/**************************************************************************** ** ** Copyright (C) 2015 The Qt Company Ltd. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qv4arraydata_p.h" #include "qv4object_p.h" #include "qv4functionobject_p.h" #include #include "qv4runtime_p.h" #include "qv4argumentsobject_p.h" #include "qv4string_p.h" using namespace QV4; const QV4::VTable QV4::ArrayData::static_vtbl = { 0, QV4::ArrayData::IsExecutionContext, QV4::ArrayData::IsString, QV4::ArrayData::IsObject, QV4::ArrayData::IsFunctionObject, QV4::ArrayData::IsErrorObject, QV4::ArrayData::IsArrayData, 0, QV4::ArrayData::MyType, "ArrayData", Q_VTABLE_FUNCTION(QV4::ArrayData, destroy), 0, isEqualTo }; const ArrayVTable SimpleArrayData::static_vtbl = { DEFINE_MANAGED_VTABLE_INT(SimpleArrayData, 0), Heap::ArrayData::Simple, SimpleArrayData::reallocate, SimpleArrayData::get, SimpleArrayData::put, SimpleArrayData::putArray, SimpleArrayData::del, SimpleArrayData::setAttribute, SimpleArrayData::push_front, SimpleArrayData::pop_front, SimpleArrayData::truncate, SimpleArrayData::length }; const ArrayVTable SparseArrayData::static_vtbl = { DEFINE_MANAGED_VTABLE_INT(SparseArrayData, 0), Heap::ArrayData::Sparse, SparseArrayData::reallocate, SparseArrayData::get, SparseArrayData::put, SparseArrayData::putArray, SparseArrayData::del, SparseArrayData::setAttribute, SparseArrayData::push_front, SparseArrayData::pop_front, SparseArrayData::truncate, SparseArrayData::length }; Q_STATIC_ASSERT(sizeof(Heap::ArrayData) == sizeof(Heap::SimpleArrayData)); Q_STATIC_ASSERT(sizeof(Heap::ArrayData) == sizeof(Heap::SparseArrayData)); static Q_ALWAYS_INLINE void storeValue(ReturnedValue *target, uint value) { Value v = Value::fromReturnedValue(*target); v.setValue(value); *target = v.asReturnedValue(); } void ArrayData::realloc(Object *o, Type newType, uint requested, bool enforceAttributes) { Scope scope(o->engine()); Scoped d(scope, o->arrayData()); uint alloc = 8; uint toCopy = 0; uint offset = 0; if (d) { bool hasAttrs = d->attrs(); enforceAttributes |= hasAttrs; if (requested <= d->alloc() && newType == d->type() && hasAttrs == enforceAttributes) return; if (alloc < d->alloc()) alloc = d->alloc(); if (d->type() < Heap::ArrayData::Sparse) { offset = d->d()->offset; toCopy = d->d()->len; } else { toCopy = d->alloc(); } if (d->type() > newType) newType = d->type(); } if (enforceAttributes && newType == Heap::ArrayData::Simple) newType = Heap::ArrayData::Complex; while (alloc < requested) alloc *= 2; size_t size = sizeof(Heap::ArrayData) + (alloc - 1)*sizeof(Value); if (enforceAttributes) size += alloc*sizeof(PropertyAttributes); Scoped newData(scope); if (newType < Heap::ArrayData::Sparse) { Heap::SimpleArrayData *n = scope.engine->memoryManager->allocManaged(size); new (n) Heap::SimpleArrayData; n->offset = 0; n->len = d ? d->d()->len : 0; newData = n; } else { Heap::SparseArrayData *n = scope.engine->memoryManager->allocManaged(size); new (n) Heap::SparseArrayData; newData = n; } newData->setAlloc(alloc); newData->setType(newType); newData->setAttrs(enforceAttributes ? reinterpret_cast(newData->d()->arrayData + alloc) : 0); o->setArrayData(newData); if (d) { if (enforceAttributes) { if (d->attrs()) memcpy(newData->attrs(), d->attrs(), sizeof(PropertyAttributes)*toCopy); else for (uint i = 0; i < toCopy; ++i) newData->attrs()[i] = Attr_Data; } if (toCopy > d->d()->alloc - offset) { uint