/**************************************************************************** ** ** Copyright (C) 2015 The Qt Company Ltd. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #if ENABLE(ASSEMBLER) using namespace QV4; using namespace JIT; #define OP(op) \ { isel_stringIfy(op), op, 0, 0, 0 } #define OPCONTEXT(op) \ { isel_stringIfy(op), 0, op, 0, 0 } #define INLINE_OP(op, memOp, immOp) \ { isel_stringIfy(op), op, 0, memOp, immOp } #define INLINE_OPCONTEXT(op, memOp, immOp) \ { isel_stringIfy(op), 0, op, memOp, immOp } #define NULL_OP \ { 0, 0, 0, 0, 0 } const Binop::OpInfo Binop::operations[IR::LastAluOp + 1] = { NULL_OP, // OpInvalid NULL_OP, // OpIfTrue NULL_OP, // OpNot NULL_OP, // OpUMinus NULL_OP, // OpUPlus NULL_OP, // OpCompl NULL_OP, // OpIncrement NULL_OP, // OpDecrement INLINE_OP(Runtime::bitAnd, &Binop::inline_and32, &Binop::inline_and32), // OpBitAnd INLINE_OP(Runtime::bitOr, &Binop::inline_or32, &Binop::inline_or32), // OpBitOr INLINE_OP(Runtime::bitXor, &Binop::inline_xor32, &Binop::inline_xor32), // OpBitXor INLINE_OPCONTEXT(Runtime::add, &Binop::inline_add32, &Binop::inline_add32), // OpAdd INLINE_OP(Runtime::sub, &Binop::inline_sub32, &Binop::inline_sub32), // OpSub INLINE_OP(Runtime::mul, &Binop::inline_mul32, &Binop::inline_mul32), // OpMul OP(Runtime::div), // OpDiv OP(Runtime::mod), // OpMod INLINE_OP(Runtime::shl, &Binop::inline_shl32, &Binop::inline_shl32), // OpLShift INLINE_OP(Runtime::shr, &Binop::inline_shr32, &Binop::inline_shr32), // OpRShift INLINE_OP(Runtime::ushr, &Binop::inline_ushr32, &Binop::inline_ushr32), // OpURShift OP(Runtime::greaterThan), // OpGt OP(Runtime::lessThan), // OpLt OP(Runtime::greaterEqual), // OpGe OP(Runtime::lessEqual), // OpLe OP(Runtime::equal), // OpEqual OP(Runtime::notEqual), // OpNotEqual OP(Runtime::strictEqual), // OpStrictEqual OP(Runtime::strictNotEqual), // OpStrictNotEqual OPCONTEXT(Runtime::instanceof), // OpInstanceof OPCONTEXT(Runtime::in), // OpIn NULL_OP, // OpAnd NULL_OP // OpOr }; void Binop::generate(IR::Expr *lhs, IR::Expr *rhs, IR::Expr *target) { if (op != IR::OpMod && lhs->type == IR::DoubleType && rhs->type == IR::DoubleType) { doubleBinop(lhs, rhs, target); return; } if (lhs->type == IR::SInt32Type && rhs->type == IR::SInt32Type) { if (int32Binop(lhs, rhs, target)) return; } Assembler::Jump done; if (lhs->type != IR::StringType && rhs->type != IR::StringType) done = genInlineBinop(lhs, rhs, target); // TODO: inline var===null and var!==null Binop::OpInfo info = Binop::operation(op); if (op == IR::OpAdd && (lhs->type == IR::StringType || rhs->type == IR::StringType)) { const Binop::OpInfo stringAdd = OPCONTEXT(Runtime::addString); info = stringAdd; } if (info.fallbackImplementation) { as->generateFunctionCallImp(target, info.name, info.fallbackImplementation, Assembler::PointerToValue(lhs), Assembler::PointerToValue(rhs)); } else if (info.contextImplementation) { as->generateFunctionCallImp(target, info.name, info.contextImplementation, Assembler::EngineRegister, Assembler::PointerToValue(lhs), Assembler::PointerToValue(rhs)); } else { Q_ASSERT(!"unreachable"); } if (done.isSet()) done.link(as); } void Binop::doubleBinop(IR::Expr *lhs, IR::Expr *rhs, IR::Expr *target) { IR::Temp *targetTemp = target->asTemp(); Assembler::FPRegisterID targetReg; if (targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister) targetReg = (Assembler::FPRegisterID) targetTemp->index; else targetReg = Assembler::FPGpr0; switch (op) { case IR::OpAdd: if (lhs->asConst()) std::swap(lhs, rhs); // Y = constant + X -> Y = X + constant #if CPU(X86) if (IR::Const *c = rhs->asConst()) { // Y = X + constant -> Y = X; Y += [constant-address] as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister); as->addDouble(addr, targetReg); break; } if (IR::Temp *t = rhs->asTemp()) { // Y = X + [temp-memory-address] -> Y = X; Y += [temp-memory-address] if (t->kind != IR::Temp::PhysicalRegister) { as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); as->addDouble(as->loadTempAddress(t), targetReg); break; } } #endif