/**************************************************************************** ** ** Copyright (C) 2019 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtQuick module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include #include #include #include #include #include "qquickimageparticle_p.h" #include "qquickparticleemitter_p.h" #include #include #include #include #include #include #include #include QT_BEGIN_NAMESPACE // Must match the shader code #define UNIFORM_ARRAY_SIZE 64 const qreal CONV = 0.017453292519943295; class ImageMaterialData { public: ImageMaterialData() : texture(nullptr), colorTable(nullptr) {} ~ImageMaterialData(){ delete texture; delete colorTable; } QSGTexture *texture; QSGTexture *colorTable; float sizeTable[UNIFORM_ARRAY_SIZE]; float opacityTable[UNIFORM_ARRAY_SIZE]; qreal dpr; qreal timestamp; qreal entry; QSizeF animSheetSize; }; class TabledMaterialRhiShader : public QSGMaterialShader { public: TabledMaterialRhiShader() { setShaderFileName(VertexStage, QStringLiteral(":/particles/shaders_ng/imageparticle_tabled.vert.qsb")); setShaderFileName(FragmentStage, QStringLiteral(":/particles/shaders_ng/imageparticle_tabled.frag.qsb")); } bool updateUniformData(RenderState &renderState, QSGMaterial *newMaterial, QSGMaterial *) override { QByteArray *buf = renderState.uniformData(); Q_ASSERT(buf->size() >= 80 + 2 * (UNIFORM_ARRAY_SIZE * 4 * 4)); if (renderState.isMatrixDirty()) { const QMatrix4x4 m = renderState.combinedMatrix(); memcpy(buf->data(), m.constData(), 64); } if (renderState.isOpacityDirty()) { const float opacity = renderState.opacity(); memcpy(buf->data() + 64, &opacity, 4); } ImageMaterialData *state = static_cast(newMaterial)->state(); float entry = float(state->entry); memcpy(buf->data() + 68, &entry, 4); float timestamp = float(state->timestamp); memcpy(buf->data() + 72, ×tamp, 4); float *p = reinterpret_cast(buf->data() + 80); for (int i = 0; i < UNIFORM_ARRAY_SIZE; ++i) { *p = state->sizeTable[i]; p += 4; } p = reinterpret_cast(buf->data() + 80 + (UNIFORM_ARRAY_SIZE * 4 * 4)); for (int i = 0; i < UNIFORM_ARRAY_SIZE; ++i) { *p = state->opacityTable[i]; p += 4; } return true; } void updateSampledImage(RenderState &renderState, int binding, QSGTexture **texture, QSGMaterial *newMaterial, QSGMaterial *) override { ImageMaterialData *state = static_cast(newMaterial)->state(); if (binding == 2) { state->colorTable->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->colorTable; } else if (binding == 1) { state->texture->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->texture; } } }; class TabledMaterial : public ImageMaterial { public: QSGMaterialShader *createShader(QSGRendererInterface::RenderMode renderMode) const override { Q_UNUSED(renderMode); return new TabledMaterialRhiShader; } QSGMaterialType *type() const override { return &m_type; } ImageMaterialData *state() override { return &m_state; } private: static QSGMaterialType m_type; ImageMaterialData m_state; }; QSGMaterialType TabledMaterial::m_type; class DeformableMaterialRhiShader : public QSGMaterialShader { public: DeformableMaterialRhiShader() { setShaderFileName(VertexStage, QStringLiteral(":/particles/shaders_ng/imageparticle_deformed.vert.qsb")); setShaderFileName(FragmentStage, QStringLiteral(":/particles/shaders_ng/imageparticle_deformed.frag.qsb")); } bool updateUniformData(RenderState &renderState, QSGMaterial *newMaterial, QSGMaterial *) override { QByteArray *buf = renderState.uniformData(); Q_ASSERT(buf->size() >= 80 + 2 * (UNIFORM_ARRAY_SIZE * 4 * 4)); if (renderState.isMatrixDirty()) { const QMatrix4x4 m = renderState.combinedMatrix(); memcpy(buf->data(), m.constData(), 64); } if (renderState.isOpacityDirty()) { const float opacity = renderState.opacity(); memcpy(buf->data() + 64, &opacity, 4); } ImageMaterialData *state = static_cast(newMaterial)->state(); float entry = float(state->entry); memcpy(buf->data() + 68, &entry, 4); float timestamp = float(state->timestamp); memcpy(buf->data() + 72, ×tamp, 4); return true; } void updateSampledImage(RenderState &renderState, int binding, QSGTexture **texture, QSGMaterial *newMaterial, QSGMaterial *) override { ImageMaterialData *state = static_cast(newMaterial)->state(); if (binding == 1) { state->texture->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->texture; } } }; class DeformableMaterial : public ImageMaterial { public: QSGMaterialShader *createShader(QSGRendererInterface::RenderMode renderMode) const override { Q_UNUSED(renderMode); return new DeformableMaterialRhiShader; } QSGMaterialType *type() const override { return &m_type; } ImageMaterialData *state() override { return &m_state; } private: static QSGMaterialType m_type; ImageMaterialData m_state; }; QSGMaterialType DeformableMaterial::m_type; class ParticleSpriteMaterialRhiShader : public QSGMaterialShader { public: ParticleSpriteMaterialRhiShader() { setShaderFileName(VertexStage, QStringLiteral(":/particles/shaders_ng/imageparticle_sprite.vert.qsb")); setShaderFileName(FragmentStage, QStringLiteral(":/particles/shaders_ng/imageparticle_sprite.frag.qsb")); } bool updateUniformData(RenderState &renderState, QSGMaterial *newMaterial, QSGMaterial *) override { QByteArray *buf = renderState.uniformData(); Q_ASSERT(buf->size() >= 80 + 2 * (UNIFORM_ARRAY_SIZE * 4 * 4)); if (renderState.isMatrixDirty()) { const QMatrix4x4 m = renderState.combinedMatrix(); memcpy(buf->data(), m.constData(), 64); } if (renderState.isOpacityDirty()) { const float opacity = renderState.opacity(); memcpy(buf->data() + 64, &opacity, 4); } ImageMaterialData *state = static_cast(newMaterial)->state(); float entry = float(state->entry); memcpy(buf->data() + 68, &entry, 4); float timestamp = float(state->timestamp); memcpy(buf->data() + 72, ×tamp, 4); float *p = reinterpret_cast(buf->data() + 80); for (int i = 0; i < UNIFORM_ARRAY_SIZE; ++i) { *p = state->sizeTable[i]; p += 4; } p = reinterpret_cast(buf->data() + 80 + (UNIFORM_ARRAY_SIZE * 4 * 4)); for (int i = 0; i < UNIFORM_ARRAY_SIZE; ++i) { *p = state->opacityTable[i]; p += 4; } return true; } void updateSampledImage(RenderState &renderState, int binding, QSGTexture **texture, QSGMaterial *newMaterial, QSGMaterial *) override { ImageMaterialData *state = static_cast(newMaterial)->state(); if (binding == 2) { state->colorTable->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->colorTable; } else if (binding == 1) { state->texture->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->texture; } } }; class SpriteMaterial : public ImageMaterial { public: QSGMaterialShader *createShader(QSGRendererInterface::RenderMode renderMode) const override { Q_UNUSED(renderMode); return new ParticleSpriteMaterialRhiShader; } QSGMaterialType *type() const override { return &m_type; } ImageMaterialData *state() override { return &m_state; } private: static QSGMaterialType m_type; ImageMaterialData m_state; }; QSGMaterialType SpriteMaterial::m_type; class ColoredPointMaterialRhiShader : public QSGMaterialShader { public: ColoredPointMaterialRhiShader() { setShaderFileName(VertexStage, QStringLiteral(":/particles/shaders_ng/imageparticle_coloredpoint.vert.qsb")); setShaderFileName(FragmentStage, QStringLiteral(":/particles/shaders_ng/imageparticle_coloredpoint.frag.qsb")); } bool updateUniformData(RenderState &renderState, QSGMaterial *newMaterial, QSGMaterial *) override { QByteArray *buf = renderState.uniformData(); Q_ASSERT(buf->size() >= 80 + 2 * (UNIFORM_ARRAY_SIZE * 4 * 4)); if (renderState.isMatrixDirty()) { const QMatrix4x4 m = renderState.combinedMatrix(); memcpy(buf->data(), m.constData(), 64); } if (renderState.isOpacityDirty()) { const float opacity = renderState.opacity(); memcpy(buf->data() + 64, &opacity, 4); } ImageMaterialData *state = static_cast(newMaterial)->state(); float entry = float(state->entry); memcpy(buf->data() + 68, &entry, 4); float timestamp = float(state->timestamp); memcpy(buf->data() + 72, ×tamp, 4); float dpr = float(state->dpr); memcpy(buf->data() + 76, &dpr, 4); return true; } void updateSampledImage(RenderState &renderState, int binding, QSGTexture **texture, QSGMaterial *newMaterial, QSGMaterial *) override { ImageMaterialData *state = static_cast(newMaterial)->state(); if (binding == 1) { state->texture->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->texture; } } }; class ColoredPointMaterial : public ImageMaterial { public: QSGMaterialShader *createShader(QSGRendererInterface::RenderMode renderMode) const override { Q_UNUSED(renderMode); return new ColoredPointMaterialRhiShader; } QSGMaterialType *type() const override { return &m_type; } ImageMaterialData *state() override { return &m_state; } private: static QSGMaterialType m_type; ImageMaterialData m_state; }; QSGMaterialType ColoredPointMaterial::m_type; class ColoredMaterialRhiShader : public ColoredPointMaterialRhiShader { public: ColoredMaterialRhiShader() { setShaderFileName(VertexStage, QStringLiteral(":/particles/shaders_ng/imageparticle_colored.vert.qsb")); setShaderFileName(FragmentStage, QStringLiteral(":/particles/shaders_ng/imageparticle_colored.frag.qsb")); } }; class ColoredMaterial : public ImageMaterial { public: QSGMaterialShader *createShader(QSGRendererInterface::RenderMode renderMode) const override { Q_UNUSED(renderMode); return new ColoredMaterialRhiShader; } QSGMaterialType *type() const override { return &m_type; } ImageMaterialData *state() override { return &m_state; } private: static QSGMaterialType m_type; ImageMaterialData m_state; }; QSGMaterialType ColoredMaterial::m_type; class SimplePointMaterialRhiShader : public QSGMaterialShader { public: SimplePointMaterialRhiShader() { setShaderFileName(VertexStage, QStringLiteral(":/particles/shaders_ng/imageparticle_simplepoint.vert.qsb")); setShaderFileName(FragmentStage, QStringLiteral(":/particles/shaders_ng/imageparticle_simplepoint.frag.qsb")); } bool updateUniformData(RenderState &renderState, QSGMaterial *newMaterial, QSGMaterial *) override { QByteArray *buf = renderState.uniformData(); Q_ASSERT(buf->size() >= 80 + 2 * (UNIFORM_ARRAY_SIZE * 4 * 4)); if (renderState.isMatrixDirty()) { const QMatrix4x4 m = renderState.combinedMatrix(); memcpy(buf->data(), m.constData(), 64); } if (renderState.isOpacityDirty()) { const float opacity = renderState.opacity(); memcpy(buf->data() + 64, &opacity, 4); } ImageMaterialData *state = static_cast(newMaterial)->state(); float entry = float(state->entry); memcpy(buf->data() + 68, &entry, 4); float timestamp = float(state->timestamp); memcpy(buf->data() + 72, ×tamp, 4); float dpr = float(state->dpr); memcpy(buf->data() + 76, &dpr, 4); return true; } void updateSampledImage(RenderState &renderState, int binding, QSGTexture **texture, QSGMaterial *newMaterial, QSGMaterial *) override { ImageMaterialData *state = static_cast(newMaterial)->state(); if (binding == 1) { state->texture->commitTextureOperations(renderState.rhi(), renderState.resourceUpdateBatch()); *texture = state->texture; } } }; class SimplePointMaterial : public ImageMaterial { public: QSGMaterialShader *createShader(QSGRendererInterface::RenderMode renderMode) const override { Q_UNUSED(renderMode); return new SimplePointMaterialRhiShader; } QSGMaterialType *type() const override { return &m_type; } ImageMaterialData *state() override { return &m_state; } private: static QSGMaterialType m_type; ImageMaterialData m_state; }; QSGMaterialType SimplePointMaterial::m_type; void fillUniformArrayFromImage(float* array, const QImage& img, int size) { if (img.isNull()){ for (int i=0; i QtQuick.Particles::ImageParticle::sprites The sprite or sprites used to draw this particle. Note that the sprite image will be scaled to a square based on the size of the particle being rendered. For full details, see the \l{Sprite Animations} overview. */ /*! \qmlproperty url QtQuick.Particles::ImageParticle::colorTable An image whose color will be used as a 1D texture to determine color over life. E.g. when the particle is halfway through its lifetime, it will have the color specified halfway across the image. This color is blended with the color property and the color of the source image. */ /*! \qmlproperty url QtQuick.Particles::ImageParticle::sizeTable An image whose opacity will be used as a 1D texture to determine size over life. This property is expected to be removed shortly, in favor of custom easing curves to determine size over life. */ /*! \qmlproperty url QtQuick.Particles::ImageParticle::opacityTable An image whose opacity will be used as a 1D texture to determine size over life. This property is expected to be removed shortly, in favor of custom easing curves to determine opacity over life. */ /*! \qmlproperty color QtQuick.Particles::ImageParticle::color If a color is specified, the provided image will be colorized with it. Default is white (no change). */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::colorVariation This number represents the color variation applied to individual particles. Setting colorVariation is the same as setting redVariation, greenVariation, and blueVariation to the same number. Each channel can vary between particle by up to colorVariation from its usual color. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::redVariation The variation in the red color channel between particles. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::greenVariation The variation in the green color channel between particles. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::blueVariation The variation in the blue color channel between particles. Color is measured, per channel, from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::alpha An alpha to be applied to the image. This value is multiplied by the value in the image, and the value in the color property. Particles have additive blending, so lower alpha on single particles leads to stronger effects when multiple particles overlap. Alpha is measured from 0.0 to 1.0. Default is 1.0 */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::alphaVariation The variation in the alpha channel between particles. Alpha is measured from 0.0 to 1.0. Default is 0.0 */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::rotation If set the image will be rotated by this many degrees before it is drawn. The particle coordinates are not transformed. */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::rotationVariation If set the rotation of individual particles will vary by up to this much between particles. */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::rotationVelocity If set particles will rotate at this velocity in degrees/second. */ /*! \qmlproperty real QtQuick.Particles::ImageParticle::rotationVelocityVariation If set the rotationVelocity of individual particles will vary by up to this much between particles. */ /*! \qmlproperty bool QtQuick.Particles::ImageParticle::autoRotation If set to true then a rotation will be applied on top of the particles rotation, so that it faces the direction of travel. So to face away from the direction of travel, set autoRotation to true and rotation to 180. Default is false */ /*! \qmlproperty StochasticDirection QtQuick.Particles::ImageParticle::xVector Allows you to deform the particle image when drawn. The rectangular image will be deformed so that the horizontal sides are in the shape of this vector instead of (1,0). */ /*! \qmlproperty StochasticDirection QtQuick.Particles::ImageParticle::yVector Allows you to deform the particle image when drawn. The rectangular image will be deformed so that the vertical sides are in the shape of this vector instead of (0,1). */ /*! \qmlproperty EntryEffect QtQuick.Particles::ImageParticle::entryEffect This property provides basic and cheap entrance and exit effects for the particles. For fine-grained control, see sizeTable and opacityTable. Acceptable values are \list \li ImageParticle.None: Particles just appear and disappear. \li ImageParticle.Fade: Particles fade in from 0 opacity at the start of their life, and fade out to 0 at the end. \li ImageParticle.Scale: Particles scale in from 0 size at the start of their life, and scale back to 0 at the end. \endlist Default value is Fade. */ /*! \qmlproperty bool QtQuick.Particles::ImageParticle::spritesInterpolate If set to true, sprite particles will interpolate between sprite frames each rendered frame, making the sprites look smoother. Default is true. */ /*! \qmlproperty Status QtQuick.Particles::ImageParticle::status The status of loading the image. */ QQuickImageParticle::QQuickImageParticle(QQuickItem* parent) : QQuickParticlePainter(parent) , m_color_variation(0.0) , m_outgoingNode(nullptr) , m_material(nullptr) , m_alphaVariation(0.0) , m_alpha(1.0) , m_redVariation(0.0) , m_greenVariation(0.0) , m_blueVariation(0.0) , m_rotation(0) , m_rotationVariation(0) , m_rotationVelocity(0) , m_rotationVelocityVariation(0) , m_autoRotation(false) , m_xVector(nullptr) , m_yVector(nullptr) , m_spriteEngine(nullptr) , m_spritesInterpolate(true) , m_explicitColor(false) , m_explicitRotation(false) , m_explicitDeformation(false) , m_explicitAnimation(false) , m_bypassOptimizations(false) , perfLevel(Unknown) , m_targetPerfLevel(Unknown) , m_debugMode(false) , m_entryEffect(Fade) , m_startedImageLoading(0) , m_rhi(nullptr) , m_apiChecked(false) , m_dpr(1.0) { setFlag(ItemHasContents); } QQuickImageParticle::~QQuickImageParticle() { clearShadows(); } QQmlListProperty QQuickImageParticle::sprites() { return QQmlListProperty(this, &m_sprites, spriteAppend, spriteCount, spriteAt, spriteClear, spriteReplace, spriteRemoveLast); } void QQuickImageParticle::sceneGraphInvalidated() { m_nodes.clear(); m_material = nullptr; delete m_outgoingNode; m_outgoingNode = nullptr; } void QQuickImageParticle::setImage(const QUrl &image) { if (image.isEmpty()){ if (m_image) { m_image.reset(); emit imageChanged(); } return; } if (!m_image) m_image.reset(new ImageData); if (image == m_image->source) return; m_image->source = image; emit imageChanged(); reset(); } void QQuickImageParticle::setColortable(const QUrl &table) { if (table.isEmpty()){ if (m_colorTable) { m_colorTable.reset(); emit colortableChanged(); } return; } if (!m_colorTable) m_colorTable.reset(new ImageData); if (table == m_colorTable->source) return; m_colorTable->source = table; emit colortableChanged(); reset(); } void QQuickImageParticle::setSizetable(const QUrl &table) { if (table.isEmpty()){ if (m_sizeTable) { m_sizeTable.reset(); emit sizetableChanged(); } return; } if (!m_sizeTable) m_sizeTable.reset(new ImageData); if (table == m_sizeTable->source) return; m_sizeTable->source = table; emit sizetableChanged(); reset(); } void QQuickImageParticle::setOpacitytable(const QUrl &table) { if (table.isEmpty()){ if (m_opacityTable) { m_opacityTable.reset(); emit opacitytableChanged(); } return; } if (!m_opacityTable) m_opacityTable.reset(new ImageData); if (table == m_opacityTable->source) return; m_opacityTable->source = table; emit opacitytableChanged(); reset(); } void QQuickImageParticle::setColor(const QColor &color) { if (color == m_color) return; m_color = color; emit colorChanged(); m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setColorVariation(qreal var) { if (var == m_color_variation) return; m_color_variation = var; emit colorVariationChanged(); m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setAlphaVariation(qreal arg) { if (m_alphaVariation != arg) { m_alphaVariation = arg; emit alphaVariationChanged(arg); } m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setAlpha(qreal arg) { if (m_alpha != arg) { m_alpha = arg; emit