copyFromStart = toCopy - (d->d()->alloc - offset); memcpy(newData->d()->arrayData + toCopy - copyFromStart, d->d()->arrayData, sizeof(Value)*copyFromStart); toCopy -= copyFromStart; } memcpy(newData->d()->arrayData, d->d()->arrayData + offset, sizeof(Value)*toCopy); } if (newType != Heap::ArrayData::Sparse) return; Heap::SparseArrayData *sparse = static_cast(newData->d()); ReturnedValue *lastFree; if (d && d->type() == Heap::ArrayData::Sparse) { Heap::SparseArrayData *old = static_cast(d->d()); sparse->sparse = old->sparse; old->sparse = 0; sparse->freeList = old->freeList; lastFree = &sparse->freeList; } else { sparse->sparse = new SparseArray; lastFree = &sparse->freeList; for (uint i = 0; i < toCopy; ++i) { if (!sparse->arrayData[i].isEmpty()) { SparseArrayNode *n = sparse->sparse->insert(i); n->value = i; } else { storeValue(lastFree, i); sparse->arrayData[i].setTag(Value::Empty_Type); lastFree = &sparse->arrayData[i].rawValueRef(); } } } if (toCopy < sparse->alloc) { for (uint i = toCopy; i < sparse->alloc; ++i) { storeValue(lastFree, i); sparse->arrayData[i].setTag(Value::Empty_Type); lastFree = &sparse->arrayData[i].rawValueRef(); } storeValue(lastFree, UINT_MAX); } // ### Could explicitly free the old data } Heap::ArrayData *SimpleArrayData::reallocate(Object *o, uint n, bool enforceAttributes) { realloc(o, Heap::ArrayData::Simple, n, enforceAttributes); return o->arrayData(); } void ArrayData::ensureAttributes(Object *o) { if (o->arrayData() && o->arrayData()->attrs) return; ArrayData::realloc(o, Heap::ArrayData::Simple, 0, true); } void SimpleArrayData::markObjects(Heap::Base *d, ExecutionEngine *e) { Heap::SimpleArrayData *dd = static_cast(d); for (uint i = 0; i < dd->len; ++i) dd->arrayData[dd->mappedIndex(i)].mark(e); } ReturnedValue SimpleArrayData::get(const Heap::ArrayData *d, uint index) { const Heap::SimpleArrayData *dd = static_cast(d); if (index >= dd->len) return Primitive::emptyValue().asReturnedValue(); return dd->data(index).asReturnedValue(); } bool SimpleArrayData::put(Object *o, uint index, const Value &value) { Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); Q_ASSERT(index >= dd->len || !dd->attrs || !dd->attrs[index].isAccessor()); // ### honour attributes dd->data(index) = value; if (index >= dd->len) { if (dd->attrs) dd->attrs[index] = Attr_Data; dd->len = index + 1; } return true; } bool SimpleArrayData::del(Object *o, uint index) { Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); if (index >= dd->len) return true; if (!dd->attrs || dd->attrs[index].isConfigurable()) { dd->data(index) = Primitive::emptyValue(); if (dd->attrs) dd->attrs[index] = Attr_Data; return true; } if (dd->data(index).isEmpty()) return true; return false; } void SimpleArrayData::setAttribute(Object *o, uint index, PropertyAttributes attrs) { o->arrayData()->attrs[index] = attrs; } void SimpleArrayData::push_front(Object *o, const Value *values, uint n) { Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); Q_ASSERT(!dd->attrs); if (dd->len + n > dd->alloc) { realloc(o, Heap::ArrayData::Simple, dd->len + n, false); Q_ASSERT(o->d()->arrayData->type == Heap::ArrayData::Simple); dd = o->d()->arrayData.cast(); } dd->offset = (dd->offset - n) % dd->alloc; dd->len += n; for (uint i = 0; i < n; ++i) dd->data(i) = values[i].asReturnedValue(); } ReturnedValue SimpleArrayData::pop_front(Object *o) { Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); Q_ASSERT(!dd->attrs); if (!dd->len) return Encode::undefined(); ReturnedValue v = dd->data(0).isEmpty() ? Encode::undefined() : dd->data(0).asReturnedValue(); dd->offset = (dd->offset + 1) % dd->alloc; --dd->len; return v; } uint SimpleArrayData::truncate(Object *o, uint newLen) { Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); if (dd->len < newLen) return newLen; if (!dd->attrs) { dd->len = newLen; return newLen; } while (dd->len > newLen) { if (!dd->data(dd->len - 1).isEmpty() && !dd->attrs[dd->len - 1].isConfigurable()) return dd->len; --dd->len; } return dd->len; } uint SimpleArrayData::length(const Heap::ArrayData *d) { return d->len; } bool SimpleArrayData::putArray(Object *o, uint index, const Value *values, uint n) { Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); if (index + n > dd->alloc) { reallocate(o, index + n + 1, false); dd = o->d()->arrayData.cast(); } for (uint i = dd->len; i < index; ++i) dd->data(i) = Primitive::emptyValue(); for (uint i = 0; i < n; ++i) dd->data(index + i) = values[i]; dd->len = qMax(dd->len, index + n); return true; } void SparseArrayData::free(Heap::ArrayData *d, uint idx) { Q_ASSERT(d && d->type == Heap::ArrayData::Sparse); Value *v = d->arrayData + idx; if (d->attrs && d->attrs[idx].isAccessor()) { // double slot, free both. Order is important, so we have a double slot for allocation again afterwards. v[1].setTagValue(Value::Empty_Type, Value::fromReturnedValue(d->freeList).value()); v[0].setTagValue(Value::Empty_Type, idx + 1); } else { v->setTagValue(Value::Empty_Type, Value::fromReturnedValue(d->freeList).value()); } d->freeList = idx; if (d->attrs) d->attrs[idx].clear(); } void SparseArrayData::markObjects(Heap::Base *d, ExecutionEngine *e) { Heap::SparseArrayData *dd = static_cast(d); uint l = dd->alloc; for (uint i = 0; i < l; ++i) dd->arrayData[i].mark(e); } Heap::ArrayData *SparseArrayData::reallocate(Object *o, uint n, bool enforceAttributes) { realloc(o, Heap::ArrayData::Sparse, n, enforceAttributes); return o->arrayData(); } // double slots are required for accessor properties uint SparseArrayData::allocate(Object *o, bool doubleSlot) { Q_ASSERT(o->d()->arrayData->type == Heap::ArrayData::Sparse); Heap::SimpleArrayData *dd = o->d()->arrayData.cast(); if (doubleSlot) { ReturnedValue *last = &dd->freeList; while (1) { if (Value::fromReturnedValue(*last).value() == UINT_MAX) { reallocate(o, dd->alloc + 2, true); dd = o->d()->arrayData.cast(); last = &dd->freeList; Q_ASSERT(Value::fromReturnedValue(*last).value() != UINT_MAX); } Q_ASSERT(dd->arrayData[Value::fromReturnedValue(*last).value()].value() != Value::fromReturnedValue(*last).value()); if (dd->arrayData[Value::fromReturnedValue(*last).value()].value() == (Value::fromReturnedValue(*last).value() + 1)) { // found two slots in a row uint idx = Value::fromReturnedValue(*last).uint_32(); Value lastV = Value::fromReturnedValue(*last); lastV.setValue(dd->arrayData[lastV.value() + 1].value()); *last = lastV.rawValue(); dd->attrs[idx] = Attr_Accessor; return idx; } last = &dd->arrayData[Value::fromReturnedValue(*last).value()].rawValueRef(); } } else { if (Value::fromReturnedValue(dd->freeList).value() == UINT_MAX) { reallocate(o, dd->alloc + 1, false); dd = o->d()->arrayData.cast(); } uint idx = Value::fromReturnedValue(dd->freeList).value(); Q_ASSERT(idx != UINT_MAX); dd->freeList = dd->arrayData[idx].uint_32(); if (dd->attrs) dd->attrs[idx] = Attr_Data; return