// Copyright (C) 2019 The Qt Company Ltd. // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only #include "qquickboundaryrule_p.h" #include #include #include #include #include #include #include QT_BEGIN_NAMESPACE Q_LOGGING_CATEGORY(lcBR, "qt.quick.boundaryrule") class QQuickBoundaryReturnJob; class QQuickBoundaryRulePrivate : public QObjectPrivate { Q_DECLARE_PUBLIC(QQuickBoundaryRule) public: QQuickBoundaryRulePrivate() {} QQmlProperty property; QEasingCurve easing = QEasingCurve(QEasingCurve::OutQuad); QQuickBoundaryReturnJob *returnAnimationJob = nullptr; // read-only properties, updated on each write() qreal targetValue = 0; // after easing was applied qreal peakOvershoot = 0; qreal currentOvershoot = 0; // settable properties qreal minimum = 0; qreal maximum = 0; qreal minimumOvershoot = 0; qreal maximumOvershoot = 0; qreal overshootScale = 0.5; int returnDuration = 100; QQuickBoundaryRule::OvershootFilter overshootFilter = QQuickBoundaryRule::OvershootFilter::None; bool enabled = true; bool completed = false; qreal easedOvershoot(qreal overshootingValue); void resetOvershoot(); void onAnimationEnded(); }; class QQuickBoundaryReturnJob : public QAbstractAnimationJob { public: QQuickBoundaryReturnJob(QQuickBoundaryRulePrivate *br, qreal to) : QAbstractAnimationJob() , boundaryRule(br) , fromValue(br->targetValue) , toValue(to) {} int duration() const override { return boundaryRule->returnDuration; } void updateCurrentTime(int) override; void updateState(QAbstractAnimationJob::State newState, QAbstractAnimationJob::State oldState) override; QQuickBoundaryRulePrivate *boundaryRule; qreal fromValue; // snapshot of initial value from which we're returning qreal toValue; // target property value to which we're returning }; void QQuickBoundaryReturnJob::updateCurrentTime(int t) { // The easing property tells how to behave when the property is being // externally manipulated beyond the bounds. During returnToBounds() // we run it in reverse, by reversing time. qreal progress = (duration() - t) / qreal(duration()); qreal easingValue = boundaryRule->easing.valueForProgress(progress); qreal delta = qAbs(fromValue - toValue) * easingValue; qreal value = (fromValue > toValue ? toValue + delta : toValue - delta); qCDebug(lcBR) << t << "ms" << qRound(progress * 100) << "% easing" << easingValue << "->" << value; QQmlPropertyPrivate::write(boundaryRule->property, value, QQmlPropertyData::BypassInterceptor | QQmlPropertyData::DontRemoveBinding); } void QQuickBoundaryReturnJob::updateState(QAbstractAnimationJob::State newState, QAbstractAnimationJob::State oldState) { Q_UNUSED(oldState); if (newState == QAbstractAnimationJob::Stopped) { qCDebug(lcBR) << "return animation done"; boundaryRule->resetOvershoot(); boundaryRule->onAnimationEnded(); } } /*! \qmltype BoundaryRule //! \instantiates QQuickBoundaryRule \inqmlmodule Qt.labs.animation \ingroup qtquick-transitions-animations \ingroup qtquick-interceptors \brief Defines a restriction on the range of values that can be set on a numeric property. \since 5.14 A BoundaryRule defines the range of values that a particular property is allowed to have. When an out-of-range value would otherwise be set, it applies "resistance" via an easing curve. For example, the following BoundaryRule prevents DragHandler from dragging the Rectangle too far: \snippet qml/boundaryRule.qml 0 Note that a property cannot have more than one assigned BoundaryRule. \sa {Animation and Transitions in Qt Quick}, {Qt Quick Examples - Animation#Behaviors}{Behavior example}, {Qt Qml}, {Qt Quick Examples - Pointer Handlers} */ QQuickBoundaryRule::QQuickBoundaryRule(QObject *parent) : QObject(*(new QQuickBoundaryRulePrivate), parent) , QQmlPropertyValueInterceptor() { } QQuickBoundaryRule::~QQuickBoundaryRule() { Q_D(QQuickBoundaryRule); // stop any running animation and // prevent QQuickBoundaryReturnJob::updateState() from accessing QQuickBoundaryRulePrivate delete d->returnAnimationJob; } /*! \qmlproperty bool Qt.labs.animation::BoundaryRule::enabled This property holds