/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qv4mathobject_p.h" #include "qv4objectproto_p.h" #include "qv4symbol_p.h" #include #include #include #include #include #include #include using namespace QV4; DEFINE_OBJECT_VTABLE(MathObject); void Heap::MathObject::init() { Object::init(); Scope scope(internalClass->engine); ScopedObject m(scope, this); m->defineReadonlyProperty(QStringLiteral("E"), Value::fromDouble(M_E)); m->defineReadonlyProperty(QStringLiteral("LN2"), Value::fromDouble(M_LN2)); m->defineReadonlyProperty(QStringLiteral("LN10"), Value::fromDouble(M_LN10)); m->defineReadonlyProperty(QStringLiteral("LOG2E"), Value::fromDouble(M_LOG2E)); m->defineReadonlyProperty(QStringLiteral("LOG10E"), Value::fromDouble(M_LOG10E)); m->defineReadonlyProperty(QStringLiteral("PI"), Value::fromDouble(M_PI)); m->defineReadonlyProperty(QStringLiteral("SQRT1_2"), Value::fromDouble(M_SQRT1_2)); m->defineReadonlyProperty(QStringLiteral("SQRT2"), Value::fromDouble(M_SQRT2)); m->defineDefaultProperty(QStringLiteral("abs"), QV4::MathObject::method_abs, 1); m->defineDefaultProperty(QStringLiteral("acos"), QV4::MathObject::method_acos, 1); m->defineDefaultProperty(QStringLiteral("acosh"), QV4::MathObject::method_acosh, 1); m->defineDefaultProperty(QStringLiteral("asin"), QV4::MathObject::method_asin, 1); m->defineDefaultProperty(QStringLiteral("asinh"), QV4::MathObject::method_asinh, 1); m->defineDefaultProperty(QStringLiteral("atan"), QV4::MathObject::method_atan, 1); m->defineDefaultProperty(QStringLiteral("atanh"), QV4::MathObject::method_atanh, 1); m->defineDefaultProperty(QStringLiteral("atan2"), QV4::MathObject::method_atan2, 2); m->defineDefaultProperty(QStringLiteral("cbrt"), QV4::MathObject::method_cbrt, 1); m->defineDefaultProperty(QStringLiteral("ceil"), QV4::MathObject::method_ceil, 1); m->defineDefaultProperty(QStringLiteral("clz32"), QV4::MathObject::method_clz32, 1); m->defineDefaultProperty(QStringLiteral("cos"), QV4::MathObject::method_cos, 1); m->defineDefaultProperty(QStringLiteral("cosh"), QV4::MathObject::method_cosh, 1); m->defineDefaultProperty(QStringLiteral("exp"), QV4::MathObject::method_exp, 1); m->defineDefaultProperty(QStringLiteral("expm1"), QV4::MathObject::method_expm1, 1); m->defineDefaultProperty(QStringLiteral("floor"), QV4::MathObject::method_floor, 1); m->defineDefaultProperty(QStringLiteral("fround"), QV4::MathObject::method_fround, 1); m->defineDefaultProperty(QStringLiteral("hypot"), QV4::MathObject::method_hypot, 2); m->defineDefaultProperty(QStringLiteral("imul"), QV4::MathObject::method_imul, 2); m->defineDefaultProperty(QStringLiteral("log"), QV4::MathObject::method_log, 1); m->defineDefaultProperty(QStringLiteral("log10"), QV4::MathObject::method_log10, 1); m->defineDefaultProperty(QStringLiteral("log1p"), QV4::MathObject::method_log1p, 1); m->defineDefaultProperty(QStringLiteral("log2"), QV4::MathObject::method_log2, 1); m->defineDefaultProperty(QStringLiteral("max"), QV4::MathObject::method_max, 2); m->defineDefaultProperty(QStringLiteral("min"), QV4::MathObject::method_min, 2); m->defineDefaultProperty(QStringLiteral("pow"), QV4::MathObject::method_pow, 2); m->defineDefaultProperty(QStringLiteral("random"), QV4::MathObject::method_random, 0); m->defineDefaultProperty(QStringLiteral("round"), QV4::MathObject::method_round, 1); m->defineDefaultProperty(QStringLiteral("sign"), QV4::MathObject::method_sign, 1); m->defineDefaultProperty(QStringLiteral("sin"), QV4::MathObject::method_sin, 1); m->defineDefaultProperty(QStringLiteral("sinh"), QV4::MathObject::method_sinh, 1); m->defineDefaultProperty(QStringLiteral("sqrt"), QV4::MathObject::method_sqrt, 