.animT = p.v4.animT = m_spriteEngine->spriteStart(spriteIdx)/1000.0; p.v1.frameCount = p.v2.frameCount = p.v3.frameCount = p.v4.frameCount = m_spriteEngine->spriteFrames(spriteIdx); p.v1.frameDuration = p.v2.frameDuration = p.v3.frameDuration = p.v4.frameDuration = m_spriteEngine->spriteDuration(spriteIdx); p.v1.animX = p.v2.animX = p.v3.animX = p.v4.animX = m_spriteEngine->spriteX(spriteIdx); p.v1.animY = p.v2.animY = p.v3.animY = p.v4.animY = m_spriteEngine->spriteY(spriteIdx); p.v1.animWidth = p.v2.animWidth = p.v3.animWidth = p.v4.animWidth = m_spriteEngine->spriteWidth(spriteIdx); p.v1.animHeight = p.v2.animHeight = p.v3.animHeight = p.v4.animHeight = m_spriteEngine->spriteHeight(spriteIdx); } } } case Tabled: case Deformable: case Colored: case Simple: default: //Also Simple getState(m_material)->timestamp = time; break; } foreach (QSGGeometryNode* node, m_nodes) node->markDirty(QSGNode::DirtyMaterial); } void QSGImageParticle::reloadColor(const Color4ub &c, QSGParticleData* d) { d->color = c; //TODO: get index for reload - or make function take an index } void QSGImageParticle::initialize(int gIdx, int pIdx) { Color4ub color; QSGParticleData* datum = m_system->groupData[gIdx]->data[pIdx]; qreal redVariation = m_color_variation + m_redVariation; qreal greenVariation = m_color_variation + m_greenVariation; qreal blueVariation = m_color_variation + m_blueVariation; int spriteIdx = m_idxStarts[gIdx] + datum->index; float rotation; float rotationSpeed; float autoRotate; switch (perfLevel){//Fall-through is intended on all of them case Sprites: // Initial Sprite State if (m_explicitAnimation){ if (!datum->animationOwner) datum->animationOwner = this; QSGParticleData* writeTo = (datum->animationOwner == this ? datum : getShadowDatum(datum)); writeTo->animT = writeTo->t; //writeTo->animInterpolate = m_spritesInterpolate; if (m_spriteEngine){ m_spriteEngine->start(spriteIdx); writeTo->frameCount = m_spriteEngine->spriteFrames(spriteIdx); writeTo->frameDuration = m_spriteEngine->spriteDuration(spriteIdx); writeTo->animX = m_spriteEngine->spriteX(spriteIdx); writeTo->animY = m_spriteEngine->spriteY(spriteIdx); writeTo->animWidth = m_spriteEngine->spriteWidth(spriteIdx); writeTo->animHeight = m_spriteEngine->spriteHeight(spriteIdx); }else{ writeTo->frameCount = 1; writeTo->frameDuration = 9999; writeTo->animX = writeTo->animY = writeTo->animWidth = writeTo->animHeight = 0; } } case Tabled: case Deformable: //Initial Rotation if (m_explicitDeformation){ if (!datum->deformationOwner) datum->deformationOwner = this; if (m_xVector){ const QPointF &ret = m_xVector->sample(QPointF(datum->x, datum->y)); if (datum->deformationOwner == this) { datum->xx = ret.x(); datum->xy = ret.y(); } else { getShadowDatum(datum)->xx = ret.x(); getShadowDatum(datum)->xy = ret.y(); } } if (m_yVector){ const QPointF &ret = m_yVector->sample(QPointF(datum->x, datum->y)); if (datum->deformationOwner == this) { datum->yx = ret.x(); datum->yy = ret.y(); } else { getShadowDatum(datum)->yx = ret.x(); getShadowDatum(datum)->yy = ret.y(); } } } if (m_explicitRotation){ if (!datum->rotationOwner) datum->rotationOwner = this; rotation = (m_rotation + (m_rotationVariation - 2*((qreal)rand()/RAND_MAX)*m_rotationVariation) ) * CONV; rotationSpeed = (m_rotationSpeed + (m_rotationSpeedVariation - 2*((qreal)rand()/RAND_MAX)*m_rotationSpeedVariation) ) * CONV; autoRotate = m_autoRotation?1.0:0.0; if (datum->rotationOwner == this) { datum->rotation = rotation; datum->rotationSpeed = rotationSpeed; datum->autoRotate = autoRotate; } else { getShadowDatum(datum)->rotation = rotation; getShadowDatum(datum)->rotationSpeed = rotationSpeed; getShadowDatum(datum)->autoRotate = autoRotate; } } case Colored: //Color initialization // Particle color if (m_explicitColor) { if (!datum->colorOwner) datum->colorOwner = this; color.r = m_color.red() * (1 - redVariation) + rand() % 256 * redVariation; color.g = m_color.green() * (1 - greenVariation) + rand() % 256 * greenVariation; color.b = m_color.blue() * (1 - blueVariation) + rand() % 256 * blueVariation; color.a = m_alpha * m_color.alpha() * (1 - m_alphaVariation) + rand() % 256 * m_alphaVariation; if (datum->colorOwner == this) datum->color = color; else getShadowDatum(datum)->color = color; } default: break; } } void QSGImageParticle::commit(int gIdx, int pIdx) { if (m_pleaseReset) return; QSGGeometryNode *node = m_nodes[gIdx]; if (!node) return; QSGParticleData* datum = m_system->groupData[gIdx]->data[pIdx]; node->setFlag(QSGNode::OwnsGeometry, false); SpriteVertex *spriteVertices = (SpriteVertex *) node->geometry()->vertexData(); DeformableVertex *deformableVertices = (DeformableVertex *) node->geometry()->vertexData(); ColoredVertex *coloredVertices = (ColoredVertex *) node->geometry()->vertexData(); SimpleVertex *simpleVertices = (SimpleVertex *) node->geometry()->vertexData(); switch (perfLevel){//No automatic fall through intended on this one case Sprites: spriteVertices += pIdx*4; for (int i=0; i<4; i++){ spriteVertices[i].x = datum->x - m_systemOffset.x(); spriteVertices[i].y = datum->y - m_systemOffset.y(); spriteVertices[i].t = datum->t; spriteVertices[i].lifeSpan = datum->lifeSpan; spriteVertices[i].size = datum->size; spriteVertices[i].endSize = datum->endSize; spriteVertices[i].vx = datum->vx; spriteVertices[i].vy = datum->vy; spriteVertices[i].ax = datum->ax; spriteVertices[i].ay = datum->ay; if (m_explicitDeformation && datum->deformationOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); spriteVertices[i].xx = shadow->xx; spriteVertices[i].xy = shadow->xy; spriteVertices[i].yx = shadow->yx; spriteVertices[i].yy = shadow->yy; } else { spriteVertices[i].xx = datum->xx; spriteVertices[i].xy = datum->xy; spriteVertices[i].yx = datum->yx; spriteVertices[i].yy = datum->yy; } if (m_explicitRotation && datum->rotationOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); spriteVertices[i].rotation = shadow->rotation; spriteVertices[i].rotationSpeed = shadow->rotationSpeed; spriteVertices[i].autoRotate = shadow->autoRotate; } else { spriteVertices[i].rotation = datum->rotation; spriteVertices[i].rotationSpeed = datum->rotationSpeed; spriteVertices[i].autoRotate = datum->autoRotate; } spriteVertices[i].animInterpolate = m_spritesInterpolate ? 1.0 : 0.0;//### Shadow? In particleData? Or uniform? if (m_explicitAnimation && datum->animationOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); spriteVertices[i].frameDuration = shadow->frameDuration; spriteVertices[i].frameCount = shadow->frameCount; spriteVertices[i].animT = shadow->animT; spriteVertices[i].animX = shadow->animX; spriteVertices[i].animY = shadow->animY; spriteVertices[i].animWidth = shadow->animWidth; spriteVertices[i].animHeight = shadow->animHeight; } else { spriteVertices[i].frameDuration = datum->frameDuration; spriteVertices[i].frameCount = datum->frameCount; spriteVertices[i].animT = datum->animT; spriteVertices[i].animX = datum->animX; spriteVertices[i].animY = datum->animY; spriteVertices[i].animWidth = datum->animWidth; spriteVertices[i].animHeight = datum->animHeight; } if (m_explicitColor && datum->colorOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); spriteVertices[i].color.r = shadow->color.r; spriteVertices[i].color.g = shadow->color.g; spriteVertices[i].color.b = shadow->color.b; spriteVertices[i].color.a = shadow->color.a; } else { spriteVertices[i].color.r = datum->color.r; spriteVertices[i].color.g = datum->color.g; spriteVertices[i].color.b = datum->color.b; spriteVertices[i].color.a = datum->color.a; } } break; case Tabled: //Fall through until it has its own vertex class case Deformable: deformableVertices += pIdx*4; for (int i=0; i<4; i++){ deformableVertices[i].x = datum->x - m_systemOffset.x(); deformableVertices[i].y = datum->y - m_systemOffset.y(); deformableVertices[i].t = datum->t; deformableVertices[i].lifeSpan = datum->lifeSpan; deformableVertices[i].size = datum->size; deformableVertices[i].endSize = datum->endSize; deformableVertices[i].vx = datum->vx; deformableVertices[i].vy = datum->vy; deformableVertices[i].ax = datum->ax; deformableVertices[i].ay = datum->ay; if (m_explicitDeformation && datum->deformationOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); deformableVertices[i].xx = shadow->xx; deformableVertices[i].xy = shadow->xy; deformableVertices[i].yx = shadow->yx; deformableVertices[i].yy = shadow->yy; } else { deformableVertices[i].xx = datum->xx; deformableVertices[i].xy = datum->xy; deformableVertices[i].yx = datum->yx; deformableVertices[i].yy = datum->yy; } if (m_explicitRotation && datum->rotationOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); deformableVertices[i].rotation = shadow->rotation; deformableVertices[i].rotationSpeed = shadow->rotationSpeed; deformableVertices[i].autoRotate = shadow->autoRotate; } else { deformableVertices[i].rotation = datum->rotation; deformableVertices[i].rotationSpeed = datum->rotationSpeed; deformableVertices[i].autoRotate = datum->autoRotate; } if (m_explicitColor && datum->colorOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); deformableVertices[i].color.r = shadow->color.r; deformableVertices[i].color.g = shadow->color.g; deformableVertices[i].color.b = shadow->color.b; deformableVertices[i].color.a = shadow->color.a; } else { deformableVertices[i].color.r = datum->color.r; deformableVertices[i].color.g = datum->color.g; deformableVertices[i].color.b = datum->color.b; deformableVertices[i].color.a = datum->color.a; } } break; case Colored: coloredVertices += pIdx*1; for (int i=0; i<1; i++){ coloredVertices[i].x = datum->x - m_systemOffset.x(); coloredVertices[i].y = datum->y - m_systemOffset.y(); coloredVertices[i].t = datum->t; coloredVertices[i].lifeSpan = datum->lifeSpan; coloredVertices[i].size = datum->size; coloredVertices[i].endSize = datum->endSize; coloredVertices[i].vx = datum->vx; coloredVertices[i].vy = datum->vy; coloredVertices[i].ax = datum->ax; coloredVertices[i].ay = datum->ay; if (m_explicitColor && datum->colorOwner != this) { QSGParticleData* shadow = getShadowDatum(datum); coloredVertices[i].color.r = shadow->color.r; coloredVertices[i].color.g = shadow->color.g; coloredVertices[i].color.b = shadow->color.b; coloredVertices[i].color.a = shadow->color.a; } else { coloredVertices[i].color.r = datum->color.r; coloredVertices[i].color.g = datum->color.g; coloredVertices[i].color.b = datum->color.b; coloredVertices[i].color.a = datum->color.a; } } break; case Simple: simpleVertices += pIdx*1; for (int i=0; i<1; i++){ simpleVertices[i].x = datum->x - m_systemOffset.x(); simpleVertices[i].y = datum->y - m_systemOffset.y(); simpleVertices[i].t = datum->t; simpleVertices[i].lifeSpan = datum->lifeSpan; simpleVertices[i].size = datum->size; simpleVertices[i].endSize = datum->endSize; simpleVertices[i].vx = datum->vx; simpleVertices[i].vy = datum->vy; simpleVertices[i].ax = datum->ax; simpleVertices[i].ay = datum->ay; } break; default: break; } node->setFlag(QSGNode::OwnsGeometry, true); } QT_END_NAMESPACE