whether the rule will be enforced when the tracked property changes value. By default a BoundaryRule is enabled. */ bool QQuickBoundaryRule::enabled() const { Q_D(const QQuickBoundaryRule); return d->enabled; } void QQuickBoundaryRule::setEnabled(bool enabled) { Q_D(QQuickBoundaryRule); if (d->enabled == enabled) return; d->enabled = enabled; emit enabledChanged(); } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::minimum This property holds the smallest unconstrained value that the property is allowed to have. If the property is set to a smaller value, it will be constrained by \l easing and \l minimumOvershoot. The default is \c 0. */ qreal QQuickBoundaryRule::minimum() const { Q_D(const QQuickBoundaryRule); return d->minimum; } void QQuickBoundaryRule::setMinimum(qreal minimum) { Q_D(QQuickBoundaryRule); if (qFuzzyCompare(d->minimum, minimum)) return; d->minimum = minimum; emit minimumChanged(); } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::minimumOvershoot This property holds the amount that the property is allowed to be less than \l minimum. Whenever the value is less than \l minimum and greater than \c {minimum - minimumOvershoot}, it is constrained by the \l easing curve. When the value attempts to go under \c {minimum - minimumOvershoots} there is a hard stop. The default is \c 0. */ qreal QQuickBoundaryRule::minimumOvershoot() const { Q_D(const QQuickBoundaryRule); return d->minimumOvershoot; } void QQuickBoundaryRule::setMinimumOvershoot(qreal minimumOvershoot) { Q_D(QQuickBoundaryRule); if (qFuzzyCompare(d->minimumOvershoot, minimumOvershoot)) return; d->minimumOvershoot = minimumOvershoot; emit minimumOvershootChanged(); } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::maximum This property holds the largest unconstrained value that the property is allowed to have. If the property is set to a larger value, it will be constrained by \l easing and \l maximumOvershoot. The default is \c 1. */ qreal QQuickBoundaryRule::maximum() const { Q_D(const QQuickBoundaryRule); return d->maximum; } void QQuickBoundaryRule::setMaximum(qreal maximum) { Q_D(QQuickBoundaryRule); if (qFuzzyCompare(d->maximum, maximum)) return; d->maximum = maximum; emit maximumChanged(); } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::maximumOvershoot This property holds the amount that the property is allowed to be more than \l maximum. Whenever the value is greater than \l maximum and less than \c {maximum + maximumOvershoot}, it is constrained by the \l easing curve. When the value attempts to exceed \c {maximum + maximumOvershoot} there is a hard stop. The default is 0. */ qreal QQuickBoundaryRule::maximumOvershoot() const { Q_D(const QQuickBoundaryRule); return d->maximumOvershoot; } void QQuickBoundaryRule::setMaximumOvershoot(qreal maximumOvershoot) { Q_D(QQuickBoundaryRule); if (qFuzzyCompare(d->maximumOvershoot, maximumOvershoot)) return; d->maximumOvershoot = maximumOvershoot; emit maximumOvershootChanged(); } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::overshootScale This property holds the amount by which the \l easing is scaled during the overshoot condition. For example if an Item is restricted from moving more than 100 pixels beyond some limit, and the user (by means of some Input Handler) is trying to drag it 100 pixels past the limit, if overshootScale is set to 1, the user will succeed: the only effect of the easing curve is to change the rate at which the item moves from overshoot 0 to overshoot 100. But if it is set to 0.5, the BoundaryRule provides resistance such that when the user tries to move 100 pixels, the Item will only move 50 pixels; and the easing curve modulates the rate of movement such that it may move in sync with the user's attempted movement at the beginning, and then slows down, depending on the shape of the easing curve. The default is 0.5. */ qreal QQuickBoundaryRule::overshootScale() const { Q_D(const QQuickBoundaryRule); return d->overshootScale; } void QQuickBoundaryRule::setOvershootScale(qreal overshootScale) { Q_D(QQuickBoundaryRule); if (qFuzzyCompare(d->overshootScale, overshootScale)) return; d->overshootScale = overshootScale; emit overshootScaleChanged(); } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::currentOvershoot This property holds the amount by which the most recently set value of the intercepted property exceeds \l maximum or is less than \l minimum. It is positive if the property value exceeds \l maximum, negative if the property value is less than \l minimum, or 0 if the property value is within both boundaries. */ qreal QQuickBoundaryRule::currentOvershoot() const { Q_D(const QQuickBoundaryRule); return d->currentOvershoot; } /*! \qmlproperty qreal Qt.labs.animation::BoundaryRule::peakOvershoot This property holds the most-positive or most-negative value of \l currentOvershoot that has been seen, until \l returnToBounds() is called. This can be useful when the intercepted property value is known to fluctuate, and you want to find and react to the maximum amount of overshoot rather than to the fluctuations. \sa overshootFilter */ qreal QQuickBoundaryRule::peakOvershoot() const { Q_D(const QQuickBoundaryRule); return d->peakOvershoot; } /*! \qmlproperty enumeration Qt.labs.animation::BoundaryRule::overshootFilter This property specifies the aggregation function that will be applied to the intercepted property value. If this is set to \c BoundaryRule.None (the default), the intercepted property will hold a value whose overshoot is limited to \l currentOvershoot. If this is set to \c BoundaryRule.Peak, the intercepted property will hold a value whose overshoot is limited to \l peakOvershoot. */ QQuickBoundaryRule::OvershootFilter QQuickBoundaryRule::overshootFilter() const { Q_D(const QQuickBoundaryRule); return d->overshootFilter; } void QQuickBoundaryRule::setOvershootFilter(OvershootFilter overshootFilter) { Q_D(QQuickBoundaryRule); if (d->overshootFilter == overshootFilter) return; d->overshootFilter = overshootFilter; emit overshootFilterChanged(); } /*! \qmlmethod bool Qt.labs.animation::BoundaryRule::returnToBounds Returns the intercepted property to a value between \l minimum and \l maximum, such that \l currentOvershoot and \l peakOvershoot are both zero. This will be animated if \l returnDuration is greater than zero. Returns true if the value needed to be adjusted, or false if it was already within bounds. \sa returnedToBounds */ bool QQuickBoundaryRule::returnToBounds() { Q_D(QQuickBoundaryRule); if (d->returnAnimationJob) { qCDebug(lcBR) << "animation already in progress"; return true; } if (currentOvershoot() > 0) { if (d->returnDuration > 0) d->returnAnimationJob = new QQuickBoundaryReturnJob(d, maximum()); else write(maximum()); } else if (currentOvershoot() < 0) { if (d->returnDuration > 0) d->returnAnimationJob = new QQuickBoundaryReturnJob(d, minimum()); else write(minimum()); } else { return false; } if (d->returnAnimationJob) { qCDebug(lcBR) << d->property.name() << "on" << d->property.object() << ": animating from" << d->returnAnimationJob->fromValue << "to" << d->returnAnimationJob->toValue; d->returnAnimationJob->start(); } else { d->resetOvershoot(); qCDebug(lcBR) << d->property.name() << "on" << d->property.object() << ": returned to" << d->property.read(); emit returnedToBounds(); } return true; } /*! \qmlsignal Qt.labs.animation::BoundaryRule::returnedToBounds() This signal is emitted when \l currentOvershoot returns to \c 0 again, after the \l maximum or \l minimum constraint has been violated. If the return is animated, the signal is emitted when the animation completes. \sa returnDuration, returnToBounds() */ /*! \qmlproperty enumeration Qt.labs.animation::BoundaryRule::easing This property holds the easing curve to be applied in overshoot mode (whenever the \l minimum or \l maximum constraint is violated, while the value is still within the respective overshoot range). The default easing curve is \l QEasingCurve::OutQuad. */ QEasingCurve QQuickBoundaryRule::easing() const { Q_D(const QQuickBoundaryRule); return d->easing; } void