1); m->defineDefaultProperty(QStringLiteral("tan"), QV4::MathObject::method_tan, 1); m->defineDefaultProperty(QStringLiteral("tanh"), QV4::MathObject::method_tanh, 1); m->defineDefaultProperty(QStringLiteral("trunc"), QV4::MathObject::method_trunc, 1); ScopedString name(scope, scope.engine->newString(QStringLiteral("Math"))); m->defineReadonlyConfigurableProperty(scope.engine->symbol_toStringTag(), name); } static Q_ALWAYS_INLINE double copySign(double x, double y) { return ::copysign(x, y); } ReturnedValue MathObject::method_abs(const FunctionObject *, const Value *, const Value *argv, int argc) { if (!argc) RETURN_RESULT(Encode(qt_qnan())); if (argv[0].isInteger()) { int i = argv[0].integerValue(); RETURN_RESULT(Encode(i < 0 ? - i : i)); } double v = argv[0].toNumber(); if (v == 0) // 0 | -0 RETURN_RESULT(Encode(0)); RETURN_RESULT(Encode(v < 0 ? -v : v)); } ReturnedValue MathObject::method_acos(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : 2; if (v > 1) RETURN_RESULT(Encode(qt_qnan())); RETURN_RESULT(Encode(std::acos(v))); } ReturnedValue MathObject::method_acosh(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : 2; if (v < 1) RETURN_RESULT(Encode(qt_qnan())); #ifdef Q_OS_ANDROID // incomplete std :-( RETURN_RESULT(Encode(std::log(v +std::sqrt(v + 1) * std::sqrt(v - 1)))); #else RETURN_RESULT(Encode(std::acosh(v))); #endif } ReturnedValue MathObject::method_asin(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : 2; if (v > 1) RETURN_RESULT(Encode(qt_qnan())); else RETURN_RESULT(Encode(std::asin(v))); } ReturnedValue MathObject::method_asinh(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : 2; if (v == 0.0) RETURN_RESULT(Encode(v)); #ifdef Q_OS_ANDROID // incomplete std :-( RETURN_RESULT(Encode(std::log(v +std::sqrt(1 + v * v)))); #else RETURN_RESULT(Encode(std::asinh(v))); #endif } ReturnedValue MathObject::method_atan(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::atan(v))); } ReturnedValue MathObject::method_atanh(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); #ifdef Q_OS_ANDROID // incomplete std :-( if (-1 < v && v < 1) RETURN_RESULT(Encode(0.5 * (std::log(v + 1) - std::log(v - 1)))); if (v > 1 || v < -1) RETURN_RESULT(Encode(qt_qnan())); RETURN_RESULT(Encode(copySign(qt_inf(), v))); #else RETURN_RESULT(Encode(std::atanh(v))); #endif } ReturnedValue MathObject::method_atan2(const FunctionObject *, const Value *, const Value *argv, int argc) { double v1 = argc ? argv[0].toNumber() : qt_qnan(); double v2 = argc > 1 ? argv[1].toNumber() : qt_qnan(); if ((v1 < 0) && qt_is_finite(v1) && qt_is_inf(v2) && (copySign(1.0, v2) == 1.0)) RETURN_RESULT(Encode(copySign(0, -1.0))); if ((v1 == 0.0) && (v2 == 0.0)) { if ((copySign(1.0, v1) == 1.0) && (copySign(1.0, v2) == -1.0)) { RETURN_RESULT(Encode(M_PI)); } else if ((copySign(1.0, v1) == -1.0) && (copySign(1.0, v2) == -1.0)) { RETURN_RESULT(Encode(-M_PI)); } } RETURN_RESULT(Encode(std::atan2(v1, v2))); } ReturnedValue MathObject::method_cbrt(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); #ifdef Q_OS_ANDROID // incomplete std :-( RETURN_RESULT(Encode(copySign(std::exp(std::log(std::abs(v)) / 3), v))); #else RETURN_RESULT(Encode(std::cbrt(v))); // cube root #endif } ReturnedValue MathObject::method_ceil(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v < 0.0 && v > -1.0) RETURN_RESULT(Encode(copySign(0, -1.0))); else RETURN_RESULT(Encode(std::ceil(v))); } ReturnedValue MathObject::method_clz32(const FunctionObject *, const Value *, const Value *argv, int argc) { quint32 v = argc ? argv[0].toUInt32() : 