alphaChanged(arg); } m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setRedVariation(qreal arg) { if (m_redVariation != arg) { m_redVariation = arg; emit redVariationChanged(arg); } m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setGreenVariation(qreal arg) { if (m_greenVariation != arg) { m_greenVariation = arg; emit greenVariationChanged(arg); } m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setBlueVariation(qreal arg) { if (m_blueVariation != arg) { m_blueVariation = arg; emit blueVariationChanged(arg); } m_explicitColor = true; checkPerfLevel(ColoredPoint); } void QQuickImageParticle::setRotation(qreal arg) { if (m_rotation != arg) { m_rotation = arg; emit rotationChanged(arg); } m_explicitRotation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setRotationVariation(qreal arg) { if (m_rotationVariation != arg) { m_rotationVariation = arg; emit rotationVariationChanged(arg); } m_explicitRotation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setRotationVelocity(qreal arg) { if (m_rotationVelocity != arg) { m_rotationVelocity = arg; emit rotationVelocityChanged(arg); } m_explicitRotation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setRotationVelocityVariation(qreal arg) { if (m_rotationVelocityVariation != arg) { m_rotationVelocityVariation = arg; emit rotationVelocityVariationChanged(arg); } m_explicitRotation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setAutoRotation(bool arg) { if (m_autoRotation != arg) { m_autoRotation = arg; emit autoRotationChanged(arg); } m_explicitRotation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setXVector(QQuickDirection* arg) { if (m_xVector != arg) { m_xVector = arg; emit xVectorChanged(arg); } m_explicitDeformation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setYVector(QQuickDirection* arg) { if (m_yVector != arg) { m_yVector = arg; emit yVectorChanged(arg); } m_explicitDeformation = true; checkPerfLevel(Deformable); } void QQuickImageParticle::setSpritesInterpolate(bool arg) { if (m_spritesInterpolate != arg) { m_spritesInterpolate = arg; emit spritesInterpolateChanged(arg); } } void QQuickImageParticle::setBypassOptimizations(bool arg) { if (m_bypassOptimizations != arg) { m_bypassOptimizations = arg; emit bypassOptimizationsChanged(arg); } // Applies regardless of perfLevel reset(); } void QQuickImageParticle::setEntryEffect(EntryEffect arg) { if (m_entryEffect != arg) { m_entryEffect = arg; if (m_material) getState(m_material)->entry = (qreal) m_entryEffect; emit entryEffectChanged(arg); } } void QQuickImageParticle::resetColor() { m_explicitColor = false; for (auto groupId : groupIds()) { for (QQuickParticleData* d : qAsConst(m_system->groupData[groupId]->data)) { if (d->colorOwner == this) { d->colorOwner = nullptr; } } } m_color = QColor(); m_color_variation = 0.0f; m_redVariation = 0.0f; m_blueVariation = 0.0f; m_greenVariation = 0.0f; m_alpha = 1.0f; m_alphaVariation = 0.0f; } void QQuickImageParticle::resetRotation() { m_explicitRotation = false; for (auto groupId : groupIds()) { for (QQuickParticleData* d : qAsConst(m_system->groupData[groupId]->data)) { if (d->rotationOwner == this) { d->rotationOwner = nullptr; } } } m_rotation = 0; m_rotationVariation = 0; m_rotationVelocity = 0; m_rotationVelocityVariation = 0; m_autoRotation = false; } void QQuickImageParticle::resetDeformation() { m_explicitDeformation = false; for (auto groupId : groupIds()) { for (QQuickParticleData* d : qAsConst(m_system->groupData[groupId]->data)) { if (d->deformationOwner == this) { d->deformationOwner = nullptr; } } } if (m_xVector) delete m_xVector; if (m_yVector) delete m_yVector; m_xVector = nullptr; m_yVector = nullptr; } void QQuickImageParticle::reset() { QQuickParticlePainter::reset(); m_pleaseReset = true; update(); } void QQuickImageParticle::createEngine() { if (m_spriteEngine) delete m_spriteEngine; if (m_sprites.count()) { m_spriteEngine = new QQuickSpriteEngine(m_sprites, this); connect(m_spriteEngine, SIGNAL(stateChanged(int)), this, SLOT(spriteAdvance(int)), Qt::DirectConnection); m_explicitAnimation = true; } else { m_spriteEngine = nullptr; m_explicitAnimation = false; } reset(); } static QSGGeometry::Attribute SimplePointParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, QSGGeometry::FloatType, true), // Position QSGGeometry::Attribute::create(1, 4, QSGGeometry::FloatType), // Data QSGGeometry::Attribute::create(2, 4, QSGGeometry::FloatType) // Vectors }; static QSGGeometry::AttributeSet SimplePointParticle_AttributeSet = { 3, // Attribute Count ( 2 + 4 + 4 ) * sizeof(float), SimplePointParticle_Attributes }; static QSGGeometry::Attribute ColoredPointParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, QSGGeometry::FloatType, true), // Position QSGGeometry::Attribute::create(1, 4, QSGGeometry::FloatType), // Data QSGGeometry::Attribute::create(2, 4, QSGGeometry::FloatType), // Vectors QSGGeometry::Attribute::create(3, 4, QSGGeometry::UnsignedByteType), // Colors }; static QSGGeometry::AttributeSet ColoredPointParticle_AttributeSet = { 4, // Attribute Count ( 2 + 4 + 4 ) * sizeof(float) + 4 * sizeof(uchar), ColoredPointParticle_Attributes }; static QSGGeometry::Attribute ColoredParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 2, QSGGeometry::FloatType, true), // Position QSGGeometry::Attribute::create(1, 4, QSGGeometry::FloatType), // Data QSGGeometry::Attribute::create(2, 4, QSGGeometry::FloatType), // Vectors QSGGeometry::Attribute::create(3, 4, QSGGeometry::UnsignedByteType), // Colors QSGGeometry::Attribute::create(4, 4, QSGGeometry::UnsignedByteType), // TexCoord }; static QSGGeometry::AttributeSet ColoredParticle_AttributeSet = { 5, // Attribute Count ( 2 + 4 + 4 ) * sizeof(float) + (4 + 4) * sizeof(uchar), ColoredParticle_Attributes }; static QSGGeometry::Attribute DeformableParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 4, QSGGeometry::FloatType), // Position & Rotation QSGGeometry::Attribute::create(1, 4, QSGGeometry::FloatType), // Data QSGGeometry::Attribute::create(2, 4, QSGGeometry::FloatType), // Vectors QSGGeometry::Attribute::create(3, 4, QSGGeometry::UnsignedByteType), // Colors QSGGeometry::Attribute::create(4, 4, QSGGeometry::FloatType), // DeformationVectors QSGGeometry::Attribute::create(5, 4, QSGGeometry::UnsignedByteType), // TexCoord & autoRotate }; static QSGGeometry::AttributeSet DeformableParticle_AttributeSet = { 6, // Attribute Count (4 + 4 + 4 + 4) * sizeof(float) + (4 + 4) * sizeof(uchar), DeformableParticle_Attributes }; static QSGGeometry::Attribute SpriteParticle_Attributes[] = { QSGGeometry::Attribute::create(0, 