QQuickBoundaryRule::setEasing(const QEasingCurve &easing) { Q_D(QQuickBoundaryRule); if (d->easing == easing) return; d->easing = easing; emit easingChanged(); } /*! \qmlproperty int Qt.labs.animation::BoundaryRule::returnDuration This property holds the amount of time in milliseconds that \l returnToBounds() will take to return the target property to the nearest bound. If it is set to 0, returnToBounds() will set the property immediately rather than creating an animation job. The default is 100 ms. */ int QQuickBoundaryRule::returnDuration() const { Q_D(const QQuickBoundaryRule); return d->returnDuration; } void QQuickBoundaryRule::setReturnDuration(int duration) { Q_D(QQuickBoundaryRule); if (d->returnDuration == duration) return; d->returnDuration = duration; emit returnDurationChanged(); } void QQuickBoundaryRule::classBegin() { } void QQuickBoundaryRule::componentComplete() { Q_D(QQuickBoundaryRule); d->completed = true; } void QQuickBoundaryRule::write(const QVariant &value) { bool conversionOk = false; qreal rValue = value.toReal(&conversionOk); if (!conversionOk) { qWarning() << "BoundaryRule doesn't work with non-numeric values:" << value; return; } Q_D(QQuickBoundaryRule); bool bypass = !d->enabled || !d->completed || QQmlEnginePrivate::designerMode(); if (bypass) { QQmlPropertyPrivate::write(d->property, value, QQmlPropertyData::BypassInterceptor | QQmlPropertyData::DontRemoveBinding); return; } d->targetValue = d->easedOvershoot(rValue); QQmlPropertyPrivate::write(d->property, d->targetValue, QQmlPropertyData::BypassInterceptor | QQmlPropertyData::DontRemoveBinding); } void QQuickBoundaryRule::setTarget(const QQmlProperty &property) { Q_D(QQuickBoundaryRule); d->property = property; } /*! \internal Given that something is trying to set the target property to \a value, this function applies the easing curve and returns the value that the property should actually get instead. */ qreal QQuickBoundaryRulePrivate::easedOvershoot(qreal value) { qreal ret = value; Q_Q(QQuickBoundaryRule); if (value > maximum) { qreal overshootWas = currentOvershoot; currentOvershoot = value - maximum; if (!qFuzzyCompare(overshootWas, currentOvershoot)) emit q->currentOvershootChanged(); overshootWas = peakOvershoot; peakOvershoot = qMax(currentOvershoot, peakOvershoot); if (!qFuzzyCompare(overshootWas, peakOvershoot)) emit q->peakOvershootChanged(); ret = maximum + maximumOvershoot * easing.valueForProgress( (overshootFilter == QQuickBoundaryRule::OvershootFilter::Peak ? peakOvershoot : currentOvershoot) * overshootScale / maximumOvershoot); qCDebug(lcBR).nospace() << value << " overshoots maximum " << maximum << " by " << currentOvershoot << " (peak " << peakOvershoot << "): eased to " << ret; } else if (value < minimum) { qreal overshootWas = currentOvershoot; currentOvershoot = value - minimum; if (!qFuzzyCompare(overshootWas, currentOvershoot)) emit q->currentOvershootChanged(); overshootWas = peakOvershoot; peakOvershoot = qMin(currentOvershoot, peakOvershoot); if (!qFuzzyCompare(overshootWas, peakOvershoot)) emit q->peakOvershootChanged(); ret = minimum - minimumOvershoot * easing.valueForProgress( -(overshootFilter == QQuickBoundaryRule::OvershootFilter::Peak ? peakOvershoot : currentOvershoot) * overshootScale / minimumOvershoot); qCDebug(lcBR).nospace() << value << " overshoots minimum " << minimum << " by " << currentOvershoot << " (peak " << peakOvershoot << "): eased to " << ret; } else { resetOvershoot(); } return ret; } /*! \internal Resets the currentOvershoot and peakOvershoot properties to zero. */ void QQuickBoundaryRulePrivate::resetOvershoot() { Q_Q(QQuickBoundaryRule); if (!qFuzzyCompare(peakOvershoot, 0)) { peakOvershoot = 0; emit q->peakOvershootChanged(); } if (!qFuzzyCompare(currentOvershoot, 0)) { currentOvershoot = 0; emit q->currentOvershootChanged(); } } void QQuickBoundaryRulePrivate::onAnimationEnded() { Q_Q(QQuickBoundaryRule); delete returnAnimationJob; returnAnimationJob = nullptr; emit q->returnedToBounds(); } QT_END_NAMESPACE #include "moc_qquickboundaryrule_p.cpp"