idx; } } ReturnedValue SparseArrayData::get(const Heap::ArrayData *d, uint index) { const Heap::SparseArrayData *s = static_cast(d); index = s->mappedIndex(index); if (index == UINT_MAX) return Primitive::emptyValue().asReturnedValue(); return s->arrayData[index].asReturnedValue(); } bool SparseArrayData::put(Object *o, uint index, const Value &value) { if (value.isEmpty()) return true; Heap::SparseArrayData *s = o->d()->arrayData.cast(); SparseArrayNode *n = s->sparse->insert(index); Q_ASSERT(n->value == UINT_MAX || !s->attrs || !s->attrs[n->value].isAccessor()); if (n->value == UINT_MAX) n->value = allocate(o); s = o->d()->arrayData.cast(); s->arrayData[n->value] = value; if (s->attrs) s->attrs[n->value] = Attr_Data; return true; } bool SparseArrayData::del(Object *o, uint index) { Heap::SparseArrayData *dd = o->d()->arrayData.cast(); SparseArrayNode *n = dd->sparse->findNode(index); if (!n) return true; uint pidx = n->value; Q_ASSERT(!dd->arrayData[pidx].isEmpty()); bool isAccessor = false; if (dd->attrs) { if (!dd->attrs[pidx].isConfigurable()) return false; isAccessor = dd->attrs[pidx].isAccessor(); dd->attrs[pidx] = Attr_Data; } if (isAccessor) { // free up both indices dd->arrayData[pidx + 1].setTagValue(Value::Empty_Type, Value::fromReturnedValue(dd->freeList).value()); dd->arrayData[pidx].setTagValue(Value::Undefined_Type, pidx + 1); } else { dd->arrayData[pidx].setTagValue(Value::Empty_Type, Value::fromReturnedValue(dd->freeList).value()); } dd->freeList = pidx; dd->sparse->erase(n); return true; } void SparseArrayData::setAttribute(Object *o, uint index, PropertyAttributes attrs) { Heap::SparseArrayData *d = o->d()->arrayData.cast(); SparseArrayNode *n = d->sparse->insert(index); if (n->value == UINT_MAX) { n->value = allocate(o, attrs.isAccessor()); d = o->d()->arrayData.cast(); } else if (attrs.isAccessor() != d->attrs[n->value].isAccessor()) { // need to convert the slot free(o->arrayData(), n->value); n->value = allocate(o, attrs.isAccessor()); d = o->d()->arrayData.cast(); } d->attrs[n->value] = attrs; } void SparseArrayData::push_front(Object *o, const Value *values, uint n) { Heap::SparseArrayData *d = o->d()->arrayData.cast(); Q_ASSERT(!d->attrs); for (int i = n - 1; i >= 0; --i) { uint idx = allocate(o); d = o->d()->arrayData.cast(); d->arrayData[idx] = values[i]; d->sparse->push_front(idx); } } ReturnedValue SparseArrayData::pop_front(Object *o) { Heap::SparseArrayData *d = o->d()->arrayData.cast(); Q_ASSERT(!d->attrs); uint idx = d->sparse->pop_front(); ReturnedValue v; if (idx != UINT_MAX) { v = d->arrayData[idx].asReturnedValue(); free(o->arrayData(), idx); } else { v = Encode::undefined(); } return v; } uint SparseArrayData::truncate(Object *o, uint newLen) { Heap::SparseArrayData *d = o->d()->arrayData.cast(); SparseArrayNode *begin = d->sparse->lowerBound(newLen); if (begin != d->sparse->end()) { SparseArrayNode *it = d->sparse->end()->previousNode(); while (1) { if (d->attrs) { if (!d->attrs[it->value].isConfigurable()) { newLen = it->key() + 1; break; } } free(o->arrayData(), it->value); bool brk = (it == begin); SparseArrayNode *prev = it->previousNode(); d->sparse->erase(it); if (brk) break; it = prev; } } return newLen; } uint SparseArrayData::length(const Heap::ArrayData *d) { const Heap::SparseArrayData *dd = static_cast(d); if (!dd->sparse) return 0; SparseArrayNode *n = dd->sparse->end(); n = n->previousNode(); return