as->addDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg); break; case IR::OpMul: if (lhs->asConst()) std::swap(lhs, rhs); // Y = constant * X -> Y = X * constant #if CPU(X86) if (IR::Const *c = rhs->asConst()) { // Y = X * constant -> Y = X; Y *= [constant-address] as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister); as->mulDouble(addr, targetReg); break; } if (IR::Temp *t = rhs->asTemp()) { // Y = X * [temp-memory-address] -> Y = X; Y *= [temp-memory-address] if (t->kind != IR::Temp::PhysicalRegister) { as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); as->mulDouble(as->loadTempAddress(t), targetReg); break; } } #endif as->mulDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg); break; case IR::OpSub: #if CPU(X86) if (IR::Const *c = rhs->asConst()) { // Y = X - constant -> Y = X; Y -= [constant-address] as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister); as->subDouble(addr, targetReg); break; } if (IR::Temp *t = rhs->asTemp()) { // Y = X - [temp-memory-address] -> Y = X; Y -= [temp-memory-address] if (t->kind != IR::Temp::PhysicalRegister) { as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); as->subDouble(as->loadTempAddress(t), targetReg); break; } } #endif if (rhs->asTemp() && rhs->asTemp()->kind == IR::Temp::PhysicalRegister && targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister && targetTemp->index == rhs->asTemp()->index) { // Y = X - Y -> Tmp = Y; Y = X - Tmp as->moveDouble(as->toDoubleRegister(rhs, Assembler::FPGpr1), Assembler::FPGpr1); as->subDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), Assembler::FPGpr1, targetReg); break; } as->subDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg); break; case IR::OpDiv: #if CPU(X86) if (IR::Const *c = rhs->asConst()) { // Y = X / constant -> Y = X; Y /= [constant-address] as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister); as->divDouble(addr, targetReg); break; } if (IR::Temp *t = rhs->asTemp()) { // Y = X / [temp-memory-address] -> Y = X; Y /= [temp-memory-address] if (t->kind != IR::Temp::PhysicalRegister) { as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg); as->divDouble(as->loadTempAddress(t), targetReg); break; } } #endif if (rhs->asTemp() && rhs->asTemp()->kind == IR::Temp::PhysicalRegister && targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister && targetTemp->index == rhs->asTemp()->index) { // Y = X / Y -> Tmp = Y; Y = X / Tmp as->moveDouble(as->toDoubleRegister(rhs, Assembler::FPGpr1), Assembler::FPGpr1); as->divDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), Assembler::FPGpr1, targetReg); break; } as->divDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg); break; default: { Q_ASSERT(target->type == IR::BoolType); Assembler::Jump trueCase = as->branchDouble(false, op, lhs, rhs); as->storeBool(false, target); Assembler::Jump done = as->jump(); trueCase.link(as); as->storeBool(true, target); done.link(as); } return; } if (!targetTemp || targetTemp->kind != IR::Temp::PhysicalRegister) as->storeDouble(targetReg, target); } bool Binop::int32Binop(IR::Expr *leftSource, IR::Expr *rightSource, IR::Expr *target) { Q_ASSERT(leftSource->type == IR::SInt32Type); Q_ASSERT(rightSource->type == IR::SInt32Type); switch (op) { case IR::OpBitAnd: case IR::OpBitOr: case IR::OpBitXor: case IR::OpAdd: case IR::OpMul: if (leftSource->asConst()) // X = Const op Y -> X = Y op Const std::swap(leftSource, rightSource); else if (IR::Temp *t = leftSource->asTemp()) { if (t->kind != IR::Temp::PhysicalRegister) // X = [address] op Y -> X = Y op [address] std::swap(leftSource, rightSource); } break; case IR::OpLShift: case IR::OpRShift: case IR::OpURShift: case IR::OpSub: // handled by this method, but we can't flip operands. break; default: return false; // not handled by this method, stop here. } bool inplaceOpWithAddress = false; IR::Temp *targetTemp = target->asTemp(); Assembler::RegisterID targetReg = Assembler::ReturnValueRegister; if (targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister) { IR::Temp *rhs = rightSource->asTemp(); if (!rhs || rhs->kind != IR::Temp::PhysicalRegister || rhs->index != targetTemp->index) { // We try to load leftSource into the target's register, but we can't do that if // the target register is the same as rightSource. targetReg = (Assembler::RegisterID) targetTemp->index; } else if (rhs && rhs->kind == IR::Temp::PhysicalRegister && targetTemp->index == rhs->index) { // However, if the target register is the same as the rightSource register, we can flip // the operands for certain operations. switch (op) { case IR::OpBitAnd: case IR::OpBitOr: case IR::OpBitXor: case IR::OpAdd: case IR::OpMul: // X = Y op X -> X = X op Y (or rephrased: X op= Y (so an in-place operation)) std::swap(leftSource, rightSource); targetReg = (Assembler::RegisterID) targetTemp->index; break; case IR::OpLShift: case IR::OpRShift: case IR::OpURShift: case IR::OpSub: break; default: Q_UNREACHABLE(); return false; } } // determine if we have X op= [address] if (IR::Temp *lhs = leftSource->asTemp()) { if (lhs->kind == IR::Temp::PhysicalRegister && lhs->index == targetTemp->index) { if (IR::Temp *rhs = rightSource->asTemp()) { if (rhs->kind != IR::Temp::PhysicalRegister) { switch (op) { case IR::OpBitAnd: case IR::OpBitOr: case IR::OpBitXor: case IR::OpAdd: case IR::OpMul: break; inplaceOpWithAddress = true; default: break; } } } } } } if (op == IR::OpSub) { if (rightSource->asTemp() && rightSource->asTemp()->kind == IR::Temp::PhysicalRegister && targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister && targetTemp->index == rightSource->asTemp()->index) { // X = Y - X -> Tmp = X; X = Y; X -= Tmp targetReg = (Assembler::RegisterID) targetTemp->index; as->move(targetReg, Assembler::ScratchRegister); as->move(as->toInt32Register(leftSource, targetReg), targetReg); as->sub32(Assembler::ScratchRegister, targetReg); } else { as->move(as->toInt32Register(leftSource, targetReg), targetReg); as->sub32(as->toInt32Register(rightSource, Assembler::ScratchRegister), targetReg); } as->storeInt32(targetReg, target); return true; } Assembler::RegisterID l = as->toInt32Register(leftSource, targetReg); if (IR::Const *c = rightSource->asConst()) { // All cases of Y = X op Const Assembler::TrustedImm32 r(int(c->value)); switch (op) { case IR::OpBitAnd: as->and32(r, l, targetReg); break; case IR::OpBitOr: as->or32 (r, l, targetReg); break; case IR::OpBitXor: as->xor32(r, l, targetReg); break; case IR::OpAdd: as->add32(r, l, targetReg); break; case IR::OpMul: as->mul32(r, l, targetReg); break; case IR::OpLShift: r.m_value &= 0x1f; as->lshift32(l, r, targetReg); break; case IR::OpRShift: r.m_value &= 0x1f; as->rshift32(l, r, targetReg); break; case IR::OpURShift: r.m_value &= 0x1f; as->urshift32(l, r, targetReg); as->storeUInt32(targetReg, target); // IMPORTANT: do NOT do a break here! The stored type of an urshift is different from the other binary operations! return true; case IR::OpSub: // already handled before default: // not handled by this method: Q_UNREACHABLE(); return false; } } else if (inplaceOpWithAddress) { // All cases of X = X op [address-of-Y] Assembler::Pointer rhsAddr = as->loadAddress(Assembler::ScratchRegister, rightSource); switch (op) { case IR::OpBitAnd: as->and32(rhsAddr, targetReg); break; case IR::OpBitOr: as->or32 (rhsAddr, targetReg); break; case IR::OpBitXor: as->xor32(rhsAddr, targetReg); break; case IR::OpAdd: as->add32(rhsAddr, targetReg); break; case IR::OpMul: as->mul32(rhsAddr, targetReg); break; break; default: // not handled by this method: Q_UNREACHABLE(); return false; } } else { // All cases of Z = X op Y Assembler::RegisterID r = as->toInt32Register(rightSource, Assembler::ScratchRegister); switch (op) { case IR::OpBitAnd: as->and32(l, r, targetReg); break; case IR::OpBitOr: as->or32 (l, r, targetReg); break; case IR::OpBitXor: as->xor32(l, r, targetReg); break; case IR::OpAdd: as->add32(l, r, targetReg); break; case IR::OpMul: as->mul32(l, r, targetReg); break; #if CPU(ARM) || CPU(X86) || CPU(X86_64) // The