/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qv4mathobject_p.h" #include "qv4objectproto_p.h" #include #include #include #include #include using namespace QV4; DEFINE_OBJECT_VTABLE(MathObject); void Heap::MathObject::init() { Object::init(); Scope scope(internalClass->engine); ScopedObject m(scope, this); m->defineReadonlyProperty(QStringLiteral("E"), Primitive::fromDouble(M_E)); m->defineReadonlyProperty(QStringLiteral("LN2"), Primitive::fromDouble(M_LN2)); m->defineReadonlyProperty(QStringLiteral("LN10"), Primitive::fromDouble(M_LN10)); m->defineReadonlyProperty(QStringLiteral("LOG2E"), Primitive::fromDouble(M_LOG2E)); m->defineReadonlyProperty(QStringLiteral("LOG10E"), Primitive::fromDouble(M_LOG10E)); m->defineReadonlyProperty(QStringLiteral("PI"), Primitive::fromDouble(M_PI)); m->defineReadonlyProperty(QStringLiteral("SQRT1_2"), Primitive::fromDouble(M_SQRT1_2)); m->defineReadonlyProperty(QStringLiteral("SQRT2"), Primitive::fromDouble(M_SQRT2)); m->defineDefaultProperty(QStringLiteral("abs"), QV4::MathObject::method_abs, 1); m->defineDefaultProperty(QStringLiteral("acos"), QV4::MathObject::method_acos, 1); m->defineDefaultProperty(QStringLiteral("asin"), QV4::MathObject::method_asin, 0); m->defineDefaultProperty(QStringLiteral("atan"), QV4::MathObject::method_atan, 1); m->defineDefaultProperty(QStringLiteral("atan2"), QV4::MathObject::method_atan2, 2); m->defineDefaultProperty(QStringLiteral("ceil"), QV4::MathObject::method_ceil, 1); m->defineDefaultProperty(QStringLiteral("cos"), QV4::MathObject::method_cos, 1); m->defineDefaultProperty(QStringLiteral("exp"), QV4::MathObject::method_exp, 1); m->defineDefaultProperty(QStringLiteral("floor"), QV4::MathObject::method_floor, 1); m->defineDefaultProperty(QStringLiteral("log"), QV4::MathObject::method_log, 1); m->defineDefaultProperty(QStringLiteral("max"), QV4::MathObject::method_max, 2); m->defineDefaultProperty(QStringLiteral("min"), QV4::MathObject::method_min, 2); m->defineDefaultProperty(QStringLiteral("pow"), QV4::MathObject::method_pow, 2); m->defineDefaultProperty(QStringLiteral("random"), QV4::MathObject::method_random, 0); m->defineDefaultProperty(QStringLiteral("round"), QV4::MathObject::method_round, 1); m->defineDefaultProperty(QStringLiteral("sign"), QV4::MathObject::method_sign, 1); m->defineDefaultProperty(QStringLiteral("sin"), QV4::MathObject::method_sin, 1); m->defineDefaultProperty(QStringLiteral("sqrt"), QV4::MathObject::method_sqrt, 1); m->defineDefaultProperty(QStringLiteral("tan"), QV4::MathObject::method_tan, 1); } static Q_ALWAYS_INLINE double copySign(double x, double y) { return ::copysign(x, y); } void MathObject::method_abs(const BuiltinFunction *, Scope &scope, CallData *callData) { if (!callData->argc) RETURN_RESULT(Encode(qt_qnan())); if (callData->args[0].isInteger()) { int i = callData->args[0].integerValue(); RETURN_RESULT(Encode(i < 0 ? - i : i)); } double v = callData->args[0].toNumber(); if (v == 0) // 0 | -0 RETURN_RESULT(Encode(0)); RETURN_RESULT(Encode(v < 0 ? -v : v)); } void MathObject::method_acos(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : 2; if (v > 1) RETURN_RESULT(Encode(qt_qnan())); RETURN_RESULT(Encode(std::acos(v))); } void MathObject::method_asin(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : 2; if (v > 1) RETURN_RESULT(Encode(qt_qnan())); else RETURN_RESULT(Encode(std::asin(v))); } void MathObject::method_atan(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::atan(v))); } void MathObject::method_atan2(const BuiltinFunction *, Scope &scope, CallData *callData) { double v1 = callData->argc ? callData->args[0].toNumber() : qt_qnan(); double v2 = callData->argc > 1 ? callData->args[1].toNumber() : qt_qnan(); if ((v1 < 0) && qt_is_finite(v1) && qt_is_inf(v2) && (copySign(1.0, v2) == 1.0)) RETURN_RESULT(Encode(copySign(0, -1.0))); if ((v1 == 0.0) && (v2 == 0.0)) { if ((copySign(1.0, v1) == 1.0) && (copySign(1.0, v2) == -1.0)) { RETURN_RESULT(Encode(M_PI)); } else if ((copySign(1.0, v1) == -1.0) && (copySign(1.0, v2) == -1.0)) { RETURN_RESULT(Encode(-M_PI)); } } RETURN_RESULT(Encode(std::atan2(v1, v2))); } void