n ? n->key() + 1 : 0; } bool SparseArrayData::putArray(Object *o, uint index, const Value *values, uint n) { for (uint i = 0; i < n; ++i) put(o, index + i, values[i]); return true; } uint ArrayData::append(Object *obj, ArrayObject *otherObj, uint n) { Q_ASSERT(!obj->d()->arrayData || !obj->d()->arrayData->attrs); if (!n) return obj->getLength(); Scope scope(obj->engine()); Scoped other(scope, otherObj->arrayData()); if (other && other->isSparse()) obj->initSparseArray(); else obj->arrayCreate(); uint oldSize = obj->getLength(); if (!other || ArgumentsObject::isNonStrictArgumentsObject(otherObj)) { ScopedValue v(scope); for (uint i = 0; i < n; ++i) obj->arraySet(oldSize + i, (v = otherObj->getIndexed(i))); } else if (other && other->isSparse()) { Heap::SparseArrayData *os = static_cast(other->d()); if (other->hasAttributes()) { ScopedValue v(scope); for (const SparseArrayNode *it = os->sparse->begin(); it != os->sparse->end(); it = it->nextNode()) { v = otherObj->getValue(os->arrayData[it->value], other->d()->attrs[it->value]); obj->arraySet(oldSize + it->key(), v); } } else { for (const SparseArrayNode *it = other->d()->sparse->begin(); it != os->sparse->end(); it = it->nextNode()) obj->arraySet(oldSize + it->key(), os->arrayData[it->value]); } } else { Heap::SimpleArrayData *os = static_cast(other->d()); uint toCopy = n; uint chunk = toCopy; if (chunk > os->alloc - os->offset) chunk -= os->alloc - os->offset; obj->arrayPut(oldSize, os->arrayData + os->offset, chunk); toCopy -= chunk; if (toCopy) obj->arrayPut(oldSize + chunk, os->arrayData, toCopy); } return oldSize + n; } void ArrayData::insert(Object *o, uint index, const Value *v, bool isAccessor) { if (!isAccessor && o->d()->arrayData->type != Heap::ArrayData::Sparse) { Heap::SimpleArrayData *d = o->d()->arrayData.cast(); if (index < 0x1000 || index < d->len + (d->len >> 2)) { if (index >= d->alloc) { o->arrayReserve(index + 1); d = o->d()->arrayData.cast(); } if (index >= d->len) { // mark possible hole in the array for (uint i = d->len; i < index; ++i) d->data(i) = Primitive::emptyValue(); d->len = index + 1; } d->arrayData[d->mappedIndex(index)] = *v; return; } } o->initSparseArray(); Heap::SparseArrayData *s = o->d()->arrayData.cast(); SparseArrayNode *n = s->sparse->insert(index); if (n->value == UINT_MAX) n->value = SparseArrayData::allocate(o, isAccessor); s = o->d()->arrayData.cast(); s->arrayData[n->value] = *v; if (isAccessor) s->arrayData[n->value + Object::SetterOffset] = v[Object::SetterOffset]; } class ArrayElementLessThan { public: inline ArrayElementLessThan(ExecutionEngine *engine, Object *thisObject, const Value &comparefn) : m_engine(engine), thisObject(thisObject), m_comparefn(comparefn) {} bool operator()(Value v1, Value v2) const; private: ExecutionEngine *m_engine; Object *thisObject; const Value &m_comparefn; }; bool ArrayElementLessThan::operator()(Value v1, Value v2) const { Scope scope(m_engine); if (v1.isUndefined() || v1.isEmpty()) return false; if (v2.isUndefined() || v2.isEmpty()) return true; ScopedObject o(scope, m_comparefn); if (o) { Scope scope(o->engine()); ScopedValue result(scope); ScopedCallData callData(scope, 2); callData->thisObject = Primitive::undefinedValue(); callData->args[0] = v1; callData->args[1] = v2; result = Runtime::callValue(scope.engine, m_comparefn, callData); return result->toNumber() < 0; } ScopedString p1s(scope, v1.toString(scope.engine)); ScopedString