ARM assembler will generate an and with 0x1f for us, and Intel will do it on the CPU. case IR::OpLShift: as->lshift32(l, r, targetReg); break; case IR::OpRShift: as->rshift32(l, r, targetReg); break; case IR::OpURShift: as->urshift32(l, r, targetReg); as->storeUInt32(targetReg, target); // IMPORTANT: do NOT do a break here! The stored type of an urshift is different from the other binary operations! return true; #else case IR::OpLShift: as->move(r, Assembler::ScratchRegister); as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister); as->lshift32(l, Assembler::ScratchRegister, targetReg); break; case IR::OpLShift: as->move(r, Assembler::ScratchRegister); as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister); as->rshift32(l, Assembler::ScratchRegister, targetReg); break; case IR::OpLShift: as->move(r, Assembler::ScratchRegister); as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister); as->storeUInt32(targetReg, target); // IMPORTANT: do NOT do a break here! The stored type of an urshift is different from the other binary operations! return true; #endif case IR::OpSub: // already handled before default: // not handled by this method: Q_UNREACHABLE(); return false; } } as->storeInt32(targetReg, target); return true; } static inline Assembler::FPRegisterID getFreeFPReg(IR::Expr *shouldNotOverlap, unsigned hint) { if (IR::Temp *t = shouldNotOverlap->asTemp()) if (t->type == IR::DoubleType) if (t->kind == IR::Temp::PhysicalRegister) if (t->index == hint) return Assembler::FPRegisterID(hint + 1); return Assembler::FPRegisterID(hint); } Assembler::Jump Binop::genInlineBinop(IR::Expr *leftSource, IR::Expr *rightSource, IR::Expr *target) { Assembler::Jump done; // Try preventing a call for a few common binary operations. This is used in two cases: // - no register allocation was performed (not available for the platform, or the IR was // not transformed into SSA) // - type inference found that either or both operands can be of non-number type, and the // register allocator will have prepared for a call (meaning: all registers that do not // hold operands are spilled to the stack, which makes them available here) // Note: FPGPr0 can still not be used, because uint32->double conversion uses it as a scratch // register. switch (op) { case IR::OpAdd: { Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2); Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4); Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg); Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg); as->addDouble(rReg, lReg); as->storeDouble(lReg, target); done = as->jump(); if (leftIsNoDbl.isSet()) leftIsNoDbl.link(as); if (rightIsNoDbl.isSet()) rightIsNoDbl.link(as); } break; case IR::OpMul: { Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2); Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4); Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg); Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg); as->mulDouble(rReg, lReg); as->storeDouble(lReg, target); done = as->jump(); if (leftIsNoDbl.isSet()) leftIsNoDbl.link(as); if (rightIsNoDbl.isSet()) rightIsNoDbl.link(as); } break; case IR::OpSub: { Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2); Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4); Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg); Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg); as->subDouble(rReg, lReg); as->storeDouble(lReg, target); done = as->jump(); if (leftIsNoDbl.isSet()) leftIsNoDbl.link(as); if (rightIsNoDbl.isSet()) rightIsNoDbl.link(as); } break; case IR::OpDiv: { Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2); Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4); Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg); Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg); as->divDouble(rReg, lReg); as->storeDouble(lReg, target); done = as->jump(); if (leftIsNoDbl.isSet()) leftIsNoDbl.link(as); if (rightIsNoDbl.isSet()) rightIsNoDbl.link(as); } break; default: break; } return done; } #endif