4, QSGGeometry::FloatType), // Position & Rotation QSGGeometry::Attribute::create(1, 4, QSGGeometry::FloatType), // Data QSGGeometry::Attribute::create(2, 4, QSGGeometry::FloatType), // Vectors QSGGeometry::Attribute::create(3, 4, QSGGeometry::UnsignedByteType), // Colors QSGGeometry::Attribute::create(4, 4, QSGGeometry::FloatType), // DeformationVectors QSGGeometry::Attribute::create(5, 4, QSGGeometry::UnsignedByteType), // TexCoord & autoRotate QSGGeometry::Attribute::create(6, 3, QSGGeometry::FloatType), // Anim Data QSGGeometry::Attribute::create(7, 3, QSGGeometry::FloatType) // Anim Pos }; static QSGGeometry::AttributeSet SpriteParticle_AttributeSet = { 8, // Attribute Count (4 + 4 + 4 + 4 + 3 + 3) * sizeof(float) + (4 + 4) * sizeof(uchar), SpriteParticle_Attributes }; void QQuickImageParticle::clearShadows() { foreach (const QVector data, m_shadowData) qDeleteAll(data); m_shadowData.clear(); } //Only call if you need to, may initialize the whole array first time QQuickParticleData* QQuickImageParticle::getShadowDatum(QQuickParticleData* datum) { //Will return datum if the datum is a sentinel or uninitialized, to centralize that one check if (datum->systemIndex == -1) return datum; if (!m_shadowData.contains(datum->groupId)) { QQuickParticleGroupData* gd = m_system->groupData[datum->groupId]; QVector data; const int gdSize = gd->size(); data.reserve(gdSize); for (int i = 0; i < gdSize; i++) { QQuickParticleData* datum = new QQuickParticleData; *datum = *(gd->data[i]); data << datum; } m_shadowData.insert(datum->groupId, data); } //### If dynamic resize is added, remember to potentially resize the shadow data on out-of-bounds access request return m_shadowData[datum->groupId][datum->index]; } void QQuickImageParticle::checkPerfLevel(PerformanceLevel level) { if (m_targetPerfLevel < level) { m_targetPerfLevel = level; reset(); } } bool QQuickImageParticle::loadingSomething() { return (m_image && m_image->pix.isLoading()) || (m_colorTable && m_colorTable->pix.isLoading()) || (m_sizeTable && m_sizeTable->pix.isLoading()) || (m_opacityTable && m_opacityTable->pix.isLoading()) || (m_spriteEngine && m_spriteEngine->isLoading()); } void QQuickImageParticle::mainThreadFetchImageData() { const QQmlContext *context = nullptr; QQmlEngine *engine = nullptr; const auto loadPix = [&](ImageData *image) { if (!engine) { context = qmlContext(this); engine = context->engine(); } image->pix.load(engine, context->resolvedUrl(image->source)); }; if (m_image) {//ImageData created on setSource m_image->pix.clear(this); loadPix(m_image.get()); } if (m_spriteEngine) m_spriteEngine->startAssemblingImage(); if (m_colorTable) loadPix(m_colorTable.get()); if (m_sizeTable) loadPix(m_sizeTable.get()); if (m_opacityTable) loadPix(m_opacityTable.get()); m_startedImageLoading = 2; } void QQuickImageParticle::buildParticleNodes(QSGNode** passThrough) { // Starts async parts, like loading images, on gui thread // Not on individual properties, because we delay until system is running if (*passThrough || loadingSomething()) return; if (m_startedImageLoading == 0) { m_startedImageLoading = 1; //stage 1 is in gui thread QQuickImageParticle::staticMetaObject.invokeMethod(this, "mainThreadFetchImageData", Qt::QueuedConnection); } else if (m_startedImageLoading == 2) { finishBuildParticleNodes(passThrough); //rest happens in render thread } //No mutex, because it's slow and a compare that fails due to a race condition means just a dropped frame } void QQuickImageParticle::finishBuildParticleNodes(QSGNode** node) { if (!m_rhi) return; if (m_count * 4 > 0xffff) { // Index data is ushort. qmlInfo(this) << "ImageParticle: Too many particles - maximum 16383 per ImageParticle"; return; } if (m_count <= 0) return; m_debugMode = m_system->m_debugMode; if (m_sprites.count() || m_bypassOptimizations) { perfLevel = Sprites; } else if (m_colorTable || m_sizeTable || m_opacityTable) { perfLevel = Tabled; } else if (m_autoRotation || m_rotation || m_rotationVariation || m_rotationVelocity || m_rotationVelocityVariation || m_xVector || m_yVector) { perfLevel = Deformable; } else if (m_alphaVariation || m_alpha != 1.0 || m_color.isValid() || m_color_variation || m_redVariation || m_blueVariation || m_greenVariation) { perfLevel = ColoredPoint; } else { perfLevel = SimplePoint; } for (auto groupId : groupIds()) { //For sharing higher levels, need to have highest used so it renders for (QQuickParticlePainter* p : qAsConst(m_system->groupData[groupId]->painters)) { QQuickImageParticle* other = qobject_cast(p); if (other){ if (other->perfLevel > perfLevel) { if (other->perfLevel >= Tabled){//Deformable is the highest level needed for this, anything higher isn't shared (or requires your own sprite) if (perfLevel < Deformable) perfLevel = Deformable; } else { perfLevel = other->perfLevel; } } else if (other->perfLevel < perfLevel) { other->reset(); } } } } // Points with a size other than 1 are an optional feature with QRhi // because some of the underlying APIs have no support for this. // Therefore, avoid the point sprite path with APIs like Direct3D. if (perfLevel < Colored && !m_rhi->isFeatureSupported(QRhi::VertexShaderPointSize)) perfLevel = Colored; if (perfLevel >= ColoredPoint && !m_color.isValid()) m_color = QColor(Qt::white);//Hidden default, but different from unset m_targetPerfLevel = perfLevel; clearShadows(); if (m_material) m_material = nullptr; //Setup material QImage colortable; QImage sizetable; QImage opacitytable; QImage image; bool imageLoaded = false; switch (perfLevel) {//Fallthrough intended case Sprites: { if (!m_spriteEngine) { qWarning() << "ImageParticle: No sprite engine..."; //Sprite performance mode with static image is supported, but not advised //Note that in this case it always uses shadow data } else { image = m_spriteEngine->assembledImage(); if (image.isNull())//Warning is printed in engine return; imageLoaded = true; } m_material = new SpriteMaterial; ImageMaterialData *state = getState(m_material); if (imageLoaded) state->texture = QSGPlainTexture::fromImage(image); state->animSheetSize = QSizeF(image.size() / image.devicePixelRatio()); if (m_spriteEngine) m_spriteEngine->setCount(m_count); } Q_FALLTHROUGH(); case Tabled: { if (!m_material) m_material = new TabledMaterial; if (m_colorTable) { if (m_colorTable->pix.isReady()) colortable = m_colorTable->pix.image(); else qmlWarning(this) << "Error loading color table: " << m_colorTable->pix.error(); } if (m_sizeTable) { if (m_sizeTable->pix.isReady()) sizetable = m_sizeTable->pix.image(); else qmlWarning(this) << "Error loading size table: " << m_sizeTable->pix.error(); } if (m_opacityTable) { if (m_opacityTable->pix.isReady()) opacitytable = m_opacityTable->pix.image(); else qmlWarning(this) << "Error loading opacity table: " << m_opacityTable->pix.error(); } if (colortable.isNull()){//###Goes through image just for this colortable = QImage(1,1,QImage::Format_ARGB32_Premultiplied); colortable.fill(Qt::white); } ImageMaterialData *state = getState(m_material); state->colorTable = QSGPlainTexture::fromImage(colortable); fillUniformArrayFromImage(state->sizeTable, sizetable, UNIFORM_ARRAY_SIZE); fillUniformArrayFromImage(state->opacityTable, opacitytable, UNIFORM_ARRAY_SIZE); } Q_FALLTHROUGH(); case Deformable: { if (!m_material) m_material = new DeformableMaterial; } Q_FALLTHROUGH(); case Colored: { if (!m_material) m_material = new ColoredMaterial; } Q_FALLTHROUGH(); case ColoredPoint: { if (!m_material) m_material = new ColoredPointMaterial; } Q_FALLTHROUGH(); default://Also Simple { if (!m_material) m_material = new SimplePointMaterial; ImageMaterialData *state = getState(m_material); if (!imageLoaded) { if (!m_image || !m_image->pix.isReady()) { if (m_image) qmlWarning(this) << m_image->pix.error(); delete m_material; return; } //state->texture //TODO: Shouldn't this be better? But not crash? // = QQuickItemPrivate::get(this)->sceneGraphContext()->textureForFactory(m_imagePix.textureFactory()); state->texture = QSGPlainTexture::fromImage(m_image->pix.image()); } state->texture->setFiltering(QSGTexture::Linear); state->entry = (qreal) m_entryEffect; state->dpr = m_dpr; m_material->setFlag(QSGMaterial::Blending | QSGMaterial::RequiresFullMatrix); } } m_nodes.clear(); for (auto groupId : groupIds()) { int count = m_system->groupData[groupId]->size(); QSGGeometryNode* node = new QSGGeometryNode(); node->setMaterial(m_material); node->markDirty(QSGNode::DirtyMaterial); m_nodes.insert(groupId, node); m_idxStarts.insert(groupId, m_lastIdxStart); m_startsIdx.append(qMakePair(m_lastIdxStart, groupId)); m_lastIdxStart += count; //Create Particle Geometry int vCount = count * 4; int iCount = count * 6; QSGGeometry *g; if (perfLevel == Sprites) g = new QSGGeometry(SpriteParticle_AttributeSet, vCount, iCount); else if (perfLevel == Tabled) g = new QSGGeometry(DeformableParticle_AttributeSet, vCount, iCount); else if (perfLevel == Deformable) g = new QSGGeometry(DeformableParticle_AttributeSet, vCount, iCount); else if (perfLevel == Colored) g = new QSGGeometry(ColoredParticle_AttributeSet, vCount, iCount); else if (perfLevel == ColoredPoint) g = new QSGGeometry(ColoredPointParticle_AttributeSet, count, 0); else //Simple g = new QSGGeometry(SimplePointParticle_AttributeSet, count, 0); node->setFlag(QSGNode::OwnsGeometry); node->setGeometry(g); if (perfLevel <= ColoredPoint){ g->setDrawingMode(QSGGeometry::DrawPoints); if (m_debugMode) qDebug("Using point sprites"); } else { g->setDrawingMode(QSGGeometry::DrawTriangles); } for (int p=0; p < count; ++p) commit(groupId, p);//commit sets geometry for the node, has its own perfLevel switch if (perfLevel == Sprites) initTexCoords((SpriteVertex*)g->vertexData(), vCount); else if (perfLevel == Tabled) initTexCoords((DeformableVertex*)g->vertexData(), vCount); else if (perfLevel == Deformable) initTexCoords((DeformableVertex*)g->vertexData(), vCount); else if (perfLevel == Colored) initTexCoords((ColoredVertex*)g->vertexData(), vCount); if (perfLevel > ColoredPoint){ quint16 *indices = g->indexDataAsUShort(); for (int i=0; i < count; ++i) { int o = i * 4; indices[0] = o; indices[1] = o + 1; indices[2] = o + 2; indices[3] = o + 1; indices[4] = o + 3; indices[5] = o + 2; indices += 6; } } } if (perfLevel == Sprites) spritesUpdate();//Gives all vertexes the initial sprite data, then maintained per frame foreach (QSGGeometryNode* node, m_nodes){ if (node == *(m_nodes.begin())) node->setFlag(QSGGeometryNode::OwnsMaterial);//Root node owns the material for memory management purposes else (*(m_nodes.begin()))->appendChildNode(node); } *node = *(m_nodes.begin()); update(); } QSGNode *QQuickImageParticle::updatePaintNode(QSGNode *node, UpdatePaintNodeData *) { if (!m_apiChecked || m_windowChanged) { m_apiChecked = true; m_windowChanged = false; QSGRenderContext *rc = QQuickItemPrivate::get(this)->sceneGraphRenderContext(); QSGRendererInterface *rif = rc->sceneGraphContext()->rendererInterface(rc); if (!rif) return nullptr; QSGRendererInterface::GraphicsApi api = rif->graphicsApi(); const bool isRhi = QSGRendererInterface::isApiRhiBased(api); if (!node && !isRhi) return nullptr; if (isRhi) m_rhi = static_cast(rif->getResource(m_window, QSGRendererInterface::RhiResource)); else m_rhi = nullptr; if (isRhi && !m_rhi) { qWarning("Failed to query QRhi, particles disabled"); return nullptr; } // Get the pixel ratio of the window, used for pointsize scaling m_dpr = m_window ? m_window->devicePixelRatio() : 1.0; } if (m_pleaseReset){ // Cannot just destroy the node and then return null (in case image // loading is still in progress). Rather, keep track of the old node // until we have a new one. delete m_outgoingNode; m_outgoingNode = node; node = nullptr; m_nodes.clear(); m_idxStarts.clear(); m_startsIdx.clear(); m_lastIdxStart = 0; m_material = nullptr; m_pleaseReset = false; m_startedImageLoading = 0;//Cancel a part-way build (may still have a pending load) } else if (!m_material) { delete node; node = nullptr; } if (m_system && m_system->isRunning() && !m_system->isPaused()){ prepareNextFrame(&node); if (node) { update(); foreach (QSGGeometryNode* n, m_nodes) n->markDirty(QSGNode::DirtyGeometry); } else if (m_startedImageLoading < 2) { update();//To call prepareNextFrame() again from the renderThread } } if (!node) { node = m_outgoingNode; m_outgoingNode = nullptr; } return node; } void QQuickImageParticle::prepareNextFrame(QSGNode **node) { if (*node == nullptr){//TODO: Staggered loading (as emitted) buildParticleNodes(node); if (m_debugMode) { qDebug() << "QQuickImageParticle Feature level: " << perfLevel; qDebug() << "QQuickImageParticle Nodes: "; int count = 0; for (auto it = m_nodes.keyBegin(), end = m_nodes.keyEnd(); it != end; ++it) { qDebug() << "Group " << *it << " (" << m_system->groupData[*it]->size() << " particles)"; count += m_system->groupData[*it]->size(); } qDebug() << "Total count: " << count; } if (*node == nullptr) return; } qint64 timeStamp = m_system->systemSync(this); qreal time = timeStamp / 1000.; switch (perfLevel){//Fall-through intended case Sprites: //Advance State if (m_spriteEngine) m_spriteEngine->updateSprites(timeStamp);//fires signals if anim changed spritesUpdate(time); Q_FALLTHROUGH(); case Tabled: case Deformable: case Colored: case ColoredPoint: case SimplePoint: default: //Also Simple getState(m_material)->timestamp = time; break; } foreach (QSGGeometryNode* node, m_nodes) node->markDirty(QSGNode::DirtyMaterial); } void QQuickImageParticle::spritesUpdate(qreal time) { ImageMaterialData *state = getState(m_material); // Sprite progression handled CPU side, so as to have per-frame control. for (auto groupId : groupIds()) { for (QQuickParticleData* mainDatum : qAsConst(m_system->groupData[groupId]->data)) { QSGGeometryNode *node = m_nodes[groupId]; if (!node) continue; //TODO: Interpolate between two different animations if it's going to transition next frame // This is particularly important for cut-up sprites. QQuickParticleData* datum = (mainDatum->animationOwner == this ? mainDatum : getShadowDatum(mainDatum)); int spriteIdx = 0; for (int i = 0; iindex; break; } } double frameAt; qreal progress = 0; if (datum->frameDuration > 0) { qreal frame = (time - datum->animT)/(datum->frameDuration / 1000.0); frame = qBound((qreal)0.0, frame, (qreal)((qreal)datum->frameCount - 1.0));//Stop at count-1 frames until we have between anim interpolation if (m_spritesInterpolate) progress = std::modf(frame,&frameAt); else std::modf(frame,&frameAt); } else { datum->frameAt++; if (datum->frameAt >= datum->frameCount){ datum->frameAt = 0; m_spriteEngine->advance(spriteIdx); } frameAt = datum->frameAt; } if (m_spriteEngine->sprite(spriteIdx)->reverse())//### Store this in datum too? frameAt = (datum->frameCount - 1) - frameAt; QSizeF sheetSize = state->animSheetSize; qreal y = datum->animY / sheetSize.height(); qreal w = datum->animWidth / sheetSize.width(); qreal h = datum->animHeight / sheetSize.height(); qreal x1 = datum->animX / sheetSize.width(); x1 += frameAt * w; qreal x2 = x1; if (frameAt < (datum->frameCount-1)) x2 += w; SpriteVertex *spriteVertices = (SpriteVertex *) node->geometry()->vertexData(); spriteVertices += datum->index*4; for (int i=0; i<4; i++) { spriteVertices[i].animX1 = x1; spriteVertices[i].animY1 = y; spriteVertices[i].animX2 = x2; spriteVertices[i].animW = w; spriteVertices[i].animH = h; spriteVertices[i].animProgress = progress; } } } } void QQuickImageParticle::spriteAdvance(int spriteIdx) { if (!m_startsIdx.count())//Probably overly defensive return; int gIdx = -1; int i; for (i = 0; igroupData[gIdx]->data[pIdx]; QQuickParticleData* datum = (mainDatum->animationOwner == this ? mainDatum : getShadowDatum(mainDatum)); datum->animIdx = m_spriteEngine->spriteState(spriteIdx); datum->animT = m_spriteEngine->spriteStart(spriteIdx)/1000.0; datum->frameCount = m_spriteEngine->spriteFrames(spriteIdx); datum->frameDuration = m_spriteEngine->spriteDuration(spriteIdx) / datum->frameCount; datum->animX = m_spriteEngine->spriteX(spriteIdx); datum->animY = m_spriteEngine->spriteY(spriteIdx); datum->animWidth = m_spriteEngine->spriteWidth(spriteIdx); datum->animHeight = m_spriteEngine->spriteHeight(spriteIdx); } void QQuickImageParticle::initialize(int gIdx, int pIdx) { Color4ub color; QQuickParticleData* datum = m_system->groupData[gIdx]->data[pIdx]; qreal redVariation = m_color_variation + m_redVariation; qreal greenVariation = m_color_variation + m_greenVariation; qreal blueVariation = m_color_variation + m_blueVariation; int spriteIdx = 0; if (m_spriteEngine) { spriteIdx = m_idxStarts[gIdx] + datum->index; if (spriteIdx >= m_spriteEngine->count()) m_spriteEngine->setCount(spriteIdx+1); } float rotation; float rotationVelocity; uchar autoRotate; switch (perfLevel){//Fall-through is intended on all of them case Sprites: // Initial Sprite State if (m_explicitAnimation && m_spriteEngine){ if (!datum->animationOwner) datum->animationOwner = this; QQuickParticleData* writeTo = (datum->animationOwner == this ? datum : getShadowDatum(datum)); writeTo->animT = writeTo->t; //writeTo->animInterpolate = m_spritesInterpolate; if (m_spriteEngine){ m_spriteEngine->start(spriteIdx); writeTo->frameCount = m_spriteEngine->spriteFrames(spriteIdx); writeTo->frameDuration = m_spriteEngine->spriteDuration(spriteIdx) / writeTo->frameCount; writeTo->animIdx = 0;//Always starts at 0 writeTo->frameAt = -1; writeTo->animX = m_spriteEngine->spriteX(spriteIdx); writeTo->animY = m_spriteEngine->spriteY(spriteIdx); writeTo->animWidth = m_spriteEngine->spriteWidth(spriteIdx); writeTo->animHeight = m_spriteEngine->spriteHeight(spriteIdx); } } else { ImageMaterialData *state = getState(m_material); QQuickParticleData* writeTo = getShadowDatum(datum); writeTo->animT = datum->t; writeTo->frameCount = 1; writeTo->frameDuration = 60000000.0; writeTo->frameAt = -1; writeTo->animIdx = 0; writeTo->animT = 0; writeTo->animX = writeTo->animY = 0; writeTo->animWidth = state->animSheetSize.width(); writeTo->animHeight = state->animSheetSize.height(); } Q_FALLTHROUGH(); case Tabled: case Deformable: //Initial Rotation if (m_explicitDeformation){ if (!datum->deformationOwner) datum->deformationOwner = this; if (m_xVector){ const QPointF &ret = m_xVector->sample(QPointF(datum->x, datum->y)); if (datum->deformationOwner == this) { datum->xx = ret.x(); datum->xy = ret.y(); } else { QQuickParticleData* shadow = getShadowDatum(datum); shadow->xx = ret.x(); shadow->xy = ret.y(); } } if (m_yVector){ const QPointF &ret = m_yVector->sample(QPointF(datum->x, datum->y)); if (datum->deformationOwner == this) { datum->yx = ret.x(); datum->yy = ret.y(); } else { QQuickParticleData* shadow = getShadowDatum(datum); shadow->yx = ret.x(); shadow->yy = ret.y(); } } } if (m_explicitRotation){ if (!datum->rotationOwner) datum->rotationOwner = this; rotation = (m_rotation + (m_rotationVariation - 2*QRandomGenerator::global()->bounded(m_rotationVariation)) ) * CONV; rotationVelocity = (m_rotationVelocity + (m_rotationVelocityVariation - 2*QRandomGenerator::global()->bounded(m_rotationVelocityVariation)) ) * CONV; autoRotate = m_autoRotation ? 