p2s(scope, v2.toString(scope.engine)); return p1s->toQString() < p2s->toQString(); } template void sortHelper(RandomAccessIterator start, RandomAccessIterator end, const T &t, LessThan lessThan) { top: int span = int(end - start); if (span < 2) return; --end; RandomAccessIterator low = start, high = end - 1; RandomAccessIterator pivot = start + span / 2; if (lessThan(*end, *start)) qSwap(*end, *start); if (span == 2) return; if (lessThan(*pivot, *start)) qSwap(*pivot, *start); if (lessThan(*end, *pivot)) qSwap(*end, *pivot); if (span == 3) return; qSwap(*pivot, *end); while (low < high) { while (low < high && lessThan(*low, *end)) ++low; while (high > low && lessThan(*end, *high)) --high; if (low < high) { qSwap(*low, *high); ++low; --high; } else { break; } } if (lessThan(*low, *end)) ++low; qSwap(*end, *low); sortHelper(start, low, t, lessThan); start = low + 1; ++end; goto top; } void ArrayData::sort(ExecutionEngine *engine, Object *thisObject, const Value &comparefn, uint len) { if (!len) return; Scope scope(engine); Scoped arrayData(scope, thisObject->arrayData()); if (!arrayData || !arrayData->length()) return; if (!(comparefn.isUndefined() || comparefn.as())) { engine->throwTypeError(); return; } // The spec says the sorting goes through a series of get,put and delete operations. // this implies that the attributes don't get sorted around. if (arrayData->type() == Heap::ArrayData::Sparse) { // since we sort anyway, we can simply iterate over the entries in the sparse // array and append them one by one to a regular one. Scoped sparse(scope, static_cast(arrayData->d())); if (!sparse->sparse()->nEntries()) return; thisObject->setArrayData(0); ArrayData::realloc(thisObject, Heap::ArrayData::Simple, sparse->sparse()->nEntries(), sparse->attrs() ? true : false); Heap::SimpleArrayData *d = thisObject->d()->arrayData.cast(); SparseArrayNode *n = sparse->sparse()->begin(); uint i = 0; if (sparse->attrs()) { while (n != sparse->sparse()->end()) { if (n->value >= len) break; PropertyAttributes a = sparse->attrs() ? sparse->attrs()[n->value] : Attr_Data; d->data(i) = thisObject->getValue(sparse->arrayData()[n->value], a); d->attrs[i] = a.isAccessor() ? Attr_Data : a; n = n->nextNode(); ++i; } } else { while (n != sparse->sparse()->end()) { if (n->value >= len) break; d->data(i) = sparse->arrayData()[n->value]; n = n->nextNode(); ++i; } } d->len = i; if (len > i) len = i; if (n != sparse->sparse()->end()) { // have some entries outside the sort range that we need to ignore when sorting thisObject->initSparseArray(); while (n != sparse->sparse()->end()) { PropertyAttributes a = sparse->attrs() ? sparse->attrs()[n->value] : Attr_Data; thisObject->arraySet(n->value, reinterpret_cast(sparse->arrayData() + n->value), a); n = n->nextNode(); } } } else { Heap::SimpleArrayData *d = thisObject->d()->arrayData.cast(); if (len > d->len) len = d->len; // sort empty values to the end for (uint i = 0; i < len; i++) { if (d->data(i).isEmpty()) { while (--len > i) if (!d->data(len).isEmpty()) break; Q_ASSERT(!d->attrs || !d->attrs[len].isAccessor()); d->data(i) = d->data(len); d->data(len) = Primitive::emptyValue(); } } if (!len) return; } ArrayElementLessThan lessThan(engine, thisObject, comparefn); Value *begin = thisObject->arrayData()->arrayData; sortHelper(begin, begin + len, *begin, lessThan); #ifdef CHECK_SPARSE_ARRAYS thisObject->initSparseArray(); #endif }