0; RETURN_RESULT(Encode(qint32(qCountLeadingZeroBits(v)))); } ReturnedValue MathObject::method_cos(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::cos(v))); } ReturnedValue MathObject::method_cosh(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::cosh(v))); } ReturnedValue MathObject::method_exp(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (qt_is_inf(v)) { if (copySign(1.0, v) == -1.0) RETURN_RESULT(Encode(0)); else RETURN_RESULT(Encode(qt_inf())); } else { RETURN_RESULT(Encode(std::exp(v))); } } ReturnedValue MathObject::method_expm1(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (std::isnan(v) || qIsNull(v)) { RETURN_RESULT(Encode(v)); } else if (qt_is_inf(v)) { if (copySign(1.0, v) == -1.0) RETURN_RESULT(Encode(-1.0)); else RETURN_RESULT(Encode(qt_inf())); } else { #ifdef Q_OS_ANDROID // incomplete std :-( RETURN_RESULT(Encode(std::exp(v) - 1)); #else RETURN_RESULT(Encode(std::expm1(v))); #endif } } ReturnedValue MathObject::method_floor(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); Value result = Value::fromDouble(std::floor(v)); result.isInt32(); RETURN_RESULT(result); } ReturnedValue MathObject::method_fround(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (std::isnan(v) || qt_is_inf(v) || qIsNull(v)) RETURN_RESULT(Encode(v)); else // convert to 32-bit float using roundTiesToEven, then convert back to 64-bit double RETURN_RESULT(Encode(double(float(v)))); } ReturnedValue MathObject::method_hypot(const FunctionObject *, const Value *, const Value *argv, int argc) { // ES6 Math.hypot(v1, ..., vn) -> sqrt(sum(vi**2)) but "should take care to // avoid the loss of precision from overflows and underflows" (as std::hypot does). double v = argc ? argv[0].toNumber() : 0; // Spec mandates +0 on no args; and says nothing about what to do if toNumber() signals ... #ifdef Q_OS_ANDROID // incomplete std :-( bool big = qt_is_inf(v), bad = std::isnan(v); v *= v; for (int i = 1; !big && i < argc; i++) { double u = argv[i].toNumber(); if (qt_is_inf(u)) big = true; if (std::isnan(u)) bad = true; v += u * u; } if (big) RETURN_RESULT(Encode(qt_inf())); if (bad) RETURN_RESULT(Encode(qt_qnan())); // Should actually check for {und,ov}erflow, but too fiddly ! RETURN_RESULT(Value::fromDouble(sqrt(v))); #else for (int i = 1; i < argc; i++) v = std::hypot(v, argv[i].toNumber()); #endif RETURN_RESULT(Value::fromDouble(v)); } ReturnedValue MathObject::method_imul(const FunctionObject *, const Value *, const Value *argv, int argc) { quint32 a = argc ? argv[0].toUInt32() : 0; quint32 b = argc > 0 ? argv[1].toUInt32() : 0; qint32 product = a * b; RETURN_RESULT(Encode(product)); } ReturnedValue MathObject::method_log(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v < 0) RETURN_RESULT(Encode(qt_qnan())); else RETURN_RESULT(Encode(std::log(v))); } ReturnedValue MathObject::method_log10(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v < 0) RETURN_RESULT(Encode(qt_qnan())); else RETURN_RESULT(Encode(std::log10(v))); } ReturnedValue MathObject::method_log1p(const FunctionObject *, const Value *, const Value *argv, int argc) { #if !defined(__ANDROID__) using std::log1p; #endif double v = argc ? argv[0].toNumber() : qt_qnan(); if (v < -1) RETURN_RESULT(Encode(qt_qnan())); else RETURN_RESULT(Encode(log1p(v))); } ReturnedValue MathObject::method_log2(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v < 0) { RETURN_RESULT(Encode(qt_qnan())); } else { #ifdef Q_OS_ANDROID // incomplete std :-( // Android ndk r10e doesn't have std::log2, so fall back. const double ln2 = std::log(2.0); RETURN_RESULT(Encode(std::log(v) / ln2)); #else