1 : 0; if (datum->rotationOwner == this) { datum->rotation = rotation; datum->rotationVelocity = rotationVelocity; datum->autoRotate = autoRotate; } else { QQuickParticleData* shadow = getShadowDatum(datum); shadow->rotation = rotation; shadow->rotationVelocity = rotationVelocity; shadow->autoRotate = autoRotate; } } Q_FALLTHROUGH(); case Colored: Q_FALLTHROUGH(); case ColoredPoint: //Color initialization // Particle color if (m_explicitColor) { if (!datum->colorOwner) datum->colorOwner = this; color.r = m_color.red() * (1 - redVariation) + QRandomGenerator::global()->bounded(256) * redVariation; color.g = m_color.green() * (1 - greenVariation) + QRandomGenerator::global()->bounded(256) * greenVariation; color.b = m_color.blue() * (1 - blueVariation) + QRandomGenerator::global()->bounded(256) * blueVariation; color.a = m_alpha * m_color.alpha() * (1 - m_alphaVariation) + QRandomGenerator::global()->bounded(256) * m_alphaVariation; if (datum->colorOwner == this) datum->color = color; else getShadowDatum(datum)->color = color; } default: break; } } void QQuickImageParticle::commit(int gIdx, int pIdx) { if (m_pleaseReset) return; QSGGeometryNode *node = m_nodes[gIdx]; if (!node) return; QQuickParticleData* datum = m_system->groupData[gIdx]->data[pIdx]; SpriteVertex *spriteVertices = (SpriteVertex *) node->geometry()->vertexData(); DeformableVertex *deformableVertices = (DeformableVertex *) node->geometry()->vertexData(); ColoredVertex *coloredVertices = (ColoredVertex *) node->geometry()->vertexData(); ColoredPointVertex *coloredPointVertices = (ColoredPointVertex *) node->geometry()->vertexData(); SimplePointVertex *simplePointVertices = (SimplePointVertex *) node->geometry()->vertexData(); switch (perfLevel){//No automatic fall through intended on this one case Sprites: spriteVertices += pIdx*4; for (int i=0; i<4; i++){ spriteVertices[i].x = datum->x - m_systemOffset.x(); spriteVertices[i].y = datum->y - m_systemOffset.y(); spriteVertices[i].t = datum->t; spriteVertices[i].lifeSpan = datum->lifeSpan; spriteVertices[i].size = datum->size; spriteVertices[i].endSize = datum->endSize; spriteVertices[i].vx = datum->vx; spriteVertices[i].vy = datum->vy; spriteVertices[i].ax = datum->ax; spriteVertices[i].ay = datum->ay; if (m_explicitDeformation && datum->deformationOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); spriteVertices[i].xx = shadow->xx; spriteVertices[i].xy = shadow->xy; spriteVertices[i].yx = shadow->yx; spriteVertices[i].yy = shadow->yy; } else { spriteVertices[i].xx = datum->xx; spriteVertices[i].xy = datum->xy; spriteVertices[i].yx = datum->yx; spriteVertices[i].yy = datum->yy; } if (m_explicitRotation && datum->rotationOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); spriteVertices[i].rotation = shadow->rotation; spriteVertices[i].rotationVelocity = shadow->rotationVelocity; spriteVertices[i].autoRotate = shadow->autoRotate; } else { spriteVertices[i].rotation = datum->rotation; spriteVertices[i].rotationVelocity = datum->rotationVelocity; spriteVertices[i].autoRotate = datum->autoRotate; } //Sprite-related vertices updated per-frame in spritesUpdate(), not on demand if (m_explicitColor && datum->colorOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); spriteVertices[i].color = shadow->color; } else { spriteVertices[i].color = datum->color; } } break; case Tabled: //Fall through until it has its own vertex class case Deformable: deformableVertices += pIdx*4; for (int i=0; i<4; i++){ deformableVertices[i].x = datum->x - m_systemOffset.x(); deformableVertices[i].y = datum->y - m_systemOffset.y(); deformableVertices[i].t = datum->t; deformableVertices[i].lifeSpan = datum->lifeSpan; deformableVertices[i].size = datum->size; deformableVertices[i].endSize = datum->endSize; deformableVertices[i].vx = datum->vx; deformableVertices[i].vy = datum->vy; deformableVertices[i].ax = datum->ax; deformableVertices[i].ay = datum->ay; if (m_explicitDeformation && datum->deformationOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); deformableVertices[i].xx = shadow->xx; deformableVertices[i].xy = shadow->xy; deformableVertices[i].yx = shadow->yx; deformableVertices[i].yy = shadow->yy; } else { deformableVertices[i].xx = datum->xx; deformableVertices[i].xy = datum->xy; deformableVertices[i].yx = datum->yx; deformableVertices[i].yy = datum->yy; } if (m_explicitRotation && datum->rotationOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); deformableVertices[i].rotation = shadow->rotation; deformableVertices[i].rotationVelocity = shadow->rotationVelocity; deformableVertices[i].autoRotate = shadow->autoRotate; } else { deformableVertices[i].rotation = datum->rotation; deformableVertices[i].rotationVelocity = datum->rotationVelocity; deformableVertices[i].autoRotate = datum->autoRotate; } if (m_explicitColor && datum->colorOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); deformableVertices[i].color = shadow->color; } else { deformableVertices[i].color = datum->color; } } break; case Colored: coloredVertices += pIdx*4; for (int i=0; i<4; i++){ coloredVertices[i].x = datum->x - m_systemOffset.x(); coloredVertices[i].y = datum->y - m_systemOffset.y(); coloredVertices[i].t = datum->t; coloredVertices[i].lifeSpan = datum->lifeSpan; coloredVertices[i].size = datum->size; coloredVertices[i].endSize = datum->endSize; coloredVertices[i].vx = datum->vx; coloredVertices[i].vy = datum->vy; coloredVertices[i].ax = datum->ax; coloredVertices[i].ay = datum->ay; if (m_explicitColor && datum->colorOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); coloredVertices[i].color = shadow->color; } else { coloredVertices[i].color = datum->color; } } break; case ColoredPoint: coloredPointVertices += pIdx*1; for (int i=0; i<1; i++){ coloredPointVertices[i].x = datum->x - m_systemOffset.x(); coloredPointVertices[i].y = datum->y - m_systemOffset.y(); coloredPointVertices[i].t = datum->t; coloredPointVertices[i].lifeSpan = datum->lifeSpan; coloredPointVertices[i].size = datum->size; coloredPointVertices[i].endSize = datum->endSize; coloredPointVertices[i].vx = datum->vx; coloredPointVertices[i].vy = datum->vy; coloredPointVertices[i].ax = datum->ax; coloredPointVertices[i].ay = datum->ay; if (m_explicitColor && datum->colorOwner != this) { QQuickParticleData* shadow = getShadowDatum(datum); coloredPointVertices[i].color = shadow->color; } else { coloredPointVertices[i].color = datum->color; } } break; case SimplePoint: simplePointVertices += pIdx*1; for (int i=0; i<1; i++){ simplePointVertices[i].x = datum->x - m_systemOffset.x(); simplePointVertices[i].y = datum->y - m_systemOffset.y(); simplePointVertices[i].t = datum->t; simplePointVertices[i].lifeSpan = datum->lifeSpan; simplePointVertices[i].size = datum->size; simplePointVertices[i].endSize = datum->endSize; simplePointVertices[i].vx = datum->vx; simplePointVertices[i].vy = datum->vy; simplePointVertices[i].ax = datum->ax; simplePointVertices[i].ay = datum->ay; } break; default: break; } } QT_END_NAMESPACE #include "moc_qquickimageparticle_p.cpp"