MathObject::method_ceil(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); if (v < 0.0 && v > -1.0) RETURN_RESULT(Encode(copySign(0, -1.0))); else RETURN_RESULT(Encode(std::ceil(v))); } void MathObject::method_cos(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::cos(v))); } void MathObject::method_exp(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); if (qt_is_inf(v)) { if (copySign(1.0, v) == -1.0) RETURN_RESULT(Encode(0)); else RETURN_RESULT(Encode(qt_inf())); } else { RETURN_RESULT(Encode(std::exp(v))); } } void MathObject::method_floor(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::floor(v))); } void MathObject::method_log(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); if (v < 0) RETURN_RESULT(Encode(qt_qnan())); else RETURN_RESULT(Encode(std::log(v))); } void MathObject::method_max(const BuiltinFunction *, Scope &scope, CallData *callData) { double mx = -qt_inf(); for (int i = 0; i < callData->argc; ++i) { double x = callData->args[i].toNumber(); if (x > mx || std::isnan(x)) mx = x; } RETURN_RESULT(Encode(mx)); } void MathObject::method_min(const BuiltinFunction *, Scope &scope, CallData *callData) { double mx = qt_inf(); for (int i = 0; i < callData->argc; ++i) { double x = callData->args[i].toNumber(); if ((x == 0 && mx == x && copySign(1.0, x) == -1.0) || (x < mx) || std::isnan(x)) { mx = x; } } RETURN_RESULT(Encode(mx)); } void MathObject::method_pow(const BuiltinFunction *, Scope &scope, CallData *callData) { double x = callData->argc > 0 ? callData->args[0].toNumber() : qt_qnan(); double y = callData->argc > 1 ? callData->args[1].toNumber() : qt_qnan(); if (std::isnan(y)) RETURN_RESULT(Encode(qt_qnan())); if (y == 0) { RETURN_RESULT(Encode(1)); } else if (((x == 1) || (x == -1)) && std::isinf(y)) { RETURN_RESULT(Encode(qt_qnan())); } else if (((x == 0) && copySign(1.0, x) == 1.0) && (y < 0)) { RETURN_RESULT(Encode(qInf())); } else if ((x == 0) && copySign(1.0, x) == -1.0) { if (y < 0) { if (std::fmod(-y, 2.0) == 1.0) RETURN_RESULT(Encode(-qt_inf())); else RETURN_RESULT(Encode(qt_inf())); } else if (y > 0) { if (std::fmod(y, 2.0) == 1.0) RETURN_RESULT(Encode(copySign(0, -1.0))); else RETURN_RESULT(Encode(0)); } } #ifdef Q_OS_AIX else if (qt_is_inf(x) && copySign(1.0, x) == -1.0) { if (y > 0) { if (std::fmod(y, 2.0) == 1.0) RETURN_RESULT(Encode(-qt_inf())); else RETURN_RESULT(Encode(qt_inf())); } else if (y < 0) { if (std::fmod(-y, 2.0) == 1.0) RETURN_RESULT(Encode(copySign(0, -1.0))); else RETURN_RESULT(Encode(0)); } } #endif else { RETURN_RESULT(Encode(std::pow(x, y))); } // ### RETURN_RESULT(Encode(qt_qnan())); } Q_GLOBAL_STATIC(QThreadStorage, seedCreatedStorage); void MathObject::method_random(const BuiltinFunction *, Scope &scope, CallData *) { if (!seedCreatedStorage()->hasLocalData()) { int msecs = QTime(0,0,0).msecsTo(QTime::currentTime()); Q_ASSERT(msecs >= 0); qsrand(uint(uint(msecs) ^ reinterpret_cast(scope.engine))); seedCreatedStorage()->setLocalData(new bool(true)); } // rand()/qrand() return a value where the upperbound is RAND_MAX inclusive. So, instead of // dividing by RAND_MAX (which would return 0..RAND_MAX inclusive), we divide by RAND_MAX + 1. qint64 upperLimit = qint64(RAND_MAX) + 1; RETURN_RESULT(Encode(qrand() / double(upperLimit))); } void MathObject::method_round(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); v = copySign(std::floor(v + 0.5), v); RETURN_RESULT(Encode(v)); } void MathObject::method_sign(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); if (std::isnan(v)) RETURN_RESULT(Encode(qt_qnan())); if (qIsNull(v)) RETURN_RESULT(Encode(v)); RETURN_RESULT(Encode(std::signbit(v) ? -1 : 1)); } void MathObject::method_sin(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::sin(v))); } void MathObject::method_sqrt(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::sqrt(v))); } void MathObject::method_tan(const BuiltinFunction *, Scope &scope, CallData *callData) { double v = callData->argc ? callData->args[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::tan(v))); }