RETURN_RESULT(Encode(std::log2(v))); #endif } } ReturnedValue MathObject::method_max(const FunctionObject *, const Value *, const Value *argv, int argc) { double mx = -qt_inf(); for (int i = 0, ei = argc; i < ei; ++i) { double x = argv[i].toNumber(); if ((x == 0 && mx == x && copySign(1.0, x) == 1.0) || (x > mx) || std::isnan(x)) { mx = x; } } RETURN_RESULT(Encode::smallestNumber(mx)); } ReturnedValue MathObject::method_min(const FunctionObject *, const Value *, const Value *argv, int argc) { double mx = qt_inf(); for (int i = 0, ei = argc; i < ei; ++i) { double x = argv[i].toNumber(); if ((x == 0 && mx == x && copySign(1.0, x) == -1.0) || (x < mx) || std::isnan(x)) { mx = x; } } RETURN_RESULT(Encode::smallestNumber(mx)); } ReturnedValue MathObject::method_pow(const FunctionObject *, const Value *, const Value *argv, int argc) { double x = argc > 0 ? argv[0].toNumber() : qt_qnan(); double y = argc > 1 ? argv[1].toNumber() : qt_qnan(); if (std::isnan(y)) RETURN_RESULT(Encode(qt_qnan())); if (y == 0) { RETURN_RESULT(Encode(1)); } else if (((x == 1) || (x == -1)) && std::isinf(y)) { RETURN_RESULT(Encode(qt_qnan())); } else if (((x == 0) && copySign(1.0, x) == 1.0) && (y < 0)) { RETURN_RESULT(Encode(qInf())); } else if ((x == 0) && copySign(1.0, x) == -1.0) { if (y < 0) { if (std::fmod(-y, 2.0) == 1.0) RETURN_RESULT(Encode(-qt_inf())); else RETURN_RESULT(Encode(qt_inf())); } else if (y > 0) { if (std::fmod(y, 2.0) == 1.0) RETURN_RESULT(Encode(copySign(0, -1.0))); else RETURN_RESULT(Encode(0)); } } #ifdef Q_OS_AIX else if (qt_is_inf(x) && copySign(1.0, x) == -1.0) { if (y > 0) { if (std::fmod(y, 2.0) == 1.0) RETURN_RESULT(Encode(-qt_inf())); else RETURN_RESULT(Encode(qt_inf())); } else if (y < 0) { if (std::fmod(-y, 2.0) == 1.0) RETURN_RESULT(Encode(copySign(0, -1.0))); else RETURN_RESULT(Encode(0)); } } #endif else { RETURN_RESULT(Encode(std::pow(x, y))); } // ### RETURN_RESULT(Encode(qt_qnan())); } ReturnedValue MathObject::method_random(const FunctionObject *, const Value *, const Value *, int) { RETURN_RESULT(Encode(QRandomGenerator::global()->generateDouble())); } ReturnedValue MathObject::method_round(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (std::isnan(v) || qt_is_inf(v) || qIsNull(v)) RETURN_RESULT(Encode(v)); v = copySign(std::floor(v + 0.5), v); RETURN_RESULT(Encode(v)); } ReturnedValue MathObject::method_sign(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (std::isnan(v)) RETURN_RESULT(Encode(qt_qnan())); if (qIsNull(v)) RETURN_RESULT(Encode(v)); RETURN_RESULT(Encode(std::signbit(v) ? -1 : 1)); } ReturnedValue MathObject::method_sin(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::sin(v))); } ReturnedValue MathObject::method_sinh(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::sinh(v))); } ReturnedValue MathObject::method_sqrt(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); RETURN_RESULT(Encode(std::sqrt(v))); } ReturnedValue MathObject::method_tan(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::tan(v))); } ReturnedValue MathObject::method_tanh(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); if (v == 0.0) RETURN_RESULT(Encode(v)); else RETURN_RESULT(Encode(std::tanh(v))); } ReturnedValue MathObject::method_trunc(const FunctionObject *, const Value *, const Value *argv, int argc) { double v = argc ? argv[0].toNumber() : qt_qnan(); #ifdef Q_OS_ANDROID // incomplete std :-( if (std::isnan(v) || qt_is_inf(v) || qIsNull(v)) RETURN_RESULT(Encode(v)); // Nearest integer not greater in magnitude: quint64 whole = std::abs(v); RETURN_RESULT(Encode(copySign(whole, v))); #else RETURN_RESULT(Encode(std::trunc(v))); #endif }